# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6554 | 0 | 1.0000 | Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes. Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the "perfect microbial storm". Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. | 2013 | 27029309 |
| 6556 | 1 | 0.9999 | Antibiotic resistance in urban runoff. Aquatic ecosystems subjected to anthropogenic pressures are places of rapid evolution of microbial communities and likely hotspots for selection and emergence of antibiotic resistant bacteria. In urban settings, water quality and the risk of infection are generally assessed in sewers and in effluents of wastewater treatment plants. Physical and chemical parameters as well as the presence of antibiotics, antibiotic-resistant bacteria and genes of resistance are driven by urban activities, with adverse effects on aquatic ecosystems. In this paper we review the environmental pressures exerted on bacterial communities in urban runoff waters and discuss the impact of these settings on antibiotic resistance. Considering the worrisome epidemiology of infectious diseases and estimated mortality due to antimicrobial resistance in the coming decades, there is an urgent need to identify all environmental reservoirs of resistant bacteria and resistance genes to complete our knowledge of the epidemiological cycle and of the dynamics of urban antibiotic resistance. | 2019 | 30826682 |
| 6555 | 2 | 0.9999 | Bacteriophages as antibiotic resistance genes carriers in agro-food systems. Antibiotic resistance genes (ARGs) are a global health concern. Antibiotic resistance occurs naturally, but misuse of antibiotics in humans and animals is accelerating the process of antibiotic resistance emergency, which has been aggravated by exposure to molecules of antibiotics present in clinical and agricultural settings and the engagement of many countries in water reuse especially in Middle East and North Africa region. Bacteriophages have the potential to be significant actors in ARGs transmission through the transduction process. These viruses have been detected along with ARGs in non impacted habitats and in anthropogenic impacted environments like wastewater, reclaimed water and manure amended soil as well as minimally processed food and ready to eat vegetables. The ubiquity of bacteriophages and their persistence in the environment raises concern about their involvement in ARGs transmission among different biomes and the generation of pathogenic-resistant bacteria that pose a great threat to human health. The aim of this review is to give an overview of the potential role of bacteriophages in the dissemination and the transfer of ARGs to pathogens in food production and processing and the consequent contribution to antibiotic resistance transmission through faecal oral route carrying ARGs to our dishes. | 2021 | 32916015 |
| 6478 | 3 | 0.9999 | Antibiotic resistance in grass and soil. Antibiotic resistance is currently one of the greatest threats to human health. The global overuse of antibiotics in human medicine and in agriculture has resulted in the proliferation and dissemination of a multitude of antibiotic resistance genes (ARGs). Despite a large proportion of antibiotics being used in agriculture, little is understood about how this may contribute to the overall antibiotic resistance crisis. The use of manure in agriculture is a traditional and widespread practice and is essential for returning nutrients to the soil; however, the impact of continuous manure application on the environmental microbiome and resistome is unknown. The use of antibiotics in animal husbandry in therapeutic and sub-therapeutic doses creates a selective pressure for ARGs in the gut microbiome of the animal, which is then excreted in the faeces. Therefore, the application of manure to agricultural land is a potential route for the transmission of antibiotic-resistant bacteria from livestock to crops, animals and humans. It is of vital importance to understand the mechanisms behind ARG enrichment and its maintenance both on the plant and within the soil microbiome to mitigate the spread of this resistance to animals and humans. Understanding this link between human health, animal health, plant health and the environment is crucial to inform implementation of new regulations and practice regarding antibiotic use in agriculture and manure application, aimed at ensuring the antibiotic resistance crisis is not aggravated. | 2019 | 30783015 |
| 6464 | 4 | 0.9999 | The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed. | 2024 | 38599270 |
| 6487 | 5 | 0.9999 | An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants. Antibiotic resistance is a globally recognized health concern which leads to longer hospital stays, increased morbidity, increased mortality, and higher medical costs. Understanding how antibiotic resistance persists and exchanges in environmental systems like soil, water, and wastewater are critically important for understanding the emergence of pathogens with new resistance profiles and the subsequent exposure of people who indirectly/directly come in contact with these pathogens. There are concerns about the widespread application of prophylactic antibiotics in the clinical and agriculture sectors, as well as chemicals/detergents used in food and manufacturing industries, especially the quaternary ammonium compounds which have been found responsible for the generation of resistant genes in water and soil. The rates of horizontal gene transfer increase where there is a lack of proper water/wastewater infrastructure, high antibiotic manufacturing industries, or endpoint users - such as hospitals and intensive agriculture. Conventional wastewater treatment technologies are often inefficient in the reduction of ARB/ARGs and provide the perfect combination of conditions for the development of antibiotic resistance. The wastewater discharged from municipal facilities may therefore be enriched with bacterial communities/pathogens and provide a suitable environment (due to the presence of nutrients and other pollutants) to enhance the transfer of antibiotic resistance. However, facilities with tertiary treatment (either traditional/emerging technologies) provide higher rates of reduction. This review provides a synthesis of the current understanding of wastewater treatment and antibiotic resistance, examining the drivers that may accelerate their possible transmission to a different environment, and highlighting the need for tertiary technologies used in treatment plants for the reduction of resistant bacteria/genes. | 2024 | 38286289 |
| 6557 | 6 | 0.9999 | Antibiotics and antibiotic resistance in water environments. Antibiotic-resistant organisms enter into water environments from human and animal sources. These bacteria are able to spread their genes into water-indigenous microbes, which also contain resistance genes. On the contrary, many antibiotics from industrial origin circulate in water environments, potentially altering microbial ecosystems. Risk assessment protocols for antibiotics and resistant bacteria in water, based on better systems for antibiotics detection and antibiotic-resistance microbial source tracking, are starting to be discussed. Methods to reduce resistant bacterial load in wastewaters, and the amount of antimicrobial agents, in most cases originated in hospitals and farms, include optimization of disinfection procedures and management of wastewater and manure. A policy for preventing mixing human-originated and animal-originated bacteria with environmental organisms seems advisable. | 2008 | 18534838 |
| 6465 | 7 | 0.9999 | Knowledge gaps in the assessment of antimicrobial resistance in surface waters. The spread of antibiotic resistance in the water environment has been widely described. However, still many knowledge gaps exist regarding the selection pressure from antibiotics, heavy metals and other substances present in surface waters as a result of anthropogenic activities, as well as the extent and impact of this phenomenon on aquatic organisms and humans. In particular, the relationship between environmental concentrations of antibiotics and the acquisition of ARGs by antibiotic-sensitive bacteria as well as the impact of heavy metals and other selective agents on antimicrobial resistance (AMR) need to be defined. Currently, established safety values are based on the effects of antibiotic toxicity neglecting the question of AMR spread. In turn, risk assessment of antibiotics in waterbodies remains a complex question implicating multiple variables and unknowns reinforced by the lack of harmonized protocols and official guidelines. In the present review, we discussed current state-of-the-art and the knowledge gaps related to pressure exerted by antibiotics and heavy metals on aquatic environments and their relationship to the spread of AMR. Along with this latter, we reflected on (i) the risk assessment in surface waters, (ii) selective pressures contributing to its transfer and propagation and (iii) the advantages of metagenomics in investigating AMR. Furthermore, the role of microplastics in co-selection for metal and antibiotic resistance, together with the need for more studies in freshwater are highlighted. | 2021 | 34625810 |
| 6553 | 8 | 0.9999 | Antibiotic Resistance in Recreational Waters: State of the Science. Ambient recreational waters can act as both recipients and natural reservoirs for antimicrobial resistant (AMR) bacteria and antimicrobial resistant genes (ARGs), where they may persist and replicate. Contact with AMR bacteria and ARGs potentially puts recreators at risk, which can thus decrease their ability to fight infections. A variety of point and nonpoint sources, including contaminated wastewater effluents, runoff from animal feeding operations, and sewer overflow events, can contribute to environmental loading of AMR bacteria and ARGs. The overall goal of this article is to provide the state of the science related to recreational exposure and AMR, which has been an area of increasing interest. Specific objectives of the review include (1) a description of potential sources of antibiotics, AMR bacteria, and ARGs in recreational waters, as documented in the available literature; (2) a discussion of what is known about human recreational exposures to AMR bacteria and ARGs, using findings from health studies and exposure assessments; and (3) identification of knowledge gaps and future research needs. To better understand the dynamics related to AMR and associated recreational water risks, future research should focus on source contribution, fate and transport-across treatment and in the environment; human health risk assessment; and standardized methods. | 2020 | 33142796 |
| 7426 | 9 | 0.9999 | Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Antibiotics are among the most successful group of pharmaceuticals used for human and veterinary therapy. However, large amounts of antibiotics are released into municipal wastewater due to incomplete metabolism in humans or due to disposal of unused antibiotics, which finally find their ways into different natural environmental compartments. The emergence and rapid spread of antibiotic resistant bacteria (ARB) has led to an increasing concern about the potential environmental and public health risks. ARB and antibiotic resistant genes (ARGs) have been detected extensively in wastewater samples. Available data show significantly higher proportion of antibiotic resistant bacteria contained in raw and treated wastewater relative to surface water. According to these studies, the conditions in wastewater treatment plants (WWTPs) are favourable for the proliferation of ARB. Moreover, another concern with regards to the presence of ARB and ARGs is their effective removal from sewage. This review gives an overview of the available data on the occurrence of ARB and ARGs and their fate in WWTPs, on the biological methods dealing with the detection of bacterial populations and their resistance genes, and highlights areas in need for further research studies. | 2013 | 23414720 |
| 6522 | 10 | 0.9999 | A review of the emergence of antibiotic resistance in bioaerosols and its monitoring methods. Despite significant public health concerns regarding infectious diseases in air environments, potentially harmful microbiological indicators, such as antibiotic resistance genes (ARGs) in bioaerosols, have not received significant attention. Traditionally, bioaerosol studies have focused on the characterization of microbial communities; however, a more serious problem has recently arisen due to the presence of ARGs in bioaerosols, leading to an increased prevalence of horizontal gene transfer (HGT). This constitutes a process by which bacteria transfer genes to other environmental media and consequently cause infectious disease. Antibiotic resistance in water and soil environments has been extensively investigated in the past few years by applying advanced molecular and biotechnological methods. However, ARGs in bioaerosols have not received much attention. In addition, ARG and HGT profiling in air environments is greatly limited in field studies due to the absence of suitable methodological approaches. Therefore, this study comprehensively describes recent findings from published studies and some of the appropriate molecular and biotechnological methods for monitoring antibiotic resistance in bioaerosols. In addition, this review discusses the main knowledge gaps regarding current methodological issues and future research directions. | 2022 | 35694630 |
| 6477 | 11 | 0.9999 | Antibiotics and Antibiotic Resistance Genes in Animal Manure - Consequences of Its Application in Agriculture. Antibiotic resistance genes (ARGs) are a relatively new type of pollutant. The rise in antibiotic resistance observed recently is closely correlated with the uncontrolled and widespread use of antibiotics in agriculture and the treatment of humans and animals. Resistant bacteria have been identified in soil, animal feces, animal housing (e.g., pens, barns, or pastures), the areas around farms, manure storage facilities, and the guts of farm animals. The selection pressure caused by the irrational use of antibiotics in animal production sectors not only promotes the survival of existing antibiotic-resistant bacteria but also the development of new resistant forms. One of the most critical hot-spots related to the development and dissemination of ARGs is livestock and poultry production. Manure is widely used as a fertilizer thanks to its rich nutrient and organic matter content. However, research indicates that its application may pose a severe threat to human and animal health by facilitating the dissemination of ARGs to arable soil and edible crops. This review examines the pathogens, potentially pathogenic microorganisms and ARGs which may be found in animal manure, and evaluates their effect on human health through their exposure to soil and plant resistomes. It takes a broader view than previous studies of this topic, discussing recent data on antibiotic use in farm animals and the effect of these practices on the composition of animal manure; it also examines how fertilization with animal manure may alter soil and crop microbiomes, and proposes the drivers of such changes and their consequences for human health. | 2021 | 33854486 |
| 6523 | 12 | 0.9999 | Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. Antibiotic Resistant Genes (ARGs) are an emerging environmental health threat due to the potential change in the human microbiome and selection for the emergence of antibiotic resistant bacteria. The rise of antibiotic resistant bacteria has caused a global health burden. The WHO (world health organization) predicts a rise in deaths due to antibiotic resistant infections. Since bacteria can acquire ARGs through horizontal transmission, it is important to assess the dissemination of antibioticresistant genes from anthropogenic sources. There are several sources of antibiotics, antibiotic resistant bacteria and genes in the environment. These include wastewater treatment plants, landfill leachate, agricultural, animal industrial sources and estuaries. The use of antibiotics is a worldwide practice that has resulted in the evolution of resistance to antibiotics. Our review provides a more comprehensive look into multiple sources of ARG's and antibiotics rather than one. Moreover, we focus on effective surveillance methods of ARGs and antibiotics and sustainable abiotic and biotic remediation strategies for removal and reduction of antibiotics and ARGs from both terrestrial and aquatic environments. Further, we consider the impact on public health as this problem cannot be addressed without a global transdisciplinary effort. | 2022 | 36037921 |
| 7432 | 13 | 0.9999 | Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure. Antibiotic resistance is a public health problem of growing concern. Animal manure application to soil is considered to be a main cause of the propagation and dissemination of antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the soil-water system. In recent decades, studies on the impact of antibiotic-contaminated manure on soil microbiomes have increased exponentially, in particular for taxonomical diversity and ARGs' diffusion. Antibiotic resistance genes are often located on mobile genetic elements (MGEs). Horizontal transfer of MGEs toward a broad range of bacteria (pathogens and human commensals included) has been identified as the main cause for their persistence and dissemination. Chemical and bio-sanitizing treatments reduce the antibiotic load and ARB. Nevertheless, effects of these treatments on the persistence of resistance genes must be carefully considered. This review analyzed the most recent research on antibiotic and ARG environmental dissemination conveyed by livestock waste. Strategies to control ARG dissemination and antibiotic persistence were reviewed with the aim to identify methods for monitoring DNA transferability and environmental conditions promoting such diffusion. | 2020 | 32793126 |
| 6462 | 14 | 0.9999 | Human health implications of clinically relevant bacteria in wastewater habitats. The objective of this review is to reflect on the multiple roles of bacteria in wastewater habitats with particular emphasis on their harmful potential for human health. Indigenous bacteria promote a series of biochemical and metabolic transformations indispensable to achieve wastewater treatment. Some of these bacteria may be pathogenic or harbour antibiotic resistance or virulence genes harmful for human health. Several chemical contaminants (heavy metals, disinfectants and antibiotics) may select these bacteria or their genes. Worldwide studies show that treated wastewater contain antibiotic resistant bacteria or genes encoding virulence or antimicrobial resistance, evidencing that treatment processes may fail to remove efficiently these bio-pollutants. The contamination of the surrounding environment, such as rivers or lakes receiving such effluents, is also documented in several studies. The current state of the art suggests that only some of antibiotic resistance and virulence potential in wastewater is known. Moreover, wastewater habitats may favour the evolution and dissemination of new resistance and virulence genes and the emergence of new pathogens. For these reasons, additional research is needed in order to obtain a more detailed assessment of the long-term effects of wastewater discharges. In particular, it is important to measure the human and environmental health risks associated with wastewater reuse. | 2013 | 23508533 |
| 6639 | 15 | 0.9999 | Environmental Spread of Antibiotic Resistance. Antibiotic resistance represents a global health concern. Soil, water, livestock and plant foods are directly or indirectly exposed to antibiotics due to their agricultural use or contamination. This selective pressure has acted synergistically to bacterial competition in nature to breed antibiotic-resistant (AR) bacteria. Research over the past few decades has focused on the emergence of AR pathogens in food products that can cause disease outbreaks and the spread of antibiotic resistance genes (ARGs), but One Health approaches have lately expanded the focus to include commensal bacteria as ARG donors. Despite the attempts of national and international authorities of developed and developing countries to reduce the over-prescription of antibiotics to humans and the use of antibiotics as livestock growth promoters, the selective flow of antibiotic resistance transmission from the environment to the clinic (and vice-versa) is increasing. This review focuses on the mechanisms of ARG transmission and the hotspots of antibiotic contamination resulting in the subsequent emergence of ARGs. It follows the transmission of ARGs from farm to plant and animal food products and provides examples of the impact of ARG flow to clinical settings. Understudied and emerging antibiotic resistance selection determinants, such as heavy metal and biocide contamination, are also discussed here. | 2021 | 34071771 |
| 6552 | 16 | 0.9999 | Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC. | 2022 | 35191071 |
| 6512 | 17 | 0.9999 | Antimicrobial Resistance in the Environment. This review summarizes selected publications of 2016 with emphasis on occurrence and treatment of antibiotic resistance genes and bacteria in the aquatic environment and wastewater and drinking water treatment plants. The review is conducted with emphasis on fate, modeling, risk assessment and data analysis methodologies for characterizing abundance. After providing a brief introduction, the review is divided into the following four sections: i) Occurrence of AMR in the Environment, ii) Treatment Technologies for AMR, iii) Modeling of Fate, Risk, and Environmental Impact of AMR, and iv) ARG Databases and Pipelines. | 2017 | 28954648 |
| 6513 | 18 | 0.9999 | Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater. Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks. | 2025 | 39676299 |
| 6521 | 19 | 0.9999 | Hiding in plain sight-wildlife as a neglected reservoir and pathway for the spread of antimicrobial resistance: a narrative review. Antimicrobial resistance represents a global health problem, with infections due to pathogenic antimicrobial resistant bacteria (ARB) predicted to be the most frequent cause of human mortality by 2050. The phenomenon of antimicrobial resistance has spread to and across all ecological niches, and particularly in livestock used for food production with antimicrobials consumed in high volumes. Similarly, hospitals and other healthcare facilities are recognized as significant 'hotspots' of ARB and antimicrobial resistance genes (ARGs); however, over the past decade, new and previously overlooked ecological niches are emerging as hidden reservoirs of ARB/ARGs. Increasingly extensive and intensive industrial activities, degradation of natural environments, burgeoning food requirements, urbanization, and global climatic change have all dramatically affected the evolution and proliferation of ARB/ARGs, which now stand at extremely concerning ecological levels. While antimicrobial resistant bacteria and genes as they originate and emanate from livestock and human hosts have been extensively studied over the past 30 years, numerous ecological niches have received considerably less attention. In the current descriptive review, the authors have sought to highlight the importance of wildlife as sources/reservoirs, pathways and receptors of ARB/ARGs in the environment, thus paving the way for future primary research in these areas. | 2022 | 35425978 |