# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6473 | 0 | 1.0000 | The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review. The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation. | 2017 | 28689129 |
| 6475 | 1 | 0.9998 | An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts. | 2022 | 35457533 |
| 6472 | 2 | 0.9998 | Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Global initiatives are underway to advance the sustainability of urban water infrastructure through measures such as water reuse. However, there are growing concerns that wastewater effluents are enriched in antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes, and thus could serve as a contributing factor to growing rates of antibiotic resistance in human infections. Evidence for the role of the water environment as a source and pathway for the spread of antimicrobial resistance is examined and key knowledge gaps are identified with respect to implications for sustainable water systems. Efforts on the part of engineers along with investment in research in epidemiology, risk assessment, water treatment and water delivery could advance current and future sustainable water strategies and help avoid unintended consequences. | 2014 | 24279909 |
| 6476 | 3 | 0.9998 | Sustainable strategies: Nature-based solutions to tackle antibiotic resistance gene proliferation and improve agricultural productivity and soil quality. The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity. | 2024 | 38307185 |
| 6403 | 4 | 0.9998 | Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. Antibiotics have revolutionised medicine in the last century and enabled the prevention of bacterial infections that were previously deemed untreatable. However, in parallel, bacteria have increasingly developed resistance to antibiotics through various mechanisms. When resistant bacteria find their way into terrestrial and aquatic environments, animal and human exposures increase, e.g., via polluted soil, food, and water, and health risks multiply. Understanding the fate and transport of antibiotic resistant bacteria (ARB) and the transfer mechanisms of antibiotic resistance genes (ARGs) in aquatic environments is critical for evaluating and mitigating the risks of resistant-induced infections. The conceptual understanding of sources and pathways of antibiotics, ARB, and ARGs from society to the water environments is essential for setting the scene and developing an appropriate framework for modelling. Various factors and processes associated with hydrology, ecology, and climate change can significantly affect the fate and transport of ARB and ARGs in natural environments. This article reviews current knowledge, research gaps, and priorities for developing water quality models to assess the fate and transport of ARB and ARGs. The paper also provides inputs on future research needs, especially the need for new predictive models to guide risk assessment on AR transmission and spread in aquatic environments. | 2024 | 37788551 |
| 6474 | 5 | 0.9998 | Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. The reuse of treated wastewater (TWW) for irrigation is a practical solution for overcoming water scarcity, especially in arid and semiarid regions of the world. However, there are several potential environmental and health-related risks associated with this practice. One such risk stems from the fact that TWW irrigation may increase antibiotic resistance (AR) levels in soil bacteria, potentially contributing to the global propagation of clinical AR. Wastewater treatment plant (WWTP) effluents have been recognized as significant environmental AR reservoirs due to selective pressure generated by antibiotics and other compounds that are frequently detected in effluents. This review summarizes a myriad of recent studies that have assessed the impact of anthropogenic practices on AR in environmental bacterial communities, with specific emphasis on elucidating the potential effects of TWW irrigation on AR in the soil microbiome. Based on the current state of the art, we conclude that contradictory to freshwater environments where WWTP effluent influx tends to expand antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes levels, TWW irrigation does not seem to impact AR levels in the soil microbiome. Although this conclusion is a cause for cautious optimism regarding the future implementation of TWW irrigation, we conclude that further studies aimed at assessing the scope of horizontal gene transfer between effluent-associated ARB and soil bacteria need to be further conducted before ruling out the possible contribution of TWW irrigation to antibiotic-resistant reservoirs in irrigated soils. | 2013 | 23378260 |
| 6465 | 6 | 0.9998 | Knowledge gaps in the assessment of antimicrobial resistance in surface waters. The spread of antibiotic resistance in the water environment has been widely described. However, still many knowledge gaps exist regarding the selection pressure from antibiotics, heavy metals and other substances present in surface waters as a result of anthropogenic activities, as well as the extent and impact of this phenomenon on aquatic organisms and humans. In particular, the relationship between environmental concentrations of antibiotics and the acquisition of ARGs by antibiotic-sensitive bacteria as well as the impact of heavy metals and other selective agents on antimicrobial resistance (AMR) need to be defined. Currently, established safety values are based on the effects of antibiotic toxicity neglecting the question of AMR spread. In turn, risk assessment of antibiotics in waterbodies remains a complex question implicating multiple variables and unknowns reinforced by the lack of harmonized protocols and official guidelines. In the present review, we discussed current state-of-the-art and the knowledge gaps related to pressure exerted by antibiotics and heavy metals on aquatic environments and their relationship to the spread of AMR. Along with this latter, we reflected on (i) the risk assessment in surface waters, (ii) selective pressures contributing to its transfer and propagation and (iii) the advantages of metagenomics in investigating AMR. Furthermore, the role of microplastics in co-selection for metal and antibiotic resistance, together with the need for more studies in freshwater are highlighted. | 2021 | 34625810 |
| 7431 | 7 | 0.9998 | Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? Recently, there has been increased concern about the presence of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), in treated domestic wastewaters, animal manures and municipal biosolids. The concern is whether these additional sources of ARB contribute to antibiotic resistance levels in the environment, that is, "environmental antibiotic resistance." ARB and ARG occur naturally in soil and water, and it remains unclear whether the introduction of ARB in liquid and solid municipal and animal wastes via land application have any significant impact on the background levels of antibiotic resistance in the environment, and whether they affect human exposure to ARB. In this current review, we examine and re-evaluate the incidence of ARB and ARG resulting from land application activities, and offer a new perspective on the threat of antibiotic resistance to public health via exposure from nonclinical environmental sources. Based on inputs of ARBs and ARGs from land application, their fate in soil due to soil microbial ecology principles, and background indigenous levels of ARBs and ARGs already present in soil, we conclude that while antibiotic resistance levels in soil are increased temporally by land application of wastes, their persistence is not guaranteed and is in fact variable, and often contradictory based on application site. Furthermore, the application of wastes may not produce the most direct impact of ARGs and ARB on public health. Further investigation is still warranted in agriculture and public health, including continued scrutiny of antibiotic use in both sectors. | 2018 | 29505255 |
| 6440 | 8 | 0.9998 | Fate and transport of biological microcontaminants bound to microplastics in the soil environment. Microplastics, fragmented plastic particles with a maximum dimension <5 mm, are an emerging contaminant of concern that can also serve as a vector of other chemical and biological contaminants. Compared to chemical contaminants, the potential of microplastics to adsorb biological microcontaminants such as antibiotic resistance genes, small interference RNAs, and pathogenic viruses is not well understood. Many current microplastic studies are based in the aquatic environment (freshwater, seawater, and wastewater), even though the terrestrial environment is considered both an important sink and source of microplastics. Microplastics co-occur with biological microcontaminants in many terrestrial environments including agricultural soils, where biosolids containing both contaminants are often applied as a soil amendment. Recent research suggests that microplastics in these environments can increase gene persistence and flow, which could have unintended downstream consequences for environmental microbiome health and resilience. Antibiotic resistance genes and silencing RNAs bound to microplastics, for example, have the potential to increase resistance and alter gene expression in environmental bacteria, respectively. This review evaluates the sources and pathways of microplastics and biological microcontaminants in the terrestrial environment as well as potential sorption mechanisms that can encourage long-range transport and persistence. Novel sources of biological microcontaminants are considered, and the role of microplastics in promoting the persistence and flow of biological microcontaminants evaluated. Finally, future research directions are suggested to increase understanding of the mechanisms that drive the fate and transport of microplastic-biological microcontaminant complexes in the terrestrial environment and better inform risk management. | 2023 | 37247742 |
| 6532 | 9 | 0.9998 | Antibiotic resistance in urban soils: Dynamics and mitigation strategies. Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments. | 2024 | 39384008 |
| 6484 | 10 | 0.9998 | Microbial assisted phytodepuration for water reclamation: Environmental benefits and threats. Climate changes push for water reuse as a priority to counteract water scarcity and minimize water footprint especially in agriculture, one of the highest water consuming human activities. Phytodepuration is indicated as a promising technology for water reclamation, also in the light of its economic and ecological sustainability, and the use of specific bacterial inocula for microbial assisted phytodepuration has been proposed as a further advance for its implementation. Here we provided an overview on the selection and use of plant growth promoting bacteria in Constructed Wetland (CW) systems, showing their advantages in terms of plant growth support and pollutant degradation abilities. Moreover, CWs are also proposed for the removal of emerging organic pollutants like antibiotics from urban wastewaters. We focused on this issue, still debated in the literature, revealing the necessity to deepen the knowledge on the antibiotic resistance spread into the environment in relation to treated wastewater release and reuse. In addition, given the presence in the plant system of microhabitats (e.g. rhizosphere) that are hot spot for Horizontal Gene Transfer, we highlighted the importance of gene exchange to understand if these events can promote the diffusion of antibiotic resistance genes and antibiotic resistant bacteria, possibly entering in the food production chain when treated wastewater is used for irrigation. Ideally, this new knowledge will lead to improve the design of phytodepuration systems to maximize the quality and safety of the treated effluents in compliance with the 'One Health' concept. | 2020 | 31605997 |
| 6478 | 11 | 0.9998 | Antibiotic resistance in grass and soil. Antibiotic resistance is currently one of the greatest threats to human health. The global overuse of antibiotics in human medicine and in agriculture has resulted in the proliferation and dissemination of a multitude of antibiotic resistance genes (ARGs). Despite a large proportion of antibiotics being used in agriculture, little is understood about how this may contribute to the overall antibiotic resistance crisis. The use of manure in agriculture is a traditional and widespread practice and is essential for returning nutrients to the soil; however, the impact of continuous manure application on the environmental microbiome and resistome is unknown. The use of antibiotics in animal husbandry in therapeutic and sub-therapeutic doses creates a selective pressure for ARGs in the gut microbiome of the animal, which is then excreted in the faeces. Therefore, the application of manure to agricultural land is a potential route for the transmission of antibiotic-resistant bacteria from livestock to crops, animals and humans. It is of vital importance to understand the mechanisms behind ARG enrichment and its maintenance both on the plant and within the soil microbiome to mitigate the spread of this resistance to animals and humans. Understanding this link between human health, animal health, plant health and the environment is crucial to inform implementation of new regulations and practice regarding antibiotic use in agriculture and manure application, aimed at ensuring the antibiotic resistance crisis is not aggravated. | 2019 | 30783015 |
| 6554 | 12 | 0.9998 | Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes. Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the "perfect microbial storm". Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. | 2013 | 27029309 |
| 6471 | 13 | 0.9998 | Antibiotic resistance in wastewater treatment plants: understanding the problem and future perspectives. Antibiotics residues (AR), antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) are a new class of water contaminants, due to their adverse effects on aquatic ecosystems and human health. Contamination of water bodies occurs mainly by the excretion of antibiotics incompletely metabolized by humans and animals and is considered the main source of contamination of antibiotics in the environment. Given the imminent threat, the World Health Organization (WHO) has categorized the spread of antibiotics as one of the top three threats to public health in the twenty-first century. The Urban Wastewater Treatment Plants (UWWTP) bring together AR, ARB, ARG, making the understanding of this peculiar environment fundamental for the investigation of technologies aimed at combating the spread of bacterial resistance. Several methodologies have been employed focusing on reducing the ARB and ARG loads of the effluents, however the reactivation of these microorganisms after the treatment is widely reported. This work aims to elucidate the role of UWWTPs in the spread of bacterial resistance, as well as to report the efforts that have been made so far and future perspectives to combat this important global problem. | 2021 | 33112995 |
| 6401 | 14 | 0.9998 | Antibiotics and antibiotic resistance genes in landfills: A review. Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance. | 2022 | 34597560 |
| 6482 | 15 | 0.9998 | Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Bioremediation represents a sustainable approach to remediating petroleum hydrocarbon contaminated soils. One aspect of sustainability includes the sourcing of nutrients used to stimulate hydrocarbon-degrading microbial populations. Organic nutrients such as animal manure and sewage sludge may be perceived as more sustainable than conventional inorganic fertilizers. However, organic nutrients often contain antibiotic residues and resistant bacteria (along with resistance genes and mobile genetic elements). This is further exacerbated since antibiotic resistant bacteria may become more abundant in contaminated soils due to co-selection pressures from pollutants such as metals and hydrocarbons. We review the issues surrounding bioremediation of petroleum-hydrocarbon contaminated soils, as an example, and consider the potential human-health risks from antibiotic resistant bacteria. While awareness is coming to light, the relationship between contaminated land and antibiotic resistance remains largely under-explored. The risk of horizontal gene transfer between soil microorganisms, commensal bacteria and/or human pathogens needs to be further elucidated, and the environmental triggers for gene transfer need to be better understood. Findings of antibiotic resistance from animal manures are emerging, but even fewer bioremediation studies using sewage sludge have made any reference to antibiotic resistance. Resistance mechanisms, including those to antibiotics, have been considered by some authors to be a positive trait associated with resilience in strains intended for bioremediation. Nevertheless, recognition of the potential risks associated with antibiotic resistant bacteria and genes in contaminated soils appears to be increasing and requires further investigation. Careful selection of bacterial candidates for bioremediation possessing minimal antibiotic resistance as well as pre-treatment of organic wastes to reduce selective pressures (e.g., antibiotic residues) are suggested to prevent environmental contamination with antibiotic-resistant bacteria and genes. | 2020 | 32236187 |
| 6458 | 16 | 0.9998 | Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics (ABs) have made it possible to treat bacterial infections, which were in the past untreatable and consequently fatal. Regrettably, their use and abuse among humans and livestock led to antibiotic resistance, which has made them ineffective in many cases. The spread of antibiotic resistance genes (ARGs) and bacteria is not limited to nosocomial environments, but also involves water and soil ecosystems. The environmental presence of ABs and ARGs is a hot topic, and their direct and indirect effects, are still not well known or clarified. A particular concern is the presence of antibiotics in agroecosystems due to the application of agro-zootechnical waste (e.g., manure and biosolids), which can introduce antibiotic residues and ARGs to soils. This review provides an insight of recent findings of AB direct and indirect effects on terrestrial organisms, focusing on plant and invertebrates. Possible changing in viability and organism growth, AB bioaccumulation, and shifts in associated microbiome composition are reported. Oxidative stress responses of plants (such as reactive oxygen species production) to antibiotics are also described. | 2023 | 37760767 |
| 6470 | 17 | 0.9998 | The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Sewage sludge is an ever-increasing by-product of the wastewater treatment process frequently used as a soil fertiliser. To control its quality and prevent any possible hazardous impact of fertilisation, some mandatory limits of heavy metal content have been established by the European Commission (Sewage Sludge Directive). However, since the implementation of the limits, new emerging contaminants have been reported worldwide. Regardless of the wastewater treatment process, sewage sludge contains antibiotics, antibiotic-resistant bacteria and antibiotic resistance genes, which can be released into the environment through its land application. Such a practice may even boost the dissemination and further development of antibiotic resistance phenomenon - already a global problem challenging modern medicine. Due to the growing pharmaceutical pollution in the environment, the time is ripe to assess the risk for the human and environmental health of sewage sludge land application in the context of antibiotic resistance spread. In this review we present the current knowledge in the field and we emphasise the necessity for more studies. | 2016 | 26646979 |
| 6400 | 18 | 0.9998 | Review of the Presence and Phage-Mediated Transfer of ARGs in Biofilms. The widespread use of antibiotics has led to the emergence of a large number of drug-resistant bacteria, accelerating the dissemination and spread of antibiotic resistance genes (ARGs) in the environment. Bacterial biofilms, serving as reservoirs of ARGs, pose potential risks to environmental health that should not be ignored. Studies on the presence and transfer of ARGs in biofilms have been conducted both domestically and internationally. This article summarises the research progress on ARGs in various environments and analyses the mechanisms and factors influencing the dissemination and transfer of ARGs in microplastics, activated sludge, and pipe wall biofilms, with a particular focus on phage-mediated ARG transfer. We also discuss current research gaps in this field to provide references for future biofilm management and health risk control of ARGs. | 2025 | 40431170 |
| 6445 | 19 | 0.9998 | Microplastics: Disseminators of antibiotic resistance genes and pathogenic bacteria. Microplastics (MPs) are emerging pollutants that linger in the air, water, and land. Beyond their physical and chemical risks, there is growing evidence that MPs contribute to the worldwide antimicrobial resistance (AMR) dilemma by acting as carriers of harmful microbes and antibiotic resistance genes (ARGs). Despite an increase in research, the available literature is dispersed, and the part that MPs play in influencing microbial populations and fostering resistance is still not well understood. This review summarizes current research on how MPs contribute to the spread of antibiotic resistance. We concentrated on the ways in which MPs support horizontal gene transfer (HGT) processes such as conjugation, transformation, and transduction, assist biofilm development, and offer surfaces for microbial colonization. Evidence from a variety of settings suggests that MPs serve as vectors for opportunistic pathogens, such as the ESKAPE group, and ARGs, increasing the survival and movement of resistance determinants in ecosystems. Through the consolidation of current developments, this review emphasizes MPs as active resistance vectors instead of passive pollutants. We also point out important limitations, such as the lack of standardized procedures, inadequate risk assessment frameworks, and the absence of real-world exposure research. It is imperative that these issues be approached from a One Health standpoint in order to reduce the risks of both plastic pollution and antibiotic resistance. | 2025 | 41056605 |