Antibiotic resistance genes in the coastal atmosphere under varied weather conditions: Distribution, influencing factors, and transmission mechanisms. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
643201.0000Antibiotic resistance genes in the coastal atmosphere under varied weather conditions: Distribution, influencing factors, and transmission mechanisms. Antibiotic resistance genes (ARGs) have escalated to levels of concern worldwide as emerging environmental pollutants. Increasing evidence suggests that non-antibiotic antimicrobial substances expedite the spread of ARGs. However, the drivers and mechanisms involved in the generation and spread of ARGs in the atmosphere remain inadequately elucidated. Co-occurrence networks, mantel test analysis, and partial least squares path modeling were used to analyze the symbiotic relationships of ARGs with meteorological conditions, atmospheric pollutants, water-soluble inorganic ions, bacteria, mobile genetic elements (MGEs), antibacterial biocide and metal resistance genes, and to identify the direct drivers of ARGs. The types and abundance of ARGs exhibited different seasonal distribution. Specifically, the types exhibited a strong alignment with the diversity of air masses terrestrial sources, while the abundance displayed a significant positive correlation with both biocide resistance genes (BRGs) and metal resistance genes (MRGs). The contribution of bacterial communities and MGEs to the generation and spread of ARGs was constrained by the low levels of antibiotics in the atmosphere and the existence of "viral intermediates". Conversely, antibacterial biocides and metals influenced mutation rates, cellular SOS responses, and oxidative stress of bacteria, consequently facilitating the generation and spread of ARGs. Moreover, the co-selection among their derivatives, resistance genes, ensured a stable presence of ARGs. The research highlighted the significant impact of residual antimicrobial substances on both the generation and spread of ARGs. Elucidating the sources of aerosols and the co-selection mechanism linking with ARGs, BRGs, and MRGs were crucial for preserving the stability of ARGs in the atmosphere.202539824332
681610.9999The impact of microplastics on antibiotic resistance genes, metal resistance genes, and bacterial community in aquaculture environment. Microplastics are emerging contaminants. However, their effects on antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and the structure and abundance of bacterial communities, particularly pathogens, in aquaculture environments remains poorly understood. Therefore, this study investigated the effect of microplastics of different sizes on the abundance and distribution of ARGs, MRGs, and bacterial communities in aquaculture environments. The results revealed that, compared with pond water, large microplastics harbored significantly higher ARG abundances, particularly for multidrug-resistant genes; notably, level-I- and -II-risk ARGs were more prevalent on microplastics, highlighting the potential for horizontal gene transfer. Microplastics also exhibited a propensity to aggregate pathogenic bacteria such as Brucella and Pseudomonas, which could pose direct risks to aquatic product safety and public health. Network and differential network analyses revealed significant correlations between bacterial genera and ARG/MRG abundance, particularly on microplastics. Therefore, our findings suggest that microplastics act as vectors for the spread of ARGs, MRGs, and pathogens in aquaculture, potentially leading to the formation of complexes of these materials that threaten ecosystem health and human well-being. This study provides critical insights into the need for targeted management strategies to mitigate microplastic pollution in aquaculture settings.202539987738
703120.9999Free-living lifestyle preferences drive the antibiotic resistance promotion during drinking water chlorination. The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination. The contribution of the free-living fraction to the ARG relative abundance rose from 16.40 ± 1.31 % to 93.62 ± 0.47 % after chlorination. Multidrug resistance genes (e.g. mexF and mexW) were major contributors, and their co-occurrence with MGEs in the free-living fraction was enhanced after chlorination. Considering multiple perspectives, including presence, mobility, and pathogenicity, chlorination led to a significant risk of the antibiotic resistome in the free-living fraction. Moreover, potential functions of ARGs, such as cell wall/membrane/envelope biogenesis, defense mechanisms, and transcription in the free-living fraction, were intensified following chlorination. Potential pathogens, including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Acinetobacter junii, were identified as the predominant hosts of multidrug resistance genes, with their increased abundances primarily contributing to the rise of the corresponding ARGs. Overall, alterations of hosts as well as enhancing mobility and biological functions could collectively aid the proliferation and spread of ARGs in the free-living fraction after chlorination. This study provides novel insights into antibiotic resistance evolution in size-fractionated bacteria community and offers a management strategy for microbiological safety in drinking water.202438043346
743030.9999Sources of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) in the Soil: A Review of the Spreading Mechanism and Human Health Risks. Soil is an essential part of our ecosystem and plays a crucial role as a nutrient source, provides habitat for plants and other organisms. Overuse of antibiotics has accelerated the development and dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). ARB and ARGs are recognized as emerging environmental contaminants causing soil pollution and serious risks to public health. ARB and ARGs are discharged into soils through several pathways. Application of manure in agriculture is one of the primary sources of ARB and ARGs dissemination in the soil. Different sources of contamination by ARB and ARGs were reviewed and analyzed as well as dissemination mechanisms in the soil. The effects of ARB and ARGs on soil bacterial community were evaluated. Furthermore, the impact of different sources of manure on soil microbial diversity as well as the effect of antibiotics on the development of ARB and ARGs in soils was analyzed. Human health risk assessments associated with the spreading of ARB and ARGs in soils were investigated. Finally, recommendations and mitigation strategies were proposed.202133948742
750640.9998Risk assessment and dissemination mechanism of antibiotic resistance genes in compost. In recent years, the excessive of antibiotics in livestock and poultry husbandry, stemming from extensive industry experience, has resulted in the accumulation of residual antibiotics and antibiotic resistance genes (ARGs) in livestock manure. Composting, as a crucial approach for the utilization of manure resources, has the potential to reduce the levels of antibiotics and ARGs in manure, although complete elimination is challenging. Previous studies have primarily focused on the diversity and abundance of ARGs in compost or have solely examined the correlation between ARGs and their carriers, potentially leading to a misjudgment of the actual risk associated with ARGs in compost. To address this gap, this study investigated the transfer potential of ARGs in compost and their co-occurrence with opportunistic pathogenic bacteria by extensively analyzing metagenomic sequencing data of compost worldwide. The results demonstrated that the potential risk of ARGs in compost was significantly lower than in manure, suggesting that composting effectively reduces the risk of ARGs. Further analysis showed that the microbes shifted their life history strategy in manure and compost due to antibiotic pressure and formed metabolic interactions dominated by antibiotic-resistant microbes, increasing ARG dissemination frequency. Therefore, husbandry practice without antibiotic addition was recommended to control ARG evolution, dissemination, and abatement both at the source and throughout processing.202337562342
750550.9998A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure. As emerging pollutants, antibiotic resistance genes (ARGs) have been recognized as originating from diverse sources. Among these, the use of livestock feed and veterinary drugs was identified as the primary source of ARGs in livestock manure. ARGs were found to be widely distributed in global environments, particularly in agriculture-related soils, water bodies, and the atmosphere, posing potential threats to ecological environments and human health. This paper reviewed the degradation mechanisms of ARGs during aerobic composting of livestock manure and the safety evaluation of compost products. Aerobic composting was demonstrated to be an effective method for degrading ARGs, primarily through mechanisms such as high-temperature elimination of ARG-carrying microorganisms, reduction in host bacterial abundance, and inhibition of horizontal gene transfer. Factors including the physicochemical properties of the composting substrate, the use of additives, and the presence of antibiotic and heavy metal residues were shown to influence the degradation efficiency of ARGs, with compost temperature being the core factor. The safety of organic fertilizers encompassed multiple aspects, including heavy metal content, seed germination index, and risk assessments based on ARG residues. The analysis indicated that deficiencies existed in areas such as the persistence of thermotolerant bacteria carrying ARGs, the dissemination of extracellular antibiotic resistance genes (eARGs), and virus-mediated gene transfer. Future research should focus on (1) the removal of thermotolerant bacteria harboring ARGs; (2) the decomposition of eARGs or the blocking of their transmission pathways; (3) the optimization of ultra-high temperature composting parameters; and (4) the analysis of interactions between viruses and resistant hosts. This study reviews the mechanisms, influencing factors, and safety assessment of aerobic composting for degrading ARGs in livestock manure. It not only deepens the understanding of this important environmental biotechnology process but also provides a crucial knowledge base and practical guidance for effectively controlling ARG pollution, ensuring agricultural environmental safety, and protecting public health. Additionally, it clearly outlines the key paths for future technological optimization, thus holding significant implications for the environment, agriculture, and public health.202540863943
750860.9998Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants.202337738943
750470.9998Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. Antibiotic resistance genes (ARGs) in water environment have become a global health concern. Swine wastewater is widely considered to be one of the major contributors for promoting the proliferation of ARGs in water environments. This paper comprehensively reviews and discusses the occurrence and removal of ARGs in anaerobic treatment of swine wastewater, and contributions of antibiotics to the fate of ARGs. The results reveal that ARGs' removal is unstable during anaerobic processes, which negatively associated with the presence of antibiotics. The abundance of bacteria carrying ARGs increases with the addition of antibiotics and results in the spread of ARGs. The positive relationship was found between antibiotics and the abundance and transfer of ARGs in this review. However, it is necessary to understand the correlation among antibiotics, ARGs and microbial communities, and obtain more knowledge about controlling the dissemination of ARGs in the environment.202031917094
643180.9998The dynamics and transmission of antibiotic resistance associated with plant microbiomes. Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.202337257204
697690.9998Unveiling the critical role of overlooked consumer protist-bacteria interactions in antibiotic resistance gene dissemination in urban sewage systems. Antibiotic resistance genes (ARGs) are emerging contaminants of significant concern due to their role in facilitating the spread of antibiotic resistance, especially high-risk ARGs, which are characterized by high human accessibility, gene mobility, pathogenicity, and clinical availability. Studies have shown that cross-domain interactions, such as those between consumer protists (consumers) and bacteria, can influence bacterial diversity, distribution, and function through top-down control. The consumers-bacteria interactions may also affect the occurrence and distribution of ARGs, yet this has been scarcely explored in field investigations. We conducted a city-scale investigation of ARGs, protists, and bacterial communities across each unit of the urban sewage system (USS), including 49 sewage pumping stations (SW), as well as influent (IF), activated sludge (AS), and effluent (EF) from seven wastewater treatment plants. Interestingly, consumers-bacteria interactions, as indicated by indices of bipartite relevance networks (i.e., connectedness and cohesion), increased from SW and IF to AS and EF. Structural equation modelling (SEM) revealed that consumers-bacteria interactions had a greater influence on the abundance of total ARGs and high-risk ARGs than seasonal or environmental factors. Notably, the total effects of consumers-bacteria interactions in SEM were significant (P < 0.05) and comparable in both IF and EF, even with the decrease in ARG abundance from IF to EF. This suggests a potential risk of ARG spread to the environment, facilitated by consumer protists in the EF. Additionally, the relevance network also demonstrated an increasing trend in the relationships between consumer protists and potential hosts of high-risk ARGs from raw sewage (SW and IF) to AS and EF. Overall, this study emphasizes the importance of integrating multitrophic microbial interactions to better understand and mitigate the dissemination of ARGs in sewage systems.202539662352
6433100.9998Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? Microplastic (MP) biofilms with heterogeneous bacterial compositions and structure have become a hotspot of antibiotic resistance genes (ARGs) in aquatic environments. The evolutionary features of ARGs and their related factors including class 1 integron (intI1), metal resistance genes (MRGs), and bacterial communities in MP biofilms under exogenous pressures and how they compared with natural substrates (NS) are unclear. The individual and combined pressures of sulfamethoxazole, tetracycline, and zinc were used to drive the dynamic evolution of ARGs, intI1, MRGs, and bacterial communities in the MP and NS biofilms. The exogenous pressures from the combined selection of sulfamethoxazole, tetracycline, and zinc and their increasing concentrations both significantly enhanced the abundances of ARGs on the MP compared to the NS. Meanwhile, the selective pressures resulted in obvious dissimilarities between the MP and NS bacterial communities. The core bacterial taxa and the co-occurrence patterns of ARGs and bacterial genera in the biofilms of MP and NS were obviously different, and more potential ARG host bacteria selectively colonized the MP. Metal pressure also enhanced the enrichment of ARGs in the MP biofilms by promoting the spread of intI1 via the co-selection mechanism.202234597934
7466110.9998Effects of heavy metals on the development and proliferation of antibiotic resistance in urban sewage treatment plants. Sewage treatment plants (STPs) are considered as "hotspots" for the emergence and proliferation of antibiotic resistance. However, the impact of heavy metals contamination on dispersal of antibiotic resistance in STPs is poorly understood. This study simultaneously investigated the effect of removal of metal and antibiotic resistance as well as mobile elements at different treatment units of STPs in Delhi, India. Results showed that treatment technologies used in STPs were inefficient for the complete removal of metal and antibiotic resistance, posing an ecological risk of co-selection of antibiotic resistance. The strong correlations were observed between heavy metals, metal and antibiotic resistance, and integrons, implying that antibiotic resistance may be exacerbated in the presence of heavy metals via integrons, and that metal and antibiotic resistance share a common or closely associated mechanism. We quantified an MRG rcnA, conferring resistance to Co and Ni, and identified that it was more abundant than all MRGs, ARGs, integrons, and 16S rRNA, suggesting rcnA could be important in antibiotic resistance dissemination in the environment. The associations between heavy metals, metal and antibiotic resistance, and integrons highlight the need for additional research to better understand the mechanism of co-selection as well as to improve the removal efficacy of current treatment systems.202235724944
6827120.9998Metagenomic profiles of planktonic bacteria and resistome along a salinity gradient in the Pearl River Estuary, South China. Estuarine ecosystems undergo pronounced and intricate changes due to the mixing of freshwater and saltwater. Additionally, urbanization and population growth in estuarine regions result in shifts in the planktonic bacterial community and the accumulation of antibiotic resistance genes (ARGs). The dynamic changes in bacterial communities, environmental factors, and carriage of ARGs from freshwater to seawater, as well as the complex interrelationships among these factors, have yet to be fully elucidated. Here, we conducted a comprehensive study based on metagenomic sequencing and full-length 16S rRNA sequencing, covering the entire Pearl River Estuary (PRE) in Guangdong, China. The abundance and distribution of the bacterial community, ARGs, mobile genetic elements (MGEs), and bacterial virulence factors (VFs) were analyzed on a site-by-site basis through sampling along the salinity gradient in PRE, from upstream to downstream. The structure of the planktonic bacterial community undergoes continuous changes in response to variations in estuarine salinity, with the phyla Proteobacteria and Cyanobacteria being dominant bacterial throughout the entire region. The diversity and abundance of ARGs and MGEs gradually decreased with the direction of water flow. A large number of ARGs were carried by potentially pathogenic bacteria, especially in Alpha-proteobacteria and Beta-proteobacteria. Multi-drug resistance genes have the highest abundance and subtypes in PRE. In addition, ARGs are more linked to some MGEs than to specific bacterial taxa and disseminate mainly by HGT and not by vertical transfer in the bacterial communities. Various environmental factors, such as salinity and nutrient concentrations, have a significantly impact on the community structure and distribution of bacteria. In conclusion, our results represent a valuable resource for further investigating the intricate interplay between environmental factors and anthropogenic disturbances on bacterial community dynamics. Moreover, they contribute to a better understanding of the relative impact of these factors on the dissemination of ARGs.202337211102
7507130.9998Impact of different organic matters on the occurrence of antibiotic resistance genes in activated sludge. The occurrence of antibiotic resistance genes (ARGs) in various environments has drawn worldwide attention due to their potential risks. Previous studies have reported that a variety of substances can enhance the occurrence and dissemination of ARGs. However, few studies have compared the response of ARGs under the stress of different organic matters in biological wastewater treatment systems. In this study, seven organic pollutants were added into wastewater treatment bioreactors to investigate their impacts on the ARG occurrence in activated sludge. Based on high-throughput sequencing, it was found that the microbial communities and ARG patterns were significantly changed in the activated sludge exposed to these organic pollutants. Compared with the non-antibiotic refractory organic matters, antibiotics not only increased the abundance of ARGs but also significantly changed the ARG compositions. The increase of Gram-negative bacteria (e.g., Archangium, Prosthecobacter and Dokdonella) carrying ARGs could be the main cause of ARG proliferation. In addition, significant co-occurrence relationships between ARGs and mobile genetic elements were also observed in the sludge samples, which may also affect the ARG diversity and abundance during the organic matter treatment in the bioreactors. Overall, these findings provide new information for better understanding the ARG occurrence and dissemination caused by organic pollutants in wastewater treatment systems.202336522059
7465140.9998Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. The inadequate elimination of micropollutants in wastewater treatment plants (WWTP), cause to increase in the incidence of antibiotic resistant bacterial strains. Growth of microbial pathogens in WWTP is one of the serious public health problems. The widespread and simultaneous emergence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment with heavy metals create persistent and selective pressure for co-selection of both genes on environmental microorganisms. Co-localization of ARGs and HMRGs on the same horizontal mobile genetic elements (MGEs) allows the spreading of numerous antibiotic-resistant strains of bacteria in aquatic and terrestrial environment. The biofilm formation and colonization potential of environmental bacteria leads to the co-selection of multi-antibiotic resistance and multi-metal tolerance. Horizontal gene transfer (HGT), co-localization of both ARGs and HMRGs on the same MGEs, and the shared resistomes are important bacteria-associated ecological risks factors, which reduce the effectiveness of antibiotics against bacterial infections.202336805463
6977150.9998Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked.202235810986
6818160.9998Atmospheric antibiotic resistome driven by air pollutants. The atmosphere is an important reservoir and habitat for antibiotic resistance genes (ARGs) and is a main pathway to cause potential health risks through inhalation and ingestion. However, the distribution characteristics of ARGs in the atmosphere and whether they were driven by atmospheric pollutants remain unclear. We annotated 392 public air metagenomic data worldwide and identified 1863 ARGs, mainly conferring to tetracycline, MLS, and multidrug resistance. We quantified these ARG's risk to human health and identified their principal pathogenic hosts, Burkholderia and Staphylococcus. Additionally, we found that bacteria in particulate contaminated air carry more ARGs than in chemically polluted air. This study revealed the influence of typical pollutants in the global atmosphere on the dissemination and risk of ARGs, providing a theoretical basis for the prevention and mitigation of the global risks associated with ARGs.202337543315
6434170.9998Unraveling the role of microplastics in antibiotic resistance: Insights from long-read metagenomics on ARG mobility and host dynamics. As two emerging pollutants, microplastics (MPs) potentially serve as vectors for antibiotic resistance genes (ARGs) in aquatic environments, but the mechanisms driving ARG enrichment remain unclear. This study used long-read metagenomics to investigate ARG mobility and hosts dynamics within the biofilms of MPs and rocks in different water environments. We identified distinct enrichment patterns for microbial communities and ARGs, highlighting the significant role of horizontal gene transfer in ARG enrichment. Specifically, plasmid-encoded ARGs varied significantly among MP biofilms, rock biofilms, and water samples, while chromosome-encoded ARGs remained consistent across these environments, emphasizing the impact of plasmids on ARG enrichment. Despite this, 55.1 % of ARGs were on chromosomes, indicating that host organisms also play a crucial role. The related mechanisms driving ARG enrichment included enhanced cell adhesion, increased transmembrane transporter activity, and responses to environmental stressors, which led to an increased presence of plasmid-encoded ARGs on MP biofilms, facilitating more frequent horizontal gene transfer. Additionally, the diversity of hosts on MPs was notably lower compared to the water column, with specific bacteria, including Herbaspirillu, Limnohabitans, Polaromonas, Variovorax, Rubrivivax, and Thauera significantly driving ARG enrichment. This study highlights key mechanisms and bacterial taxa involved in ARG dynamics on MPs.202540056523
7513180.9998Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters. Microplastic Particles (MPs) are ubiquitous pollutants widely found in aquatic ecosystems. Although MPs are mostly retained in wastewater treatment plants (WWTPs), a high number of MPs reaches the open waters potentially contributing to the spread of pathogenic bacteria and antibiotic resistance genes in the environment. Nowadays, a limited number of studies have focused on the role of MPs as carriers of potentially pathogenic and antibiotic resistant bacteria in WWTPs. Thus, an investigation on the community composition (by 16S rRNA gene amplicon sequencing) and the abundance of antibiotic and metal resistance genes (by qPCR) of the biofilm on MPs (the plastisphere) and of planktonic bacteria in treated (pre- and post-disinfection) wastewaters was performed. MPs resulted to be very similar in terms of type, color, size, and chemical composition, before and after the disinfection. The bacterial community on MPs differed from the planktonic community in terms of richness, composition, and structure of the community network. Potentially pathogenic bacteria generally showed higher abundances in treated wastewater than in the biofilm on MPs. Furthermore, among the tested resistance genes, only sul2 (a common resistance gene against sulfonamides) resulted to be more abundant in the plastisphere than in the planktonic bacterial community. Our results suggest that the wastewater plastisphere could promote the spread of pathogenic bacteria and resistance genes in aquatic environment although with a relatively lower contribution than the wastewater planktonic bacterial community.202134186288
7483190.9998Enrichment of antibiotic resistance genes (ARGs) in polyaromatic hydrocarbon-contaminated soils: a major challenge for environmental health. Polyaromatic hydrocarbons (PAHs) are widely spread ecological contaminants. Antibiotic resistance genes (ARGs) are present with mobile genetic elements (MGE) in the bacteria. There are molecular evidences that PAHs may induce the development of ARGs in contaminated soils. Also, the abundance of ARGs related to tetracycline, sulfonamides, aminoglycosides, ampicillin, and fluoroquinolones is high in PAH-contaminated environments. Genes encoding the efflux pump are located in the MGE and, along with class 1 integrons, have a significant role as a connecting link between PAH contamination and enrichment of ARGs. The horizontal gene transfer mechanisms further make this interaction more dynamic. Therefore, necessary steps to control ARGs into the environment and risk management plan of PAHs should be enforced. In this review, influence of PAH on evolution of ARGs in the contaminated soil, and its spread in the environment, has been described. The co-occurrence of antibiotic resistance and PAH degradation abilities in bacterial isolates has raised the concerns. Also, presence of ARGs in the microbiome of PAH-contaminated soil has been discussed as environmental hotspots for ARG spread. In addition to this, the possible links of molecular interactions between ARGs and PAHs, and their effect on environmental health has been explored.202133394421