Bacterium-Phage Symbiosis Facilitates the Enrichment of Bacterial Pathogens and Antibiotic-Resistant Bacteria in the Plastisphere. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
642401.0000Bacterium-Phage Symbiosis Facilitates the Enrichment of Bacterial Pathogens and Antibiotic-Resistant Bacteria in the Plastisphere. The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs. The plastisphere phage community exhibited decreased diversity and virulent proportion compared to those found in environments. Indexes of phage-host interaction networks indicated significant associations of phages with pathogenic and antibiotic-resistant bacteria (ARB), particularly for biodegradable plastics. Known phage-encoded auxiliary metabolic genes (AMGs) were involved in nutrient metabolism, antibiotic production, quorum sensing, and biofilm formation in the plastisphere, which contributed to enhanced competition and survival of pathogens and ARB hosts. Phages also carried transcriptionally active virulence factor genes (VFGs) and antibiotic resistance genes (ARGs), and could mediate their horizontal transfer in microbial communities. Overall, these discoveries suggest that plastisphere phages form symbiotic relationships with their hosts, and that phages encoding AMGs and mediating horizontal gene transfer (HGT) could increase the source of pathogens and antibiotic resistance from the plastisphere.202539836086
643010.9998Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities. Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic waste entering the oceans every year. Plastic debris can have considerable impacts on microbial community structure and functions in marine environments, and has been associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) genes. However, our understanding of these impacts is largely restricted to microbial assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the surface properties of plastics, providing an additional niche for certain microbes residing in biofilms, and/or chemicals leached from plastics, the effects of which could extend to surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) plastic leachate exposure on the relative abundance of genes associated with bacterial pathogenicity and AMR within a seawater microcosm community. We show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes. In particular, leachate exposure significantly enriches AMR genes that confer multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of genes involved in the extracellular secretion of virulence proteins was observed among pathogens of marine organisms. This study provides the first evidence that chemicals leached from plastic particles alone can enrich genes related to microbial pathogenesis within a bacterial community, expanding our knowledge of the environmental impacts of plastic pollution with potential consequences for human and ecosystem health.202337019264
643420.9997Unraveling the role of microplastics in antibiotic resistance: Insights from long-read metagenomics on ARG mobility and host dynamics. As two emerging pollutants, microplastics (MPs) potentially serve as vectors for antibiotic resistance genes (ARGs) in aquatic environments, but the mechanisms driving ARG enrichment remain unclear. This study used long-read metagenomics to investigate ARG mobility and hosts dynamics within the biofilms of MPs and rocks in different water environments. We identified distinct enrichment patterns for microbial communities and ARGs, highlighting the significant role of horizontal gene transfer in ARG enrichment. Specifically, plasmid-encoded ARGs varied significantly among MP biofilms, rock biofilms, and water samples, while chromosome-encoded ARGs remained consistent across these environments, emphasizing the impact of plasmids on ARG enrichment. Despite this, 55.1 % of ARGs were on chromosomes, indicating that host organisms also play a crucial role. The related mechanisms driving ARG enrichment included enhanced cell adhesion, increased transmembrane transporter activity, and responses to environmental stressors, which led to an increased presence of plasmid-encoded ARGs on MP biofilms, facilitating more frequent horizontal gene transfer. Additionally, the diversity of hosts on MPs was notably lower compared to the water column, with specific bacteria, including Herbaspirillu, Limnohabitans, Polaromonas, Variovorax, Rubrivivax, and Thauera significantly driving ARG enrichment. This study highlights key mechanisms and bacterial taxa involved in ARG dynamics on MPs.202540056523
747930.9997Metagenomic investigation reveals bacteriophage-mediated horizontal transfer of antibiotic resistance genes in microbial communities of an organic agricultural ecosystem. Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome.202337754684
698040.9997Effects of agricultural inputs on soil virome-associated antibiotic resistance and virulence: A focus on manure, microplastic and pesticide. Soil viruses are increasingly recognized as crucial mediators of horizontal gene transfer, yet their role in disseminating antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) under agricultural disturbances remains poorly understood. Here, we characterized the viromes and associated ARGs and VFGs in agricultural soils treated with low- and high-dose manures, microplastics, and pesticides. Using metagenomic sequencing coupled with advanced viral identification tools, we found that manure fertilization markedly altered viral community composition and increased viral diversity. Manure also enhanced the abundance of ARGs and VFGs in viromes by 2.0-9.8-fold and 2.0-8.1-fold, respectively, while microplastics and pesticides had limited impacts. Additionally, gene pathways related to human diseases and environmental adaptation were enriched in soil viromes treated with manures and high-dose pesticides. Virus-host prediction revealed that Actinomycetia dominated bacterial hosts of both ARG- and VFG-carrying viruses, with some VFG-carrying viruses linked to potential human pathogens, e.g., Escherichia albertii and Klebsiella pneumoniae. Co-occurrence network analysis indicated that these disturbances strengthened connections between bacteria, viruses, and ARGs (or VFGs). Our study provides a comprehensive profile of viromes and associated risks in agricultural soil under three disturbances, highlighting the role of viruses in spread of antibiotic resistance and pathogenic risks in agricultural soil.202540752173
643150.9997The dynamics and transmission of antibiotic resistance associated with plant microbiomes. Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.202337257204
748560.9997Fungal networks serve as novel ecological routes for enrichment and dissemination of antibiotic resistance genes as exhibited by microcosm experiments. Antibiotic resistance genes (ARGs) in the environment and their subsequent acquisition by clinically important microorganisms are a serious concern. However, the spread of environmental ARGs remain largely unknown. We report, for the first time, the involvement of soil fungi in the distribution of bacteria with ARGs via soil microcosms. qPCR assay detected unique ARGs specifically found in the mycosphere of different fungi. Interestingly, the taxonomically and ecologically different fungi exerted different selection pressures on ARGs originating from the same source. Test fungi supported different antibiotic resistance bacteria enriched in the mycosphere and even transported to distant places. The relative abundance of the tnpA gene decreased, for manure, along mycelial networks of all fungi. While the fungal strain NFC-5 enriched the intI1 gene more, opposite to two other fungi at the migration front compared with the inoculation point for both sources. Such data indicate the differential effect of different fungi to facilitate horizontal gene transfer potential under fungal selection pressure. Our study provides the evidence that fungi can contribute ARGs, host bacterial diversity and abundance, and such interactive microbial consortia have the potential to disseminate the resistance determinants from one place to another, thus increasing the ARGs exposure risk to humans.201729133838
749770.9997Microplastic biofilms promote the horizontal transfer of antibiotic resistance genes in estuarine environments. As emerging pollutants, microplastics can aggregate microorganisms on their surfaces and form biofilms, enriching antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Consequently, microplastic biofilms have become a focal point of research. Horizontal gene transfer is one of the primary mechanisms by which bacteria acquire antibiotic resistance, with much of the research focusing on suspended bacteria. However, microplastic biofilms, as hotspots for horizontal gene transfer, also merit significant investigation. This study primarily explored and compared the frequency of ARG conjugative transfer between suspended bacteria and microplastic biofilms. The results demonstrated that, compared to suspended bacteria, microplastic biofilms enhanced the frequency of ARG conjugative transfer by 7.2-19.6 times. Among them, biofilms on polyethylene microplastics showed the strongest promotion of conjugation. After the formation of microplastic biofilms, there was a significant increase in bacterial density within the biofilms, which raised the collision frequency of donor and recipient bacteria. Then microplastic biofilms facilitated the gene expression levels of outer membrane proteins, enhanced bacterial gene transfer capabilities, promoted the synthesis of conjugative pili, accelerated the formation of conjugative pairing systems, and elevated the expression levels of genes related to DNA replication and transfer systems, thereby enhancing the conjugative transfer of ARGs within microplastic biofilms. Among different types of microplastic biofilms, polyethylene biofilms exhibited the highest bacterial density, thus showing the highest frequency of ARG conjugation. This study highlights the risks associated with ARG conjugative transfer following the formation of microplastic biofilms and provides insights into the risks of microplastic and antibiotic resistance propagation in estuarine environments.202439368156
749680.9997Effects of microplastics and tetracycline induced intestinal damage, intestinal microbiota dysbiosis, and antibiotic resistome: metagenomic analysis in young mice. Microplastics (MPs) and antibiotic tetracycline (TC) are widespread in the environment and constitute emerging combined contaminants. Young individuals are particularly vulnerable to agents that disrupt intestinal health and development. However, the combined effects of MPs and TC remain poorly understood. In this study, we developed a young mouse model exposed to polystyrene MPs, either alone or in combination with TC for 8 weeks to simulate real-life dietary exposure during early life. Our findings revealed that concurrent exposure to MPs and TC caused the most severe intestinal barrier dysfunction driven by inflammatory activation and oxidative imbalance. Moreover, exposure to MPs and TC reduced the abundance of potential probiotics while promoting the growth of opportunistic pathogens. Metagenomic analysis further indicated that co-exposure to MPs and TC enhanced the abundance of bacteria carrying either antibiotic resistance genes (ARGs) or virulence factor genes (VFGs), contributing to the widespread dissemination of potentially harmful genes. Finally, a strong positive correlation was observed between microbiota dysbiosis, ARGs, and VFGs. In general, this study highlighted the hazards of MPs and antibiotics to intestinal health in young mice, which provided a new perspective into the dynamics of pathogens, ARGs, and VFGs in early-life intestinal environments.202540328090
748290.9997Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.202439333115
6429100.9997Selective enrichment of bacteria and antibiotic resistance genes in microplastic biofilms and their potential hazards in coral reef ecosystems. Microplastics become hotspots for bacteria to trigger a series of ecological effects, but few studies have focused on the potential impacts of microplastic biofilms in coral reef ecosystems. Here, we measured the bacterial communities and antibiotic resistance genes (ARGs) in the seawater and microplastic biofilms. Results showed that microbial biofilms were formed on the surface of microplastics. The alpha diversity of the bacterial community in the microplastic biofilms was lower than that in the seawater, and the bacterial communities were distinct between the two. Further analysis revealed that several bacteria in the microplastic biofilms carried ARGs, and the proportion of which was correlated to the concentration of antibiotics in the seawater. Specifically, Vibrio was positively correlated to sul1 in the microplastic biofilms under higher concentrations of sulfonamides. Pathway analysis reflected significant overrepresentation of human disease related pathways in the bacterial community of microplastic biofilms. These results suggest that the microplastic biofilms could selectively enrich bacteria from the reef environments, causing the development of ARGs under antibiotic driving. This may pose a serious threat to coral reef ecosystems and human health. Our study provides new insights into the ecological impacts of microplastic biofilms in coral reef ecosystems.202438281603
7682110.9997Soil Amoebae Are Unexpected Hotspots of Environmental Antibiotics and Antibiotic Resistance Genes. Antibiotic resistance poses a significant threat to human health. While most studies focus on bacteria, interactions between antibiotics and other crucial microbial groups like protists remain uncertain. This study investigates how protists interact with antibiotics and examines how these interactions impact the fate of resistance genes. It reveals that amoebae exhibit high resistance to eight high-risk environmental antibiotics, accumulating significant quantities within their cells. Wild amoeboid strains from distant locations carry substantial antibiotic resistance genes (ARGs) and metal resistance genes (MRGs), with significant heterogeneity within a single species. Amoeboid symbionts and pathogens predominantly carry these genes. Paraburkholderia symbionts have reduced genomes and fewer resistance genes compared to free-living strains, while amoeba-endogenous Stenotrophomonas maltophilia does not exhibit a significantly reduced genome size. This suggests that the amoeboid hosts serve as a temporary medium facilitating its transmission. In summary, the study unveils that soil amoebae represent unexpected hotspots for antibiotics and resistance genes. Future research should assess the effects of antibiotics on often-overlooked protists and explore their role in spreading ARGs and MRGs in ecosystems. Incorporating protists into broader antibiotic resistance research is recommended, highlighting their significance within a One Health perspective.202439584452
9641120.9997Microplastics pollution in the ocean: Potential carrier of resistant bacteria and resistance genes. Microplastics pollution in marine environments is concerning. Microplastics persist and accumulate in various sections of the ocean where they present opportunity for micropollutant accumulation and microbial colonisation. Even though biofilm formation on plastics was first reported in the 1970's, it is only in recent years were plastic associated biofilms have gained research attention. Plastic surfaces pose a problem as they are a niche ready for colonisation by diverse biofilm assemblages, composed of specific bacterial communities and putative pathogens prone to acquiring ARGs and resistance in the biofilm. However, the nature of antibiotic resistance on aquatic plastic debris is not yet fully understood and remains a concern. Given the inevitable increase of plastic production and waste generation, microplastics released into the environment may prove to be problematic. This review explores microplastic waste in the ocean and possible concerns that may arise from the presence of microplastics in conjunction with favourable conditions for the development and dispersal of antibiotic resistance in the ocean and food web.202134562691
6433130.9997Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? Microplastic (MP) biofilms with heterogeneous bacterial compositions and structure have become a hotspot of antibiotic resistance genes (ARGs) in aquatic environments. The evolutionary features of ARGs and their related factors including class 1 integron (intI1), metal resistance genes (MRGs), and bacterial communities in MP biofilms under exogenous pressures and how they compared with natural substrates (NS) are unclear. The individual and combined pressures of sulfamethoxazole, tetracycline, and zinc were used to drive the dynamic evolution of ARGs, intI1, MRGs, and bacterial communities in the MP and NS biofilms. The exogenous pressures from the combined selection of sulfamethoxazole, tetracycline, and zinc and their increasing concentrations both significantly enhanced the abundances of ARGs on the MP compared to the NS. Meanwhile, the selective pressures resulted in obvious dissimilarities between the MP and NS bacterial communities. The core bacterial taxa and the co-occurrence patterns of ARGs and bacterial genera in the biofilms of MP and NS were obviously different, and more potential ARG host bacteria selectively colonized the MP. Metal pressure also enhanced the enrichment of ARGs in the MP biofilms by promoting the spread of intI1 via the co-selection mechanism.202234597934
7484140.9997Migration of fungicides, antibiotics and resistome in the soil-lettuce system. The emergence and spread of antibiotic resistance genes (ARGs) have become a serious issue in global agricultural production. However, understanding how these ARGs spread across different spatial scales, especially when exposed to both pesticides and antibiotics, has remained a challenge. Here, metagenomic assembly and binning methodologies were used to determine the spread pathway of ARGs in the soil-lettuce system under individual and combined exposure of fungicides (carbendazim and pyraclostrobin) and antibiotics (chlortetracycline and ciprofloxacin). These agrochemicals not only facilitated the spread of ARGs from soil to lettuce but also significantly elevated the risk of developing multi-antibiotic resistance among bacteria, especially to some antibiotic types (i.e. sulfonamide, aminoglycoside, quinolone, and tetracycline). ARGs could be migrated through distinct pathways, including both vertical and horizontal gene transfer, with plasmids playing a crucial role in facilitating the horizontal gene transfer. These transfer pathways have enabled key pathogenic bacteria belonging to the genera Acinetobacter, Pseudomonas, and Pantoea to acquire resistance and remain recalcitrant, posing the potential risk to crop health and food safety. In summary, our findings highlighted that fungicide and antibiotic could drive upward migration of ARGs in the soil-lettuce system and reduced the quality safety of agricultural products.202539637780
7480150.9997Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes. The dissemination of mobile antibiotic resistance genes (ARGs) via horizontal gene transfer is a significant threat to public health globally. The flow of ARGs into and between pathogens, however, remains poorly understood, limiting our ability to develop strategies for managing the antibiotic resistance crisis. Therefore, we aim to identify genetic and ecological factors that are fundamental for successful horizontal ARG transfer. We used a phylogenetic method to identify instances of horizontal ARG transfer in ~1 million bacterial genomes. This data was then integrated with >20,000 metagenomes representing animal, human, soil, water, and wastewater microbiomes to develop random forest models that can reliably predict horizontal ARG transfer between bacteria. Our results suggest that genetic incompatibility, measured as nucleotide composition dissimilarity, negatively influences the likelihood of transfer of ARGs between evolutionarily divergent bacteria. Conversely, environmental co-occurrence increases the likelihood, especially in humans and wastewater, in which several environment-specific dissemination patterns are observed. This study provides data-driven ways to predict the spread of ARGs and provides insights into the mechanisms governing this evolutionary process.202540090954
6455160.9997Bacteriophages: Underestimated vehicles of antibiotic resistance genes in the soil. Bacteriophages (phages), the most abundant biological entities on Earth, have a significant effect on the composition and dynamics of microbial communities, biogeochemical cycles of global ecosystems, and bacterial evolution. A variety of antibiotic resistance genes (ARGs) have been identified in phage genomes in different soil samples. Phages can mediate the transfer of ARGs between bacteria via transduction. Recent studies have suggested that anthropogenic activities promote phage-mediated horizontal gene transfer events. Therefore, the role of phages in the dissemination of ARGs, which are a potential threat to human health, may be underestimated. However, the contribution of phages to the transfer of ARGs is still poorly understood. Considering the growing and wide concerns of antibiotic resistance, phages should be considered a research focus in the mobile resistome. This review aimed to provide an overview of phages as vehicles of ARGs in soil. Here, we summarized the current knowledge on the diversity and abundance of ARGs in soilborne phages and analyzed the contribution of phages to the horizontal transfer of ARGs. Finally, research deficiencies and future perspectives were discussed. This study provides a reference for preventing and controlling ARG pollution in agricultural systems.202235992716
6816170.9997The impact of microplastics on antibiotic resistance genes, metal resistance genes, and bacterial community in aquaculture environment. Microplastics are emerging contaminants. However, their effects on antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and the structure and abundance of bacterial communities, particularly pathogens, in aquaculture environments remains poorly understood. Therefore, this study investigated the effect of microplastics of different sizes on the abundance and distribution of ARGs, MRGs, and bacterial communities in aquaculture environments. The results revealed that, compared with pond water, large microplastics harbored significantly higher ARG abundances, particularly for multidrug-resistant genes; notably, level-I- and -II-risk ARGs were more prevalent on microplastics, highlighting the potential for horizontal gene transfer. Microplastics also exhibited a propensity to aggregate pathogenic bacteria such as Brucella and Pseudomonas, which could pose direct risks to aquatic product safety and public health. Network and differential network analyses revealed significant correlations between bacterial genera and ARG/MRG abundance, particularly on microplastics. Therefore, our findings suggest that microplastics act as vectors for the spread of ARGs, MRGs, and pathogens in aquaculture, potentially leading to the formation of complexes of these materials that threaten ecosystem health and human well-being. This study provides critical insights into the need for targeted management strategies to mitigate microplastic pollution in aquaculture settings.202539987738
9640180.9997Effects of microplastic concentration, composition, and size on Escherichia coli biofilm-associated antimicrobial resistance. Microplastics (MPs) have emerged as a significant environmental pollutant with profound implications for public health, particularly as substrates to facilitate bacterial antimicrobial resistance (AMR). Recently, studies have shown that MPs may accommodate biofilm communities, chemical contaminants, and genetic material containing AMR genes. This study investigated the effects of MP concentration, composition, and size on the development of multidrug resistance in Escherichia coli. Specifically, we exposed E. coli to varying concentrations of different MP types, including polyethylene, polystyrene, and polypropylene, across a range of sizes (3-10, 10-50, and 500 µm). Results indicated that the biofilm cells attached to MPs had elevated multidrug resistance (in E. coli. Notably, MPs exhibited a higher propensity for facilitating biofilm and resistance than control substrates such as glass, likely due to their hydrophobicity, greater adsorption capacities, and surface chemistries. Notably, we found that the bacteria passaged with MPs formed stronger biofilms once the MPs were removed, which was associated with changes in motility. Thus, MPs select cells that are better at forming biofilms, which can lead to biofilm-associated AMR and recalcitrant infections in the environment and healthcare setting. Our study highlights the importance of developing effective strategies to address the challenges posed by MPs. IMPORTANCE: Antimicrobial resistance (AMR) is one of the world's most pressing global health crises. With the pipeline of antibiotics running dry, it is imperative that mitigation strategies understand the mechanisms that drive the genesis of AMR. One emerging dimension of AMR is the environment. This study highlights the relationship between a widespread environmental pollutant, microplastics (MPs), and the rise of drug-resistant bacteria. While it is known that MPs facilitate resistance through several modes (biofilm formation, plastic adsorption rates, etc.), this study fills the knowledge gap on how different types of MPs are contributing to AMR.202540067049
6426190.9997Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM.202438805824