Antibiotic resistance dissemination in soil ecosystems: deep understanding for effective management and global health protection. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
653401.0000Antibiotic resistance dissemination in soil ecosystems: deep understanding for effective management and global health protection. Antibiotic resistance poses a significant threat to global health, extending beyond clinical settings into environmental reservoirs such as soil, where resistant bacteria persist and evolve. Current efforts focus on understanding the origins and implications of antibiotic resistance in soil ecosystems. It defines antibiotic resistance within an environmental context and highlights soil as a critical reservoir for antibiotic-resistant genes (ARGs). Key sources of antibiotics in soil are identified, including agricultural practices, medical waste, and municipal and industrial effluents. The classification and mechanisms of ARGs are outlined, along with their transmission pathways, particularly within soil biofilms, which play a crucial role in gene transfer and microbial protection. The interplay between soil microbial communities and antibiotic resistance is discussed, emphasizing its potential risks to human health, including infectious diseases and food safety concerns. Strategies for mitigating antibiotic resistance in soil are presented, focusing on optimizing antibiotic usage, developing alternatives, and enhancing degradation mechanisms. This review underscores the need for interdisciplinary research to deepen understanding of soil microbial diversity and its connection to antibiotic resistance, emphasizing integrated efforts to safeguard soil and human health.202541166035
653510.9999Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies.202439028459
653220.9999Antibiotic resistance in urban soils: Dynamics and mitigation strategies. Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments.202439384008
644630.9999Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. BACKGROUND: The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW: This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW: Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.202539414225
653340.9999The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective. Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments-water, soil, and air-as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures-including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions-amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains.202540867959
652950.9999The air-borne antibiotic resistome: Occurrence, health risks, and future directions. Antibiotic resistance comprising of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is an emerging problem causing global human health risks. Several reviews exist on antibiotic resistance in various environmental compartments excluding the air-borne resistome. An increasing body of recent evidence exists on the air-borne resistome comprising of antibiotic resistance in air-borne bioaerosols from various environmental compartments. However, a comprehensive review on the sources, dissemination, behavior, fate, and human exposure and health risks of the air-borne resistome is still lacking. Therefore, the current review uses the source-pathway-receptor-impact-mitigation framework to investigate the air-borne resistome. The nature and sources of antibiotic resistance in the air-borne resistome are discussed. The dissemination pathways, and environmental and anthropogenic drivers accounting for the transfer of antibiotic resistance from sources to the receptors are highlighted. The human exposure and health risks posed by air-borne resistome are presented. A health risk assessment and mitigation strategy is discussed. Finally, future research directions including key knowledge gaps are summarized.202234798728
652460.9999Research and Technological Advances Regarding the Study of the Spread of Antimicrobial Resistance Genes and Antimicrobial-Resistant Bacteria Related to Animal Husbandry. The extensive use of antimicrobials in animal farms poses serious safety hazards to both the environment and public health, and this trend is likely to continue. Antimicrobial resistance genes (ARGs) are a class of emerging pollutants that are difficult to remove once introduced. Understanding the environmental transfer of antimicrobial-resistant bacteria (ARB) and ARGs is pivotal for creating control measures. In this review, we summarize the research progress on the spread and detection of ARB and ARG pollution related to animal husbandry. Molecular methods such as high-throughput sequencing have greatly enriched the information about ARB communities. However, it remains challenging to delineate mechanisms regarding ARG induction, transmission, and tempo-spatial changes in the whole process, from animal husbandry to multiple ecosystems. As a result, future research should be more focused on the mechanisms of ARG induction, transmission, and control. We also expect that future research will rely more heavily on metagenomic -analysis, metatranscriptomic sequencing, and multi-omics technologies.201931817253
653070.9999Microplastic-associated pathogens and antimicrobial resistance in environment. The ubiquitous use of microplastics and their release into the environment especially the water bodies by anthropogenic/industrial activities are the major resources for microplastic contamination. The widespread and often injudicious use of antimicrobial drugs or antibiotics in various sectors including human health and hygiene, agriculture, animal husbandry and food industries are leading to the release of antibiotics into the wastewater/sewage and other water bodies, particularly in urban setups and thus leads to the antimicrobial resistance (AMR) in the microbes. Microplastics are emerging as the hubs as well as effective carriers of these microbial pathogens beside their AMR-genes (ARGs) in marine, freshwater, sewage/wastewater, and urban river ecosystems. These drug resistant bacteria interact with microplastics forming synthetic plastispheres, the ideal niche for biofilm formations which in turn facilitates the transfer of ARGs via horizontal gene transfer and further escalates the occurrence and levels of AMR. Microplastic-associated AMR is an emerging threat for human health and healthcare besides being a challenge for the research community for effective management/address of this menace. In this review, we encompass the increasing prevalence of microplastics in environment, emphasizing mainly on water environments, how they act as centers and vectors of microbial pathogens with their associated bacterial assemblage compositions and ultimately lead to AMR. It further discusses the mechanistic insights on how microplastics act as hosts of biofilms (creating the plastisphere). We have also presented the modern toolbox used for microplastic-biofilm analyses. A review on potential strategies for addressing microplastic-associated AMR is given with recent success stories, challenges and future prospects.202234813845
653180.9999A comprehensive framework of health risk assessment for antibiotic resistance in aquatic environments: Status, progress, and perspectives. Antibiotic resistance (AR), driven by antibiotics as emerging pollutants, has become a critical global health threat, jeopardizing both environmental and human health. The persistence and spread of AR in aquatic ecosystems are governed by the intricate interplay between antibiotics, antibiotic resistance genes (ARGs), and antibiotic-resistant bacteria (ARB), which collectively influences its occurrence, transportation, and fate in aquatic ecosystems. However, most assessments focus primarily on antibiotics and ARGs, often relying on single-factor criteria while overlooking critical influence factors such as ARG forms, non-antibiotic chemicals, antibiotic pressure, and microbial competition. Furthermore, many fail to incorporate potential future risks, limiting their predictive accuracy and overall effectiveness in addressing AR in aquatic environments. To bridge these research gaps, we introduce a comprehensive health risk assessment framework that integrates the interactions among antibiotics, ARGs, and ARB. The proposed approach comprises four steps: 1. Determining the type of water body; 2. Performing model simulations; 3. Assessing antibiotics and ARGs; and 4. Evaluating ARB. Finally, a comprehensive risk index for AR is established, along with a corresponding hierarchical risk ranking system. Moreover, to demonstrate the practical application of the framework, an assessment of antibiotic resistance risk was conducted using a typical lake in Northeast China as a case study, indicating the efficacy of the proposed framework in quantifying the multidimensional health risk of AR. This framework not only provides a crucial foundation for dynamic health risk assessment, but also paving the way for more effective mitigation strategies to safeguard both aquatic ecosystems and human health in the future.202540914069
640090.9999Review of the Presence and Phage-Mediated Transfer of ARGs in Biofilms. The widespread use of antibiotics has led to the emergence of a large number of drug-resistant bacteria, accelerating the dissemination and spread of antibiotic resistance genes (ARGs) in the environment. Bacterial biofilms, serving as reservoirs of ARGs, pose potential risks to environmental health that should not be ignored. Studies on the presence and transfer of ARGs in biofilms have been conducted both domestically and internationally. This article summarises the research progress on ARGs in various environments and analyses the mechanisms and factors influencing the dissemination and transfer of ARGs in microplastics, activated sludge, and pipe wall biofilms, with a particular focus on phage-mediated ARG transfer. We also discuss current research gaps in this field to provide references for future biofilm management and health risk control of ARGs.202540431170
6515100.9999Environmental antimicrobial resistance and its drivers: a potential threat to public health. Imprudent and overuse of clinically relevant antibiotics in agriculture, veterinary and medical sectors contribute to the global epidemic increase in antimicrobial resistance (AMR). There is a growing concern among researchers and stakeholders that the environment acts as an AMR reservoir and plays a key role in the dissemination of antimicrobial resistance genes (ARGs). Various drivers are contributing factors to the spread of antibiotic-resistant bacteria and their ARGs either directly through antimicrobial drug use in health care, agriculture/livestock and the environment or antibiotic residues released from various domestic settings. Resistant micro-organisms and their resistance genes enter the soil, air, water and sediments through various routes or hotspots such as hospital wastewater, agricultural waste or wastewater treatment plants. Global mitigation strategies primarily involve the identification of high-risk environments that are responsible for the evolution and spread of resistance. Subsequently, AMR transmission is affected by the standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel and migration. This review provides a brief description of AMR as a global concern and the possible contribution of different environmental drivers to the transmission of antibiotic-resistant bacteria or ARGs through various mechanisms. We also aim to highlight the key knowledge gaps that hinder environmental regulators and mitigation strategies in delivering environmental protection against AMR.202134454098
6522110.9999A review of the emergence of antibiotic resistance in bioaerosols and its monitoring methods. Despite significant public health concerns regarding infectious diseases in air environments, potentially harmful microbiological indicators, such as antibiotic resistance genes (ARGs) in bioaerosols, have not received significant attention. Traditionally, bioaerosol studies have focused on the characterization of microbial communities; however, a more serious problem has recently arisen due to the presence of ARGs in bioaerosols, leading to an increased prevalence of horizontal gene transfer (HGT). This constitutes a process by which bacteria transfer genes to other environmental media and consequently cause infectious disease. Antibiotic resistance in water and soil environments has been extensively investigated in the past few years by applying advanced molecular and biotechnological methods. However, ARGs in bioaerosols have not received much attention. In addition, ARG and HGT profiling in air environments is greatly limited in field studies due to the absence of suitable methodological approaches. Therefore, this study comprehensively describes recent findings from published studies and some of the appropriate molecular and biotechnological methods for monitoring antibiotic resistance in bioaerosols. In addition, this review discusses the main knowledge gaps regarding current methodological issues and future research directions.202235694630
6404120.9999Antibiotic resistant bacteria and antibiotic resistance genes as contaminants of emerging concern: Occurrences, impacts, mitigations and future guidelines. Antibiotic resistance, driven by the proliferation of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARBs), has emerged as a pressing global health concern. Antimicrobial resistance is exacerbated by the widespread use of antibiotics in agriculture, aquaculture, and human medicine, leading to their accumulation in various environmental compartments such as soil, water, and sediments. The presence of ARGs in the environment, particularly in municipal water, animal husbandry, and hospital environments, poses significant risks to human health, as they can be transferred to potential human pathogens. Current remediation strategies, including the use of pyroligneous acid, coagulants, advanced oxidation, and bioelectrochemical systems, have shown promising results in reducing ARGs and ARBs from soil and water. However, these methods come with their own set of challenges, such as the need for elevated base levels in UV-activated persulfate and the long residence period required for photocatalysts. The future of combating antibiotic resistance lies in the development of standardized monitoring techniques, global collaboration, and the exploration of innovative remediation methods. Emphasis on combination therapies, advanced oxidation processes, and monitoring horizontal gene transfer can pave the way for a comprehensive approach to mitigate the spread of antibiotic resistance in the environment.202439226958
6475130.9999An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.202235457533
6445140.9999Microplastics: Disseminators of antibiotic resistance genes and pathogenic bacteria. Microplastics (MPs) are emerging pollutants that linger in the air, water, and land. Beyond their physical and chemical risks, there is growing evidence that MPs contribute to the worldwide antimicrobial resistance (AMR) dilemma by acting as carriers of harmful microbes and antibiotic resistance genes (ARGs). Despite an increase in research, the available literature is dispersed, and the part that MPs play in influencing microbial populations and fostering resistance is still not well understood. This review summarizes current research on how MPs contribute to the spread of antibiotic resistance. We concentrated on the ways in which MPs support horizontal gene transfer (HGT) processes such as conjugation, transformation, and transduction, assist biofilm development, and offer surfaces for microbial colonization. Evidence from a variety of settings suggests that MPs serve as vectors for opportunistic pathogens, such as the ESKAPE group, and ARGs, increasing the survival and movement of resistance determinants in ecosystems. Through the consolidation of current developments, this review emphasizes MPs as active resistance vectors instead of passive pollutants. We also point out important limitations, such as the lack of standardized procedures, inadequate risk assessment frameworks, and the absence of real-world exposure research. It is imperative that these issues be approached from a One Health standpoint in order to reduce the risks of both plastic pollution and antibiotic resistance.202541056605
6478150.9999Antibiotic resistance in grass and soil. Antibiotic resistance is currently one of the greatest threats to human health. The global overuse of antibiotics in human medicine and in agriculture has resulted in the proliferation and dissemination of a multitude of antibiotic resistance genes (ARGs). Despite a large proportion of antibiotics being used in agriculture, little is understood about how this may contribute to the overall antibiotic resistance crisis. The use of manure in agriculture is a traditional and widespread practice and is essential for returning nutrients to the soil; however, the impact of continuous manure application on the environmental microbiome and resistome is unknown. The use of antibiotics in animal husbandry in therapeutic and sub-therapeutic doses creates a selective pressure for ARGs in the gut microbiome of the animal, which is then excreted in the faeces. Therefore, the application of manure to agricultural land is a potential route for the transmission of antibiotic-resistant bacteria from livestock to crops, animals and humans. It is of vital importance to understand the mechanisms behind ARG enrichment and its maintenance both on the plant and within the soil microbiome to mitigate the spread of this resistance to animals and humans. Understanding this link between human health, animal health, plant health and the environment is crucial to inform implementation of new regulations and practice regarding antibiotic use in agriculture and manure application, aimed at ensuring the antibiotic resistance crisis is not aggravated.201930783015
6523160.9999Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. Antibiotic Resistant Genes (ARGs) are an emerging environmental health threat due to the potential change in the human microbiome and selection for the emergence of antibiotic resistant bacteria. The rise of antibiotic resistant bacteria has caused a global health burden. The WHO (world health organization) predicts a rise in deaths due to antibiotic resistant infections. Since bacteria can acquire ARGs through horizontal transmission, it is important to assess the dissemination of antibioticresistant genes from anthropogenic sources. There are several sources of antibiotics, antibiotic resistant bacteria and genes in the environment. These include wastewater treatment plants, landfill leachate, agricultural, animal industrial sources and estuaries. The use of antibiotics is a worldwide practice that has resulted in the evolution of resistance to antibiotics. Our review provides a more comprehensive look into multiple sources of ARG's and antibiotics rather than one. Moreover, we focus on effective surveillance methods of ARGs and antibiotics and sustainable abiotic and biotic remediation strategies for removal and reduction of antibiotics and ARGs from both terrestrial and aquatic environments. Further, we consider the impact on public health as this problem cannot be addressed without a global transdisciplinary effort.202236037921
6468170.9998Impact of anthropogenic activities on the dissemination of antibiotic resistance across ecological boundaries. Antibiotics are considered to be one of the major medical breakthroughs in history. Nonetheless, over the past four decades, antibiotic resistance has reached alarming levels worldwide and this trend is expected to continue to increase, leading some experts to forecast the coming of a 'post-antibiotic' era. Although antibiotic resistance in pathogens is traditionally linked to clinical environments, there is a rising concern that the global propagation of antibiotic resistance is also associated with environmental reservoirs that are linked to anthropogenic activities such as animal husbandry, agronomic practices and wastewater treatment. It is hypothesized that the emergence and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) within and between environmental microbial communities can ultimately contribute to the acquisition of antibiotic resistance in human pathogens. Nonetheless, the scope of this phenomenon is not clear due to the complexity of microbial communities in the environment and methodological constraints that limit comprehensive in situ evaluation of microbial genomes. This review summarizes the current state of knowledge regarding antibiotic resistance in non-clinical environments, specifically focusing on the dissemination of antibiotic resistance across ecological boundaries and the contribution of this phenomenon to global antibiotic resistance.201728258226
6460180.9998Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments. Such contaminants contribute to the selection and proliferation of resistant bacteria and antimicrobial resistance genes (ARGs), facilitating their dissemination among humans, animals, and ecosystems. In this review, we conduct a critical assessment of four significant issues pertaining to this topic. Specifically, (i) the role of biocides in exerting selective pressure within the environmental resistome, thereby promoting the proliferation of resistant microbial populations and contributing to the global spread of antimicrobial resistance genes (ARGs); (ii) the role of biocides in triggering transient phenotypic adaptations in bacteria, including efflux pump overexpression, membrane alterations, and reduced porin expression, which often result in cross-resistance to multiple antibiotics; (iii) the capacity of biocides to disrupt bacteria and make the genetic content accessible, releasing DNA into the environment that remains intact under certain conditions, facilitating horizontal gene transfer and the spread of resistance determinants; (iv) the capacity of biocides to disrupt bacterial cells, releasing intact DNA into the environment and enhancing horizontal gene transfer of resistance determinants; and (iv) the selective interactions between biocides and bacterial biofilms in the environment, strengthening biofilm cohesion, inducing resistance mechanisms, and creating reservoirs for resistant microorganisms and ARG dissemination. Collectively, this review highlights the critical environmental and public health implications of biocide use, emphasizing an urgent need for strategic interventions to mitigate their role in antibiotic resistance proliferation.202540230384
6476190.9998Sustainable strategies: Nature-based solutions to tackle antibiotic resistance gene proliferation and improve agricultural productivity and soil quality. The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity.202438307185