# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6448 | 0 | 1.0000 | The resistance within: Antibiotic disruption of the gut microbiome and resistome dynamics in infancy. Intestinal host-microbiota interactions during the first year of life are critical for infant development. Early-life antibiotic exposures disrupt stereotypical gut microbiota maturation and adversely affect childhood health. Furthermore, antibiotics increase the abundance of resistant bacteria and enrich the resistome-the compendium of antibiotic resistance genes-within the gut microbiota. Here, we discuss acute and persistent impacts of antibiotic exposure during infancy on pediatric health, the gut microbiome, and, particularly, the resistome. Reviewing our current understanding of antibiotic resistance acquisition and dissemination within and between microbiomes, we highlight open questions, which are imperative to resolve in the face of rising bacterial resistance. | 2022 | 35550670 |
| 7704 | 1 | 0.9998 | Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Antimicrobial resistance-associated infections have become a major threat to global health. The gut microbiome serves as a major reservoir of bacteria with antibiotic resistance genes; whereas, the temporal development of gut resistome during early childhood and the factors influencing it remain unclear. Moreover, the potential interactions between gut microbiome and resistome still need to be further explored. In this study, we found that antibiotic treatment led to destabilization of the gut microbiome and resistome structural communities, exhibiting a greater impact on the resistome than on the microbiome. The composition of the gut resistome at various developmental stages was influenced by the abundance and richness of different core microbes. First exposure to antibiotics led to a dramatic increase in the number of opportunistic pathogens carrying multidrug efflux pump encoding genes. Multiple factors could influence the gut microbiome and resistome formation. The data may provide new insights into early-life research.IMPORTANCEIn recent years, the irrational or inappropriate use of antibiotics, an important life-saving medical intervention, has led to the emergence and increase of drug-resistant and even multidrug-resistant bacteria. It remains unclear how antibiotic exposure affects various developmental stages of early childhood and how gut core microbes under antibiotic exposure affect the structural composition of the gut resistome. In this study, we focused on early antibiotic exposure and analyzed these questions in detail using samples from infants at various developmental stages. The significance of our research is to elucidate the impact of early antibiotic exposure on the dynamic patterns of the gut resistome in children and to provide new insights for early-life studies. | 2024 | 38193687 |
| 6449 | 2 | 0.9998 | Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change. | 2020 | 31818598 |
| 6450 | 3 | 0.9998 | Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions. Antibiotic resistance has grown into a major public health threat. In this study, we reveal predation by protists as an overlooked driver of antibiotic resistance dissemination in the soil microbiome. While previous studies have primarily focused on the distribution of antibiotic resistance genes, our work sheds light on the pivotal role of soil protists in shaping antibiotic resistance dynamics. Using a combination of metagenomics and controlled experiments in this study, we demonstrate that protists cause an increase in antibiotic resistance. We mechanistically link this increase to a fostering of antimicrobial activity in the microbiome. Protist predation gives a competitive edge to bacteria capable of producing antagonistic secondary metabolites, which secondary metabolites promote in turn antibiotic-resistant bacteria. This study provides insights into the complex interplay between protists and soil microbiomes in regulating antibiotic resistance dynamics. This study highlights the importance of top-down control on the spread of antibiotic resistance and directly connects it to cross-kingdom interactions within the microbiome. Managing protist communities may become an important tool to control outbreaks of antibiotic resistance in the environment. | 2024 | 39259188 |
| 7683 | 4 | 0.9998 | Antibiotic Resistomes in Plant Microbiomes. Microorganisms associated with plants may alter the traits of the human microbiome important for human health, but this alteration has largely been overlooked. The plant microbiome is an interface between plants and the environment, and provides many ecosystem functions such as improving nutrient uptake and protecting against biotic and abiotic stress. The plant microbiome also represents a major pathway by which humans are exposed to microbes and genes consumed with food, such as pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic-resistance genes. In this review we highlight the main findings on the composition and function of the plant microbiome, and underline the potential of plant microbiomes in the dissemination of antibiotic resistance via food consumption or direct contact. | 2019 | 30890301 |
| 6455 | 5 | 0.9998 | Bacteriophages: Underestimated vehicles of antibiotic resistance genes in the soil. Bacteriophages (phages), the most abundant biological entities on Earth, have a significant effect on the composition and dynamics of microbial communities, biogeochemical cycles of global ecosystems, and bacterial evolution. A variety of antibiotic resistance genes (ARGs) have been identified in phage genomes in different soil samples. Phages can mediate the transfer of ARGs between bacteria via transduction. Recent studies have suggested that anthropogenic activities promote phage-mediated horizontal gene transfer events. Therefore, the role of phages in the dissemination of ARGs, which are a potential threat to human health, may be underestimated. However, the contribution of phages to the transfer of ARGs is still poorly understood. Considering the growing and wide concerns of antibiotic resistance, phages should be considered a research focus in the mobile resistome. This review aimed to provide an overview of phages as vehicles of ARGs in soil. Here, we summarized the current knowledge on the diversity and abundance of ARGs in soilborne phages and analyzed the contribution of phages to the horizontal transfer of ARGs. Finally, research deficiencies and future perspectives were discussed. This study provides a reference for preventing and controlling ARG pollution in agricultural systems. | 2022 | 35992716 |
| 6457 | 6 | 0.9998 | Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly summarized, and key knowledge gaps are highlighted. A lack of quantitative estimates of human exposure to environmental bacteria, in general, and antibiotic-resistant bacteria, specifically, is a significant data gap hindering the assessment of effects on human health. The contribution of horizontal gene transfer to resistance in the environment and conditions that might foster the horizontal transfer of antibiotic resistance genes into human pathogens also need further research. Existing research has focused heavily on human health effects, with relatively little known about the effects of antibiotics and antibiotic resistance on natural and agricultural ecosystems. The proposed causal model is used to elucidate gaps in knowledge that must be addressed by the research community and may provide a useful starting point for the design and analysis of future research efforts. | 2016 | 27065386 |
| 7682 | 7 | 0.9997 | Soil Amoebae Are Unexpected Hotspots of Environmental Antibiotics and Antibiotic Resistance Genes. Antibiotic resistance poses a significant threat to human health. While most studies focus on bacteria, interactions between antibiotics and other crucial microbial groups like protists remain uncertain. This study investigates how protists interact with antibiotics and examines how these interactions impact the fate of resistance genes. It reveals that amoebae exhibit high resistance to eight high-risk environmental antibiotics, accumulating significant quantities within their cells. Wild amoeboid strains from distant locations carry substantial antibiotic resistance genes (ARGs) and metal resistance genes (MRGs), with significant heterogeneity within a single species. Amoeboid symbionts and pathogens predominantly carry these genes. Paraburkholderia symbionts have reduced genomes and fewer resistance genes compared to free-living strains, while amoeba-endogenous Stenotrophomonas maltophilia does not exhibit a significantly reduced genome size. This suggests that the amoeboid hosts serve as a temporary medium facilitating its transmission. In summary, the study unveils that soil amoebae represent unexpected hotspots for antibiotics and resistance genes. Future research should assess the effects of antibiotics on often-overlooked protists and explore their role in spreading ARGs and MRGs in ecosystems. Incorporating protists into broader antibiotic resistance research is recommended, highlighting their significance within a One Health perspective. | 2024 | 39584452 |
| 7479 | 8 | 0.9997 | Metagenomic investigation reveals bacteriophage-mediated horizontal transfer of antibiotic resistance genes in microbial communities of an organic agricultural ecosystem. Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome. | 2023 | 37754684 |
| 6483 | 9 | 0.9997 | Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil. | 2023 | 36830244 |
| 6453 | 10 | 0.9997 | Bacteriophages in sewage: abundance, roles, and applications. The raw sewage that flows through sewage systems contains a complex microbial community whose main source is the human gut microbiome, with bacteriophages being as abundant as bacteria or even more so. Phages that infect common strains of the human gut bacteriome and transient bacterial pathogens have been isolated in raw sewage, as have other phages corresponding to non-sewage inputs. Although human gut phages do not seem to replicate during their transit through the sewers, they predominate at the entrance of wastewater treatment plants, inside which the dominant populations of bacteria and phages undergo a swift change. The sheer abundance of phages in the sewage virome prompts several questions, some of which are addressed in this review. There is growing concern about their potential role in the horizontal transfer of genes, including those related with bacterial pathogenicity and antibiotic resistance. On the other hand, some phages that infect human gut bacteria are being used as indicators of fecal/viral water pollution and as source tracking markers and have been introduced in water quality legislation. Other potential applications of enteric phages to control bacterial pathogens in sewage or undesirable bacteria that impede the efficacy of wastewater treatments, including biofilm formation on membranes, are still being researched. | 2022 | 37332509 |
| 9641 | 11 | 0.9997 | Microplastics pollution in the ocean: Potential carrier of resistant bacteria and resistance genes. Microplastics pollution in marine environments is concerning. Microplastics persist and accumulate in various sections of the ocean where they present opportunity for micropollutant accumulation and microbial colonisation. Even though biofilm formation on plastics was first reported in the 1970's, it is only in recent years were plastic associated biofilms have gained research attention. Plastic surfaces pose a problem as they are a niche ready for colonisation by diverse biofilm assemblages, composed of specific bacterial communities and putative pathogens prone to acquiring ARGs and resistance in the biofilm. However, the nature of antibiotic resistance on aquatic plastic debris is not yet fully understood and remains a concern. Given the inevitable increase of plastic production and waste generation, microplastics released into the environment may prove to be problematic. This review explores microplastic waste in the ocean and possible concerns that may arise from the presence of microplastics in conjunction with favourable conditions for the development and dispersal of antibiotic resistance in the ocean and food web. | 2021 | 34562691 |
| 6478 | 12 | 0.9997 | Antibiotic resistance in grass and soil. Antibiotic resistance is currently one of the greatest threats to human health. The global overuse of antibiotics in human medicine and in agriculture has resulted in the proliferation and dissemination of a multitude of antibiotic resistance genes (ARGs). Despite a large proportion of antibiotics being used in agriculture, little is understood about how this may contribute to the overall antibiotic resistance crisis. The use of manure in agriculture is a traditional and widespread practice and is essential for returning nutrients to the soil; however, the impact of continuous manure application on the environmental microbiome and resistome is unknown. The use of antibiotics in animal husbandry in therapeutic and sub-therapeutic doses creates a selective pressure for ARGs in the gut microbiome of the animal, which is then excreted in the faeces. Therefore, the application of manure to agricultural land is a potential route for the transmission of antibiotic-resistant bacteria from livestock to crops, animals and humans. It is of vital importance to understand the mechanisms behind ARG enrichment and its maintenance both on the plant and within the soil microbiome to mitigate the spread of this resistance to animals and humans. Understanding this link between human health, animal health, plant health and the environment is crucial to inform implementation of new regulations and practice regarding antibiotic use in agriculture and manure application, aimed at ensuring the antibiotic resistance crisis is not aggravated. | 2019 | 30783015 |
| 9456 | 13 | 0.9997 | Antibiotic treatments and microbes in the gut. Antibiotic therapies are important in combating disease-causing microorganisms and maintaining host health. It is widely accepted that exposure of the gut microbiota to antibiotics can lead to decreased susceptibility and the development of multi-drug-resistant disease-causing organisms, which can be a major clinical problem. It is also important to consider that antibiotics not only target pathogenic bacteria in the gut, but also can have damaging effects on the ecology of commensal species. This can reduce intrinsic colonization resistance and contribute to problems with antibiotic resistance, including lateral transfer of resistance genes. Our knowledge of the impact of antibiotic treatment on the ecology of the normal microbiota has been increased by recent advances in molecular methods and use of in vitro model systems to investigate the impact of antibiotics on the biodiversity of gut populations and the spread of antibiotic resistance. These highlight the need for more detailed structural and functional information on the long-term antibiotic-associated alterations in the gut microbiome, and spread of antibiotic resistance genes. This will be crucial for the development of strategies, such as targeted therapeutics, probiotics, prebiotics and synbiotics, to prevent perturbations in the gut microbiota, the restoration of beneficial species and improvements in host health. | 2014 | 24471523 |
| 6467 | 14 | 0.9997 | The role of biofilms as environmental reservoirs of antibiotic resistance. Antibiotic resistance has become a significant and growing threat to public and environmental health. To face this problem both at local and global scales, a better understanding of the sources and mechanisms that contribute to the emergence and spread of antibiotic resistance is required. Recent studies demonstrate that aquatic ecosystems are reservoirs of resistant bacteria and antibiotic resistance genes as well as potential conduits for their transmission to human pathogens. Despite the wealth of information about antibiotic pollution and its effect on the aquatic microbial resistome, the contribution of environmental biofilms to the acquisition and spread of antibiotic resistance has not been fully explored in aquatic systems. Biofilms are structured multicellular communities embedded in a self-produced extracellular matrix that acts as a barrier to antibiotic diffusion. High population densities and proximity of cells in biofilms also increases the chances for genetic exchange among bacterial species converting biofilms in hot spots of antibiotic resistance. This review focuses on the potential effect of antibiotic pollution on biofilm microbial communities, with special emphasis on ecological and evolutionary processes underlying acquired resistance to these compounds. | 2015 | 26583011 |
| 4028 | 15 | 0.9997 | Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Infections caused by antibiotic-resistant bacteria are a major threat to public health. The pathogens causing these infections can acquire antibiotic resistance genes in a process termed horizontal gene transfer (HGT). HGT is a common event in the human gut microbiome, that is, the microbial ecosystem of the human intestinal tract. HGT in the gut microbiome can occur via different mechanisms of which transduction and conjugation have been best characterised. Novel bioinformatic tools and experimental approaches have been developed to determine the association of antibiotic resistance genes with their microbial hosts and to quantify the extent of HGT in the gut microbiome. Insights from studies into HGT in the gut microbiome may lead to the development of novel interventions to minimise the spread of antibiotic resistance genes among commensals and opportunistic pathogens. | 2020 | 32143027 |
| 6458 | 16 | 0.9997 | Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics (ABs) have made it possible to treat bacterial infections, which were in the past untreatable and consequently fatal. Regrettably, their use and abuse among humans and livestock led to antibiotic resistance, which has made them ineffective in many cases. The spread of antibiotic resistance genes (ARGs) and bacteria is not limited to nosocomial environments, but also involves water and soil ecosystems. The environmental presence of ABs and ARGs is a hot topic, and their direct and indirect effects, are still not well known or clarified. A particular concern is the presence of antibiotics in agroecosystems due to the application of agro-zootechnical waste (e.g., manure and biosolids), which can introduce antibiotic residues and ARGs to soils. This review provides an insight of recent findings of AB direct and indirect effects on terrestrial organisms, focusing on plant and invertebrates. Possible changing in viability and organism growth, AB bioaccumulation, and shifts in associated microbiome composition are reported. Oxidative stress responses of plants (such as reactive oxygen species production) to antibiotics are also described. | 2023 | 37760767 |
| 6481 | 17 | 0.9997 | Fate and effects of veterinary antibiotics in soil. Large amounts of veterinary antibiotics are applied worldwide to farm animals and reach agricultural fields by manure fertilization, where they might lead to an increased abundance and transferability of antibiotic-resistance determinants. In this review we discuss recent advances, limitations, and research needs in determining the fate of veterinary antibiotics and resistant bacteria applied with manure to soil, and their effects on the structure and function of soil microbial communities in bulk soils and the rhizosphere. The increased abundance and mobilization of antibiotic-resistance genes (ARGs) might contribute to the emergence of multi-resistant human pathogens that increasingly threaten the successful antibiotic treatment of bacterial infections. | 2014 | 24950802 |
| 4026 | 18 | 0.9997 | Gut microbiome in the emergence of antibiotic-resistant bacterial pathogens. The human gastrointestinal tract is home to a complex and dynamic community of microorganisms known as gut microbiota, which provide the host with important metabolic, signaling, and immunomodulatory functions. Both the commensal and pathogenic members of the gut microbiome serve as reservoirs of antimicrobial-resistance genes (ARG), which can cause potential health threats to the host and can transfer the ARGs to the susceptible microbes and into the environment. Antimicrobial resistance is becoming a major burden on human health and is widely recognized as a global challenge. The diversity and abundance of ARGs in the gut microbiome are variable and depend on the exposure to healthcare-associated antibiotics, usage of antibiotics in veterinary and agriculture, and the migration of the population. The transfer frequency of the ARGs through horizontal gene transfer (HGT) with the help of mobile genetic elements (MGEs) like plasmids, transposons, or phages is much higher among bacteria living in the GI tract compared to other microbial ecosystems. HGT in gut bacteria is facilitated through multiple gene transfer mechanisms, including transformation, conjugation, transduction, and vesicle fusion. It is the need of the hour to implement strict policies to limit indiscriminate antibiotic usage when needed. Developing rapid diagnostic tests for resistance determination and alternatives to antibiotics like vaccination, probiotics, and bacteriophage therapy should have the highest priority in the research and development sectors. Collective actions for sustainable development against resistant pathogens by promoting endogenous gut microbial growth and diversity through interdisciplinary research and findings are key to overcoming the current antimicrobial resistance crisis. | 2022 | 36280316 |
| 8410 | 19 | 0.9997 | Unveiling the role of phages in shaping the periodontal microbial ecosystem. The oral microbiome comprises various species and plays a crucial role in maintaining the oral ecosystem and host health. Phages are an important component of the periodontal microbiome, yet our understanding of periodontal phages remains limited. Here, we investigated oral periodontal phages using various advanced bioinformatics tools based on genomes of key periodontitis pathogens. Prophages were found to encode various auxiliary genes that potentially enhance host survival and pathogenicity, including genes involved in carbohydrate metabolism, antibiotic resistance, and immune modulation. We observed cross-species transmission among prophages with a complex network of phage-bacteria interactions. Our findings suggest that prophages play a crucial role in shaping the periodontal microbial ecosystem, influencing microbial community dynamics and the progression of periodontitis.IMPORTANCEIn the context of periodontitis, the ecological dynamics of the microbiome are largely driven by interactions between bacteria and their phages. While the impact of prophages on regulating oral pathogens has been increasingly recognized, their role in modulating periodontal disease remains underexplored. This study reveals that prophages within key periodontitis pathogens contribute significantly to virulence factor dissemination, antibiotic resistance, and host metabolism. By influencing the metabolic capabilities and survival strategies of their bacterial hosts, prophages may act as critical regulators of microbial communities in the oral cavity. Understanding these prophage-mediated interactions is essential not only for unraveling the mechanisms of periodontal disease progression but also for developing innovative therapeutic approaches that target the microbial ecosystem at the genetic level. These insights emphasize the need for more comprehensive studies on the ecological risks posed by prophages in shaping microbial pathogenicity and resistance. | 2025 | 40152610 |