# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6543 | 0 | 1.0000 | A new modelling framework for assessing the relative burden of antimicrobial resistance in aquatic environments. The infections caused by antibiotic resistant bacteria (ARB) can lead to higher medical costs, prolonged hospital stays, and increased mortality compared to bacteria that are susceptible to antibiotics. Challenges exist in quantifying the potential risk/burden associated with antimicrobial resistance (AMR) as there is a lack of dose-response models available for pathogens which are resistant to antibiotics, in addition to the fact that very little is known regarding the health risks posed by antibiotic resistant genes (ARG). In this paper, we proposed a new modelling framework to evaluate the relative burden of AMR in natural aquatic environments. With this framework, an AMR burden score for each sample was calculated based on burden coefficients assigned for each ARB and ARG, as well as weighted burdens for the separate ARBs and ARGs components. The method developed in this study was applied to assess the relative burden of AMR in local aquatic environments with different land uses at different seasons. The collected filed data were used to verify the applicability of the proposed relative burden assessment method. Through the established method, the spatial and temporal hotspots of AMR were identified, which could provide useful information to agencies for better control and management of AMR emergence in natural aquatic environments. | 2022 | 34763923 |
| 6513 | 1 | 0.9999 | Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater. Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks. | 2025 | 39676299 |
| 6544 | 2 | 0.9999 | A rapid approach with machine learning for quantifying the relative burden of antimicrobial resistance in natural aquatic environments. The massive use and discharge of antibiotics have led to increasing concerns about antimicrobial resistance (AMR) in natural aquatic environments. Since the dose-response mechanisms of pathogens with AMR have not yet been fully understood, and the antibiotic resistance genes and bacteria-related data collection via field sampling and laboratory testing is time-consuming and expensive, designing a rapid approach to quantify the burden of AMR in the natural aquatic environment has become a challenge. To cope with such a challenge, a new approach involving an integrated machine-learning framework was developed by investigating the associations between the relative burden of AMR and easily accessible variables (i.e., relevant environmental variables and adjacent land-use patterns). The results, based on a real-world case analysis, demonstrate that the quantification speed has been reduced from 3-7 days, which is typical for traditional measurement procedures with field sampling and laboratory testing, to approximately 0.5 hours using the new approach. Moreover, all five metrics for AMR relative burden quantification exceed the threshold level of 85%, with F1-score surpassing 0.92. Compared to logistic regression, decision trees, and basic random forest, the adaptive random forest model within the framework significantly improves quantification accuracy without sacrificing model interpretability. Two environmental variables, dissolved oxygen and resistivity, along with the proportion of green areas were identified as three key feature variables for the rapid quantification. This study contributes to the enrichment of burden analyses and management practices for rapid quantification of the relative burden of AMR without dose-response information. | 2024 | 39047454 |
| 6570 | 3 | 0.9999 | Impact of point sources on antibiotic resistance genes in the natural environment: a systematic review of the evidence. There is a growing concern about the role of the environment in the dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this systematic review, we summarize evidence for increases of ARG in the natural environment associated with potential sources of ARB and ARG such as agricultural facilities and wastewater treatment plants. A total of 5247 citations were identified, including studies that ascertained both ARG and ARB outcomes. All studies were screened for relevance to the question and methodology. This paper summarizes the evidence only for those studies with ARG outcomes (n = 24). Sixteen studies were at high (n = 3) or at unclear (n = 13) risk of bias in the estimation of source effects due to lack of information or failure to control for confounders. Statistical methods were used in nine studies; three studies assessed the effect of multiple sources using modeling approaches, and none reported effect measures. Most studies reported higher ARG concentration downstream/near the source, but heterogeneous findings hindered making any sound conclusions. To quantify increases of ARG in the environment due to specific point sources, there is a need for studies that emphasize analytic or design control of confounding, and that provide effect measure estimates. | 2017 | 29231804 |
| 6569 | 4 | 0.9999 | Unveiling Rare Pathogens and Antibiotic Resistance in Tanzanian Cholera Outbreak Waters. The emergence of antibiotic resistance is a global health concern. Therefore, understanding the mechanisms of its spread is crucial for implementing evidence-based strategies to tackle resistance in the context of the One Health approach. In developing countries where sanitation systems and access to clean and safe water are still major challenges, contamination may introduce bacteria and bacteriophages harboring antibiotic resistance genes (ARGs) into the environment. This contamination can increase the risk of exposure and community transmission of ARGs and infectious pathogens. However, there is a paucity of information on the mechanisms of bacteriophage-mediated spread of ARGs and patterns through the environment. Here, we deploy Droplet Digital PCR (ddPCR) and metagenomics approaches to analyze the abundance of ARGs and bacterial pathogens disseminated through clean and wastewater systems. We detected a relatively less-studied and rare human zoonotic pathogen, Vibrio metschnikovii, known to spread through fecal--oral contamination, similarly to V. cholerae. Several antibiotic resistance genes were identified in both bacterial and bacteriophage fractions from water sources. Using metagenomics, we detected several resistance genes related to tetracyclines and beta-lactams in all the samples. Environmental samples from outlet wastewater had a high diversity of ARGs and contained high levels of blaOXA-48. Other identified resistance profiles included tetA, tetM, and blaCTX-M9. Specifically, we demonstrated that blaCTX-M1 is enriched in the bacteriophage fraction from wastewater. In general, however, the bacterial community has a significantly higher abundance of resistance genes compared to the bacteriophage population. In conclusion, the study highlights the need to implement environmental monitoring of clean and wastewater to inform the risk of infectious disease outbreaks and the spread of antibiotic resistance in the context of One Health. | 2023 | 37894148 |
| 6553 | 5 | 0.9999 | Antibiotic Resistance in Recreational Waters: State of the Science. Ambient recreational waters can act as both recipients and natural reservoirs for antimicrobial resistant (AMR) bacteria and antimicrobial resistant genes (ARGs), where they may persist and replicate. Contact with AMR bacteria and ARGs potentially puts recreators at risk, which can thus decrease their ability to fight infections. A variety of point and nonpoint sources, including contaminated wastewater effluents, runoff from animal feeding operations, and sewer overflow events, can contribute to environmental loading of AMR bacteria and ARGs. The overall goal of this article is to provide the state of the science related to recreational exposure and AMR, which has been an area of increasing interest. Specific objectives of the review include (1) a description of potential sources of antibiotics, AMR bacteria, and ARGs in recreational waters, as documented in the available literature; (2) a discussion of what is known about human recreational exposures to AMR bacteria and ARGs, using findings from health studies and exposure assessments; and (3) identification of knowledge gaps and future research needs. To better understand the dynamics related to AMR and associated recreational water risks, future research should focus on source contribution, fate and transport-across treatment and in the environment; human health risk assessment; and standardized methods. | 2020 | 33142796 |
| 6487 | 6 | 0.9999 | An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants. Antibiotic resistance is a globally recognized health concern which leads to longer hospital stays, increased morbidity, increased mortality, and higher medical costs. Understanding how antibiotic resistance persists and exchanges in environmental systems like soil, water, and wastewater are critically important for understanding the emergence of pathogens with new resistance profiles and the subsequent exposure of people who indirectly/directly come in contact with these pathogens. There are concerns about the widespread application of prophylactic antibiotics in the clinical and agriculture sectors, as well as chemicals/detergents used in food and manufacturing industries, especially the quaternary ammonium compounds which have been found responsible for the generation of resistant genes in water and soil. The rates of horizontal gene transfer increase where there is a lack of proper water/wastewater infrastructure, high antibiotic manufacturing industries, or endpoint users - such as hospitals and intensive agriculture. Conventional wastewater treatment technologies are often inefficient in the reduction of ARB/ARGs and provide the perfect combination of conditions for the development of antibiotic resistance. The wastewater discharged from municipal facilities may therefore be enriched with bacterial communities/pathogens and provide a suitable environment (due to the presence of nutrients and other pollutants) to enhance the transfer of antibiotic resistance. However, facilities with tertiary treatment (either traditional/emerging technologies) provide higher rates of reduction. This review provides a synthesis of the current understanding of wastewater treatment and antibiotic resistance, examining the drivers that may accelerate their possible transmission to a different environment, and highlighting the need for tertiary technologies used in treatment plants for the reduction of resistant bacteria/genes. | 2024 | 38286289 |
| 6716 | 7 | 0.9999 | Wastewater surveillance of antibiotic-resistant bacteria for public health action: potential and challenges. Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions, identifying high-risk populations for targeted monitoring, providing early warning of the emergence and spread of antibiotic-resistant bacteria (ARBs), and identifying novel antibiotic-resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary, we explore whether monitoring wastewater for antibiotic-resistant genes (ARGs) and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in ARBs and ARGs and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation. | 2025 | 39475072 |
| 6557 | 8 | 0.9999 | Antibiotics and antibiotic resistance in water environments. Antibiotic-resistant organisms enter into water environments from human and animal sources. These bacteria are able to spread their genes into water-indigenous microbes, which also contain resistance genes. On the contrary, many antibiotics from industrial origin circulate in water environments, potentially altering microbial ecosystems. Risk assessment protocols for antibiotics and resistant bacteria in water, based on better systems for antibiotics detection and antibiotic-resistance microbial source tracking, are starting to be discussed. Methods to reduce resistant bacterial load in wastewaters, and the amount of antimicrobial agents, in most cases originated in hospitals and farms, include optimization of disinfection procedures and management of wastewater and manure. A policy for preventing mixing human-originated and animal-originated bacteria with environmental organisms seems advisable. | 2008 | 18534838 |
| 6717 | 9 | 0.9999 | Updated research agenda for water, sanitation and antimicrobial resistance. The emergence and spread of antimicrobial resistance (AMR), including clinically relevant antimicrobial-resistant bacteria, genetic resistance elements, and antibiotic residues, presents a significant threat to human health. Reducing the incidence of infection by improving water, sanitation, and hygiene (WASH) is one of five objectives in the World Health Organization's (WHO) Global Action Plan on AMR. In September 2019, WHO and the Health-Related Water Microbiology specialist group (HRWM-SG) of the International Water Association (IWA) organized its third workshop on AMR, focusing on the following three main issues: environmental pathways of AMR transmission, environmental surveillance, and removal from human waste. The workshop concluded that despite an increase in scientific evidence that the environment may play a significant role, especially in low-resource settings, the exact relative role of the environment is still unclear. Given many antibiotic-resistant bacteria (ARB) can be part of the normal gut flora, it can be assumed that for environmental transmission, the burden of fecal-oral transmission of AMR in a geographical area follows that of WASH-related infections. There are some uncertainties as to the potential for the propagation of particular resistance genes within wastewater treatment plants (WWTPs), but there is no doubt that the reduction in viable microbes (with or without resistance genes) available for transmission via the environment is one of the goals of human waste management. Although progress has been made in the past years with respect to quantifying environmental AMR transmission potential, still more data on the spread of environmental AMR within human communities is needed. Even though evidence on AMR in WWTPs has increased, the reduction in the emergence and spread of AMR by basic sanitation methods is yet unresolved. In order to contribute to the generation of harmonized One Health surveillance data, WHO has initiated an integrated One Health surveillance strategy that includes the environment. The main challenge lies in rolling it out globally including to the poorest regions. | 2020 | 33328358 |
| 6512 | 10 | 0.9999 | Antimicrobial Resistance in the Environment. This review summarizes selected publications of 2016 with emphasis on occurrence and treatment of antibiotic resistance genes and bacteria in the aquatic environment and wastewater and drinking water treatment plants. The review is conducted with emphasis on fate, modeling, risk assessment and data analysis methodologies for characterizing abundance. After providing a brief introduction, the review is divided into the following four sections: i) Occurrence of AMR in the Environment, ii) Treatment Technologies for AMR, iii) Modeling of Fate, Risk, and Environmental Impact of AMR, and iv) ARG Databases and Pipelines. | 2017 | 28954648 |
| 3978 | 11 | 0.9999 | Contribution of wastewater to antimicrobial resistance: A review article. OBJECTIVES: Antimicrobial resistance (AMR) is a global challenge that has raised concern globally, owing to its detrimental effects on the health and economy of countries. The ever-growing threat of AMR and sources of AMR are still being investigated. Wastewater plays an important role as a habitat for bacteria and an environment conducive to gene transfer. The primary aim of this review was to highlight the contribution of wastewater to AMR. METHODS: Evidence of AMR in wastewater was drawn from literature published in the last 10 years, from 2012 to 2022. RESULTS: Wastewater from agricultural practices, pharmaceutical manufacturing plants, and hospital effluents was established to promote AMR. Furthermore, stress factors such as the presence of antibiotics, heavy metals, pH, and temperature initiate and propagate AMR in bacteria living in wastewater. AMR in bacteria from wastewater was established to be either natural or acquired. Wastewater treatment techniques such as membrane filtration, coagulation, adsorption, and advanced oxidation processes have been used to remove resistant bacteria with varying success levels. CONCLUSION: Wastewater is a major contributor to AMR, and an understanding of its role in AMR is necessary to find a lasting solution. In this regard, the spread of AMR in wastewater should be considered a threat that requires a strategy to stop further damage. | 2023 | 37285914 |
| 6706 | 12 | 0.9999 | Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk. | 2022 | 35740227 |
| 6556 | 13 | 0.9999 | Antibiotic resistance in urban runoff. Aquatic ecosystems subjected to anthropogenic pressures are places of rapid evolution of microbial communities and likely hotspots for selection and emergence of antibiotic resistant bacteria. In urban settings, water quality and the risk of infection are generally assessed in sewers and in effluents of wastewater treatment plants. Physical and chemical parameters as well as the presence of antibiotics, antibiotic-resistant bacteria and genes of resistance are driven by urban activities, with adverse effects on aquatic ecosystems. In this paper we review the environmental pressures exerted on bacterial communities in urban runoff waters and discuss the impact of these settings on antibiotic resistance. Considering the worrisome epidemiology of infectious diseases and estimated mortality due to antimicrobial resistance in the coming decades, there is an urgent need to identify all environmental reservoirs of resistant bacteria and resistance genes to complete our knowledge of the epidemiological cycle and of the dynamics of urban antibiotic resistance. | 2019 | 30826682 |
| 6520 | 14 | 0.9998 | Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects. | 2022 | 35884228 |
| 6554 | 15 | 0.9998 | Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes. Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the "perfect microbial storm". Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. | 2013 | 27029309 |
| 7435 | 16 | 0.9998 | Insights into the impact of manure on the environmental antibiotic residues and resistance pool. The intensive use of antibiotics in the veterinary sector, linked to the application of manure-derived amendments in agriculture, translates into increased environmental levels of chemical residues, AR bacteria (ARB) and antibiotic resistance genes (ARG). The aim of this review was to evaluate the current evidence regarding the impact of animal farming and manure application on the antibiotic resistance pool in the environment. Several studies reported correlations between the prevalence of clinically relevant ARB and the amount and classes of antibiotics used in animal farming (high resistance rates being reported for medically important antibiotics such as penicillins, tetracyclines, sulfonamides and fluoroquinolones). However, the results are difficult to compare, due to the diversity of the used antimicrobials quantification techniques and to the different amounts and types of antibiotics, exhibiting various degradation times, given in animal feed in different countries. The soils fertilized with manure-derived products harbor a higher and chronic abundance of ARB, multiple ARG and an enriched associated mobilome, which is also sometimes seen in the crops grown on the amended soils. Different manure processing techniques have various efficiencies in the removal of antibiotic residues, ARB and ARGs, but there is only a small amount of data from commercial farms. The efficiency of sludge anaerobic digestion appears to be dependent on the microbial communities composition, the ARB/ARG and operating temperature (mesophilic vs. thermophilic conditions). Composting seems to reduce or eliminate most of antibiotics residues, enteric bacteria, ARB and different representative ARG in manure more rapidly and effectively than lagoon storage. Our review highlights that despite the body of research accumulated in the last years, there are still important knowledge gaps regarding the contribution of manure to the AMR emergence, accumulation, spread and risk of human exposure in countries with high clinical resistance rates. Land microbiome before and after manure application, efficiency of different manure treatment techniques in decreasing the AMR levels in the natural environments and along the food chain must be investigated in depth, covering different geographical regions and countries and using harmonized methodologies. The support of stakeholders is required for the development of specific best practices for prudent - cautious use of antibiotics on farm animals. The use of human reserve antibiotics in veterinary medicine and of unprescribed animal antimicrobials should be stopped and the use of antibiotics on farms must be limited. This integrated approach is needed to determine the optimal conditions for the removal of antibiotic residues, ARB and ARG, to formulate specific recommendations for livestock manure treatment, storage and handling procedures and to translate them into practical on-farm management decisions, to ultimately prevent exposure of human population. | 2022 | 36187968 |
| 3980 | 17 | 0.9998 | Antimicrobial resistance in dairy slurry tanks: A critical point for measurement and control. Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial resistance (AMR) countermeasures. We undertook a detailed, interdisciplinary, longitudinal analysis of dairy slurry waste. The slurry contained a population of ARB and ARGs, with resistances to current, historical and never-used on-farm antibiotics; resistances were associated with Gram-negative and Gram-positive bacteria and mobile elements (ISEcp1, Tn916, Tn21-family transposons). Modelling and experimental work suggested that these populations are in dynamic equilibrium, with microbial death balanced by fresh input. Consequently, storing slurry without further waste input for at least 60 days was predicted to reduce ARB spread onto land, with > 99 % reduction in cephalosporin resistant Escherichia coli. The model also indicated that for farms with low antibiotic use, further reductions are unlikely to reduce AMR further. We conclude that the slurry tank is a critical point for measurement and control of AMR, and that actions to limit the spread of AMR from dairy waste should combine responsible antibiotic use, including low total quantity, avoidance of human critical antibiotics, and choosing antibiotics with shorter half-lives, coupled with appropriate slurry storage. | 2022 | 36122459 |
| 6551 | 18 | 0.9998 | Bacterial diversity and resistome analysis of drinking water stored in cisterns from two First Nations communities in Manitoba, Canada. The microbiological content of water is an ongoing concern in First Nations communities in Canada. Many communities lack water treatment plants and continue to be under drinking water advisories. However, lack of access to treatment plants is only a part of the problem as poor water distribution systems also contribute to the failure to provide safe drinking water. Here, we studied the microbial diversity and antibiotic resistome from water stored in cisterns from two First Nations communities in Manitoba, Canada. We found that the cistern water contained a high number of bacteria and showed the presence of diverse antimicrobial resistance genes. Interestingly, the bacterial diversity and antimicrobial resistance genes varied considerably from that of the untreated source water, indicating that the origin of contamination in the cistern water came from within the treatment plant or along the delivery route to the homes. Our study highlights the importance of proper maintenance of the water distribution system in addition to access to water treatment facilities to ensure a supply of safe water to First Nations communities in Canada.IMPORTANCEThe work described addresses a critical issue in First Nations communities in Canada-the microbiological content of water. Many of these communities lack access to water treatment plants and frequently experience drinking water advisories. This study focused on the microbial diversity and antibiotic resistome in water stored in cisterns within two First Nations communities in Manitoba, Canada. These findings reveal that cistern water, a common source of drinking water in these communities, contains a high number of bacteria and a wide range of antimicrobial resistance genes. This highlights a serious health risk as exposure to such water can lead to the spread of drug-resistant infections, posing a threat to the well-being of the residents. | 2024 | 38305192 |
| 4003 | 19 | 0.9998 | Antibiotic resistance: Global health crisis and metagenomics. Antibiotic resistance is a global problem which affects human health. The imprudent use of antibiotics (medicine, agriculture, aquaculture, and food industry) has resulted in the broader dissemination of resistance. Urban wastewater & sewage treatment plants act as the hotspot for the widespread of antimicrobial resistance. Natural environment also plays an important role in the dissemination of resistance. Mapping of antibiotic resistance genes (ARGS) in environment is essential for mitigating antimicrobial resistance (AMR) widespread. Therefore, the review article emphasizes on the application of metagenomics for the surveillance of antimicrobial resistance. Metagenomics is the next generation tool which is being used for cataloging the resistome of diverse environments. We summarize the different metagenomic tools that can be used for mining of ARGs and acquired AMR present in the metagenomic data. Also, we recommend application of targeted sequencing/ capture platform for mapping of resistome with higher specificity and selectivity. | 2021 | 33732632 |