A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
644201.0000A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.202438220012
640610.9996The Environmental Lifecycle of Antibiotics and Resistance Genes: Transmission Mechanisms, Challenges, and Control Strategies. Antibiotics are widely used in modern medicine. However, as global antibiotic consumption rises, environmental contamination with antibiotics and antibiotic resistance genes (ARGs) is becoming a serious concern. The impact of antibiotic use on human health is now under scrutiny, particularly regarding the emergence of antibiotic-resistant bacteria (ARB) in the environment. This has heightened interest in technologies for treating ARGs, highlighting the need for effective solutions. This review traces the life cycle of ARB and ARGs driven by human activity, revealing pathways from antibiotic use to human infection. We address the mechanisms enabling resistance in ARB during this process. Beyond intrinsic resistance, the primary cause of ARB resistance is the horizontal gene transfer (HGT) of ARGs. These genes exploit mobile genetic elements (MGEs) to spread via conjugation, transformation, transduction, and outer membrane vesicles (OMVs). Currently, biological wastewater treatment is the primary pollution control method due to its cost-effectiveness. However, these biological processes can promote ARG propagation, significantly amplifying the environmental threat posed by antibiotics. This review also summarizes key mechanisms in the biological treatment of antibiotics and evaluates risks associated with major ARB/ARG removal processes. Our aim is to enhance understanding of ARB risks, their pathways and mechanisms in biotreatment, and potential biomedical applications for pollution control.202541011444
639720.9996Microplastics and antibiotic resistance genes as rising threats: Their interaction represents an urgent environmental concern. Microplastics (MPs) have been reported to be emerging contaminant of different environmental niches like air, soil, and water. When exposed to these environments, MPs interact with already existing antibiotics to create combined pollution that can harm organisms. MPs have garnered significant attention in academic circles due to their ability to adsorb antibiotics. This review article explores different dimensions of MPs, antibiotic resistance genes (ARGs), and the interplay between MPs, antibiotics, and antibiotic-resistant bacteria (ARB), emphasizing their interconnection with soil and water pollution. It also summarizes the mechanisms behind the interaction between antibiotics and MPs, detailing various physical and chemical interactions. Additionally, it outlines the pathways through which MPs and ARGs complexes spread, offering insights for future research and solutions to tackle compound pollution. The article concludes by providing targeted strategies to mitigate the environmental and public health risks posed by MP-associated ARG transmission, highlighting the need for integrated pollution control, advanced monitoring techniques, and stricter regulatory policies.202540756460
641730.9995Fate of environmental pollutants: A review. A review of the literature published in 2019 on topics associated with the fate of environmental pollutants is presented. Environmental pollutants covered include pharmaceuticals, antibiotic-resistant bacteria and genes, pesticides and veterinary medicines, personal care products and emerging pollutants, PFAS, microplastics, nanomaterials, heavy metals and radionuclides, nutrients, pathogens and indicator organisms, and oil and hydrocarbons. For each pollutant, the occurrence in the environment and/or their fate in engineered as well as natural systems in matrices including water, soil, wastewater, stormwater, runoff, and/or manure is presented based on the published literature. The review includes current developments in understanding pollutants in natural and engineered systems, and relevant physico-chemical processes, as well as biological processes.202032671926
963940.9995Co-selection mechanism for bacterial resistance to major chemical pollutants in the environment. Bacterial resistance is an emerging global public health problem, posing a significant threat to animal and human health. Chemical pollutants present in the environment exert selective pressure on bacteria, which acquire resistance through co-resistance, cross-resistance, co-regulation, and biofilm resistance. Resistance genes are horizontally transmitted in the environment through four mechanisms including conjugation transfer, bacterial transformation, bacteriophage transduction, and membrane vesicle transport, and even enter human bodies through the food chain, endangering human health. Although the co-selection effects of bacterial resistance to chemical pollutants has attracted widespread attention, the co-screening mechanism and co-transmission mechanisms remain unclear. Therefore, this article summarises the current research status of the co-selection effects and mechanism of environmental pollutants resistance, emphasising the necessity of studying the co-selection mechanism of bacteria against major chemical pollutants, and lays a solid theoretical foundation for conducting risk assessment of bacterial resistance.202438101638
644650.9995Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. BACKGROUND: The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW: This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW: Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.202539414225
861660.9995Mechanisms of inhibition and recovery under multi-antibiotic stress in anammox: A critical review. With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes. The paper dives deeply into the various ways antibiotics interact with anammox bacteria, focusing specifically on their interference with the bacteria's extracellular polymers (EPS) - crucial components that maintain the structural integrity and functionality of the cells. Additionally, it explores how anammox bacteria utilize quorum sensing (QS) mechanisms to regulate their community structure and respond to antibiotic stress. Moreover, the paper summarizes effective removal methods for these antibiotics from wastewater systems, which is crucial for mitigating their inhibitory effects on anammox bacteria. Finally, the paper offers valuable insights into how anammox communities can recuperate from multi-antibiotic stress. This includes strategies for reintroducing healthy bacteria, optimizing operational conditions, and using bioaugmentation techniques to enhance the resilience of anammox communities. In summary, this paper not only enriches our understanding of the complex interactions between antibiotics and anammox bacteria but also provides theoretical and practical guidance for the treatment of antibiotic pollution in sewage, ensuring the sustainability and effectiveness of wastewater treatment processes.202439366232
646070.9995Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments. Such contaminants contribute to the selection and proliferation of resistant bacteria and antimicrobial resistance genes (ARGs), facilitating their dissemination among humans, animals, and ecosystems. In this review, we conduct a critical assessment of four significant issues pertaining to this topic. Specifically, (i) the role of biocides in exerting selective pressure within the environmental resistome, thereby promoting the proliferation of resistant microbial populations and contributing to the global spread of antimicrobial resistance genes (ARGs); (ii) the role of biocides in triggering transient phenotypic adaptations in bacteria, including efflux pump overexpression, membrane alterations, and reduced porin expression, which often result in cross-resistance to multiple antibiotics; (iii) the capacity of biocides to disrupt bacteria and make the genetic content accessible, releasing DNA into the environment that remains intact under certain conditions, facilitating horizontal gene transfer and the spread of resistance determinants; (iv) the capacity of biocides to disrupt bacterial cells, releasing intact DNA into the environment and enhancing horizontal gene transfer of resistance determinants; and (iv) the selective interactions between biocides and bacterial biofilms in the environment, strengthening biofilm cohesion, inducing resistance mechanisms, and creating reservoirs for resistant microorganisms and ARG dissemination. Collectively, this review highlights the critical environmental and public health implications of biocide use, emphasizing an urgent need for strategic interventions to mitigate their role in antibiotic resistance proliferation.202540230384
644380.9995Understanding bacterial ecology to combat antibiotic resistance dissemination. The dissemination of antibiotic resistance from environmental sources is a growing concern. Despite the widespread occurrence of antibiotic resistance transmission events, there are actually multiple obstacles in the ecosystem that restrict the flow of bacteria and genes, in particular nonnegligible biological barriers. How these ecological factors help combat the dissemination of antibiotic resistance and relevant antibiotic resistance-diminishing organisms (ARDOs) deserves further exploration. This review summarizes the factors that influence the growth, metabolism, and environmental adaptation of antibiotic-resistant bacteria (ARB) and restrict the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Additionally, this review discusses the achievements in the application of ARDOs to improve biotechnology for wastewater and solid waste remediation while highlighting current challenges limiting their broader implementation.202539855970
641990.9995Can microplastics and disinfectant resistance genes pose conceivable threats to water disinfection process? Microplastic pollution in the environment has aroused widespread concerns, however, the potential environmental risks caused by excessive use of disinfectants are still unknown. Disinfectants with doses below the threshold can enhance the communication of resistance genes in pathogenic microorganisms, promoting the development and spread of antimicrobial activity. Problematically, the intensification of microplastic pollution and the increase of disinfectant consumption will become a key driving force for the growth of disinfectant resistance bacteria (DRB) and disinfectant resistance genes (DRGs) in the environment. Disinfection plays a crucial role in ensuring water safety, however, the presence of microplastics and DRGs seriously disturb the water disinfection process. Microplastics can reduce the concentration of disinfectant in the local environment around microorganisms and improve their tolerance. Microorganisms can improve their resistance to disinfectants or generate resistance genes via phenotypic adaptation, gene mutations, and horizontal gene transfer. However, very limited information is available on the impact of DRB and DRGs on disinfection process. In this paper, the contribution of microplastics to the migration and transmission of DRGs was analyzed. The challenges posed by the presence of microplastics and DRGs on conventional disinfection were thoroughly discussed. The knowledge gaps faced by relevant current research and further research priorities have been proposed in order to provide a scientific basis in the future.202337730038
6405100.9995Extracellular DNA (eDNA): Neglected and Potential Sources of Antibiotic Resistant Genes (ARGs) in the Aquatic Environments. Over the past decades, the rising antibiotic resistance bacteria (ARB) are continuing to emerge as a global threat due to potential public health risk. Rapidly evolving antibiotic resistance and its persistence in the environment, have underpinned the need for more studies to identify the possible sources and limit the spread. In this context, not commonly studied and a neglected genetic material called extracellular DNA (eDNA) is gaining increased attention as it can be one of the significant drivers for transmission of extracellular ARGS (eARGs) via horizontal gene transfer (HGT) to competent environmental bacteria and diverse sources of antibiotic-resistance genes (ARGs) in the environment. Consequently, this review highlights the studies that address the environmental occurrence of eDNA and encoding eARGs and its impact on the environmental resistome. In this review, we also brief the recent dedicated technological advancements that are accelerating extraction of eDNA and the efficiency of treatment technologies in reducing eDNA that focuses on environmental antibiotic resistance and potential ecological health risk.202033114079
6445110.9995Microplastics: Disseminators of antibiotic resistance genes and pathogenic bacteria. Microplastics (MPs) are emerging pollutants that linger in the air, water, and land. Beyond their physical and chemical risks, there is growing evidence that MPs contribute to the worldwide antimicrobial resistance (AMR) dilemma by acting as carriers of harmful microbes and antibiotic resistance genes (ARGs). Despite an increase in research, the available literature is dispersed, and the part that MPs play in influencing microbial populations and fostering resistance is still not well understood. This review summarizes current research on how MPs contribute to the spread of antibiotic resistance. We concentrated on the ways in which MPs support horizontal gene transfer (HGT) processes such as conjugation, transformation, and transduction, assist biofilm development, and offer surfaces for microbial colonization. Evidence from a variety of settings suggests that MPs serve as vectors for opportunistic pathogens, such as the ESKAPE group, and ARGs, increasing the survival and movement of resistance determinants in ecosystems. Through the consolidation of current developments, this review emphasizes MPs as active resistance vectors instead of passive pollutants. We also point out important limitations, such as the lack of standardized procedures, inadequate risk assessment frameworks, and the absence of real-world exposure research. It is imperative that these issues be approached from a One Health standpoint in order to reduce the risks of both plastic pollution and antibiotic resistance.202541056605
6418120.9995Antibiotic resistance genes in anaerobic digestion: Unresolved challenges and potential solutions. Antimicrobial resistance (AMR) threatens public health, necessitating urgent efforts to mitigate the global impact of antibiotic resistance genes (ARGs). Anaerobic digestion (AD), known for volatile solid reduction and energy generation, also presents a feasible approach for the removal of ARGs. This review encapsulates the existing understanding of ARGs and antibiotic-resistant bacteria (ARB) during the AD process, highlighting unresolved challenges pertaining to their detection and quantification. The questions raised and discussed include: Do current ARGs detection methods meet qualitative and quantitative requirements? How can we conduct risk assessments of ARGs? What happens to ARGs when they come into co-exposure with other emerging pollutants? How can the application of internal standards bolster the reliability of the AD resistome study? What are the potential future research directions that could enhance ARG elimination? Investigating these subjects will assist in shaping more efficient management strategies that employ AD for effective ARG control.202539826759
6400130.9995Review of the Presence and Phage-Mediated Transfer of ARGs in Biofilms. The widespread use of antibiotics has led to the emergence of a large number of drug-resistant bacteria, accelerating the dissemination and spread of antibiotic resistance genes (ARGs) in the environment. Bacterial biofilms, serving as reservoirs of ARGs, pose potential risks to environmental health that should not be ignored. Studies on the presence and transfer of ARGs in biofilms have been conducted both domestically and internationally. This article summarises the research progress on ARGs in various environments and analyses the mechanisms and factors influencing the dissemination and transfer of ARGs in microplastics, activated sludge, and pipe wall biofilms, with a particular focus on phage-mediated ARG transfer. We also discuss current research gaps in this field to provide references for future biofilm management and health risk control of ARGs.202540431170
6504140.9995Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Bacterial resistance is a naturally occurring process. However, bacterial antibiotic resistance has emerged as a major public health problem in recent years. The accumulation of antibiotics in the environment, including in wastewaters and drinking water, has contributed to the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes (ARGs). Such can be justified by the growing consumption of antibiotics and their inadequate elimination. The conventional water treatments are ineffective in promoting the complete elimination of antibiotics and bacteria, mainly in removing ARGs. Therefore, ARGs can be horizontally transferred to other microorganisms within the aquatic environment, thus promoting the dissemination of antibiotic resistance. In this review, we discuss the efficiency of conventional water treatment processes in removing agents that can spread/stimulate the development of antibiotic resistance and the promising strategies for water remediation, mainly those based on nanotechnology and microalgae. Despite the potential of some of these approaches, the elimination of ARGs remains a challenge that requires further research. Moreover, the development of new processes must avoid the release of new contaminants for the environment, such as the chemicals resulting from nanomaterials synthesis, and consider the utilization of green and eco-friendly alternatives such as biogenic nanomaterials and microalgae-based technologies.202235455389
8627150.9995Antibiotic residues in environment: antimicrobial resistance development, ecological risks, and bioremediation. The overuse of antibiotics and their disposal without processing are leading the environment and its inhabitants towards a serious health emergency. There is abundance of diverse antibiotic resistance genes and bacteria in environment, which demands immediate attention for the effective removal of antibiotics. There are physical and chemical methods for removal, but the generation of toxic byproducts has directed the efforts towards bioremediation for eco-friendly and sustainable elimination of antibiotics from the environment. Various effective and reliable bioremediation approaches have been used, but still antibiotic residues pose a major global threat. Recent developments in molecular and synthetic biology might offer better solution for engineering of microbe-metabolite biodevices and development of novel strains endowed with desirable properties. This review summarizes the impact of antibiotics on environment, mechanisms of resistance development, and different bioremediation approaches.202234773239
6416160.9995Antibiotic resistance in plastisphere. Microbial life on plastic debris, called plastisphere, has invoked special attention on aquatic ecosystems as emerging habitats for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). There is scarce information concerning how properties of plastics influence ARGs and ARB, the effect of biofilms on enrichment of ARGs and ARB, and, especially, the influence of plastic transformation on ARGs and ARB. Limited research has shown that microplastic (MP) surfaces influence proliferation of antibiotic resistance (AR), aged MPs exhibit increased toxicity due to more adsorption-desorption of AR, and MP transformation is correlated with disseminating AR. Prevention measures of AR include minimizing MP releasing into aquatic environments and sewage treatment plants. The future research should aim to identify the interface mechanisms of transformed MNPs and antibiotics alone, or mixed with other contaminants, property changes of MNPs, and associated toxicity evaluation.202540265125
6458170.9995Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics (ABs) have made it possible to treat bacterial infections, which were in the past untreatable and consequently fatal. Regrettably, their use and abuse among humans and livestock led to antibiotic resistance, which has made them ineffective in many cases. The spread of antibiotic resistance genes (ARGs) and bacteria is not limited to nosocomial environments, but also involves water and soil ecosystems. The environmental presence of ABs and ARGs is a hot topic, and their direct and indirect effects, are still not well known or clarified. A particular concern is the presence of antibiotics in agroecosystems due to the application of agro-zootechnical waste (e.g., manure and biosolids), which can introduce antibiotic residues and ARGs to soils. This review provides an insight of recent findings of AB direct and indirect effects on terrestrial organisms, focusing on plant and invertebrates. Possible changing in viability and organism growth, AB bioaccumulation, and shifts in associated microbiome composition are reported. Oxidative stress responses of plants (such as reactive oxygen species production) to antibiotics are also described.202337760767
6398180.9995The interplay between antimicrobial resistance, heavy metal pollution, and the role of microplastics. Environmental pollution with heavy metals (HMs) and microplastics (MPs) could enhance the global health challenge antimicrobial resistance (AMR). Herein, we explore the complicated mechanics of how HMs, MPs, and AMR are interlinked within microbial ecosystems, as well as the co-selection and cross-resistance mechanisms. Unlike antibiotics, HMs have influenced microbial evolution for billions of years, promoting resistance mechanisms that predate antibiotic resistance genes (ARGs). At the same time, this conundrum is further complicated by the pervasive spread of MPs in the aquatic and terrestrial environments, acting as substrates for bacterial pathogenic biofilms and accelerates the horizontal gene transfer (HGT) of ARGs and heavy metal resistance genes (MRGs). This review highlights that HMs such as lead (Pb), mercury (Hg), arsenic (As), chromium (Cr), cadmium (Cd), and nickel (Ni) have persistently selected for resistance traits through efflux systems and genetic co-regulation. Together, these interactions are amplified by MPs that create genetic exchange hotspots due to biofilm formation. These dynamics are modulated by organic matter, which serves both as a nutrient source and a mediator of HM bioavailability, directly influencing ARG abundance. Soil and water ecosystems, including riverine systems and landfill leachate, are reservoirs for ARGs and ARG-MRG combinations, with notable contributions originating from anthropogenic activities. This review also emphasizes the urgent need for integrated environmental and public health strategies to mitigate pollutant-driven AMR. This work seeks to approach HMs and MPs as synergistic drivers of AMR such that both HMs and MPs are upstream (causes) levers, a foundation from which future research on sustainable environmental management practices and health policy (One Health Approach), aimed at curbing the spread of resistance determinants can proceed.202540092036
8553190.9995Unveiling the power of nanotechnology: a novel approach to eliminating antibiotic-resistant bacteria and genes from municipal effluent. The increasing global population and declining freshwater resources have heightened the urgency of ensuring safe and accessible water supplies.Query The persistence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in municipal effluents poses a significant public health threat, exacerbated by the widespread use of antibiotics and the inadequate removal of contaminants in wastewater treatment facilities. Conventional treatment methods often fail to eliminate these emerging pollutants, facilitating their entry into agricultural systems and natural water bodies, thereby accelerating the spread of antimicrobial resistance. To address these challenges, interdisciplinary strategies in water treatment are essential. Nanotechnology has emerged as a promising approach due to its unique physicochemical properties, biocompatibility, and high efficiency in detecting and removing biological and chemical contaminants. Various nanomaterials, including graphene-based structures, Carbon nanotubes (CNTs), noble metal nanoparticles (gold (Au) and silver (Ag)), silicon and chitosan-based nanomaterials, as well as titanium and Zinc oxide (ZnO) nanomaterials, demonstrate potent antimicrobial effects. Moreover, nanosensors and photocatalysts utilizing these nanomaterials enable precise detection and effective degradation of ARB and ARGs in wastewater. This review examines the mechanisms by which nanotechnology-based materials can mitigate the risks associated with antibiotic resistance in urban effluents, focusing on their applications in pathogen detection, pollutant removal, and wastewater treatment. By integrating nanotechnology into existing treatment frameworks, we can significantly enhance the efficiency of water purification processes, ultimately contributing to global water security and the protection of public health.202540512401