# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6421 | 0 | 1.0000 | A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. The overuse and inappropriate disposal of antibiotics raised severe public health risks worldwide. Specifically, the incomplete antibiotics metabolism in human and animal bodies contributes to the significant release of antibiotics into the natural ecosystems and the proliferation of antibiotic-resistant bacteria carrying antibiotic-resistant genes. Moreover, the organic feedstocks used for anaerobic digestion are often highly-rich in residual antibiotics and antibiotic-resistant genes. Hence, understanding their fate during anaerobic digestion has become a significant research focus recently. Previous studies demonstrated that various process parameters could considerably influence the propagation of the antibiotic-resistant genes during anaerobic digestion and their transmission via land application of digestate. This review article scrutinizes the influences of process parameters on antibiotic-resistant genes propagation in anaerobic digestion and the inherent fundamentals behind their effects. Based on the literature review, critical research gaps and challenges are summarized to guide the prospects for future studies. | 2022 | 35439559 |
| 6422 | 1 | 0.9999 | Is the application of organic fertilizers becoming an undeniable source of microplastics and resistance genes in agricultural systems? The application of organic fertilizers is becoming an undeniable source of microplastics and antibiotic resistance genes (ARGs) in agricultural soils. The complex microbial activity further transfers resistance genes and their host bacteria to agricultural products and throughout the entire food chain. Therefore, the current main focus is on reducing the abundance of microplastics and ARGs in organic fertilizers at the source, as well as managing microplastics and ARGs in soil. The control of microplastic abundance in organic fertilizers is currently only achieved through pre-composting selection and other methods. However, there are still many shortcomings in the research on the distribution characteristics, propagation and diffusion mechanisms, and control technologies of ARGs, and some key scientific issues still need to be urgently addressed. The high-temperature composting of organic waste can effectively reduce the abundance of ARGs in organic fertilizers to a certain extent. However, it is also important to consider the spread of ARGs in residual antibiotic-resistant bacteria (ARB). This article systematically explores the pathways and interactions of microplastics and resistance genes entering agricultural soils through the application of organic fertilizers. The removal of microplastics and ARGs from organic fertilizers was discussed in detail. Based on the limitations of existing research, further investigation in this area is expected to provide valuable insights for the development and practical implementation of technologies aimed at reducing soil microplastics and resistance genes. | 2024 | 38142997 |
| 6401 | 2 | 0.9999 | Antibiotics and antibiotic resistance genes in landfills: A review. Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance. | 2022 | 34597560 |
| 6406 | 3 | 0.9999 | The Environmental Lifecycle of Antibiotics and Resistance Genes: Transmission Mechanisms, Challenges, and Control Strategies. Antibiotics are widely used in modern medicine. However, as global antibiotic consumption rises, environmental contamination with antibiotics and antibiotic resistance genes (ARGs) is becoming a serious concern. The impact of antibiotic use on human health is now under scrutiny, particularly regarding the emergence of antibiotic-resistant bacteria (ARB) in the environment. This has heightened interest in technologies for treating ARGs, highlighting the need for effective solutions. This review traces the life cycle of ARB and ARGs driven by human activity, revealing pathways from antibiotic use to human infection. We address the mechanisms enabling resistance in ARB during this process. Beyond intrinsic resistance, the primary cause of ARB resistance is the horizontal gene transfer (HGT) of ARGs. These genes exploit mobile genetic elements (MGEs) to spread via conjugation, transformation, transduction, and outer membrane vesicles (OMVs). Currently, biological wastewater treatment is the primary pollution control method due to its cost-effectiveness. However, these biological processes can promote ARG propagation, significantly amplifying the environmental threat posed by antibiotics. This review also summarizes key mechanisms in the biological treatment of antibiotics and evaluates risks associated with major ARB/ARG removal processes. Our aim is to enhance understanding of ARB risks, their pathways and mechanisms in biotreatment, and potential biomedical applications for pollution control. | 2025 | 41011444 |
| 6411 | 4 | 0.9999 | Are microplastics in aquaculture an undeniable driver in accelerating the spread of antibiotic resistance genes? Aquaculture products have been a key source of protein in the human food supply. Contamination by microplastics and antibiotic resistance genes (ARGs) directly affects food quality and safety. Plastic fishing gear and the long-term misuse of antibiotics result in the persistent residue, migration, and spread of microplastics and ARGs in the aquaculture environment, causing in ecological imbalance and endangering human security. Microplastics can act as "petri dishes" for the reproduction, communication, and spread of ARGs, which adds an additional layer of complexity to the global issues surrounding microplastics and ARGs. Aquaculture has become an important source of microplastics and ARGs in natural waters. Accordingly, this paper mainly discusses the contribution of aquaculture to the presence of microplastics and ARGs in aquatic ecosystems. Microplastics and ARGs can (1) affect the production and quality of aquatic products; (2) influence the development and reproduction of aquatic organisms; and (3) accelerate the spread of resistant bacteria. How to eliminate microplastics and ARGs and block their transmission has become a worldwide problem. Actually, further research is required to understand the scale and scope of these effects. | 2023 | 37840081 |
| 6423 | 5 | 0.9998 | Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. Soil plays a vital role as a nutrient source for microflora and plants in ecosystems. The accumulation and proliferation of antibiotics resistance bacteria (ARB) and antibiotics resistance genes (ARGs) causes emerging soil contamination and pollution, posing new challenges for soil remediation, recovery, and conservation. Fertilizer application in agriculture is one of the most important sources of ARB and ARGs contamination in soils. The recent existing techniques for the remediation of soil polluted with ARB and ARGs are very limited in terms of ARB and ARGs removal in soil. Bioelectrochemical remediation using bioelectrochemical systems such as microbial fuel cells and microbial electrolysis cells are promising technologies for the removal of ARB and ARGs in soil. Herein, diverse sources of ARB and ARGs in soil have been reviewed, their effects on soil microbial diversity have been analyzed, and the causes of ARB and ARGs rapid proliferation in soil are explained. Bioelectrochemical systems used for the remediation of soil contaminated with ARB and ARGs is still in its infancy stage and presents serious disadvantage and limits, therefore it needs to be well understood and implemented. In general, merging soil contamination of ARB and ARGs is an increasing concern threatening the soil ecosystem while the remediation technologies are still challenging. Efforts need to be made to develop new, effective, and efficient technologies for soil remediation and conservation to tackle the spread of ARB and ARGs and overcome the new challenges posed by ARB and ARGs contamination in soil. | 2023 | 36563979 |
| 6419 | 6 | 0.9998 | Can microplastics and disinfectant resistance genes pose conceivable threats to water disinfection process? Microplastic pollution in the environment has aroused widespread concerns, however, the potential environmental risks caused by excessive use of disinfectants are still unknown. Disinfectants with doses below the threshold can enhance the communication of resistance genes in pathogenic microorganisms, promoting the development and spread of antimicrobial activity. Problematically, the intensification of microplastic pollution and the increase of disinfectant consumption will become a key driving force for the growth of disinfectant resistance bacteria (DRB) and disinfectant resistance genes (DRGs) in the environment. Disinfection plays a crucial role in ensuring water safety, however, the presence of microplastics and DRGs seriously disturb the water disinfection process. Microplastics can reduce the concentration of disinfectant in the local environment around microorganisms and improve their tolerance. Microorganisms can improve their resistance to disinfectants or generate resistance genes via phenotypic adaptation, gene mutations, and horizontal gene transfer. However, very limited information is available on the impact of DRB and DRGs on disinfection process. In this paper, the contribution of microplastics to the migration and transmission of DRGs was analyzed. The challenges posed by the presence of microplastics and DRGs on conventional disinfection were thoroughly discussed. The knowledge gaps faced by relevant current research and further research priorities have been proposed in order to provide a scientific basis in the future. | 2023 | 37730038 |
| 6400 | 7 | 0.9998 | Review of the Presence and Phage-Mediated Transfer of ARGs in Biofilms. The widespread use of antibiotics has led to the emergence of a large number of drug-resistant bacteria, accelerating the dissemination and spread of antibiotic resistance genes (ARGs) in the environment. Bacterial biofilms, serving as reservoirs of ARGs, pose potential risks to environmental health that should not be ignored. Studies on the presence and transfer of ARGs in biofilms have been conducted both domestically and internationally. This article summarises the research progress on ARGs in various environments and analyses the mechanisms and factors influencing the dissemination and transfer of ARGs in microplastics, activated sludge, and pipe wall biofilms, with a particular focus on phage-mediated ARG transfer. We also discuss current research gaps in this field to provide references for future biofilm management and health risk control of ARGs. | 2025 | 40431170 |
| 6418 | 8 | 0.9998 | Antibiotic resistance genes in anaerobic digestion: Unresolved challenges and potential solutions. Antimicrobial resistance (AMR) threatens public health, necessitating urgent efforts to mitigate the global impact of antibiotic resistance genes (ARGs). Anaerobic digestion (AD), known for volatile solid reduction and energy generation, also presents a feasible approach for the removal of ARGs. This review encapsulates the existing understanding of ARGs and antibiotic-resistant bacteria (ARB) during the AD process, highlighting unresolved challenges pertaining to their detection and quantification. The questions raised and discussed include: Do current ARGs detection methods meet qualitative and quantitative requirements? How can we conduct risk assessments of ARGs? What happens to ARGs when they come into co-exposure with other emerging pollutants? How can the application of internal standards bolster the reliability of the AD resistome study? What are the potential future research directions that could enhance ARG elimination? Investigating these subjects will assist in shaping more efficient management strategies that employ AD for effective ARG control. | 2025 | 39826759 |
| 6413 | 9 | 0.9998 | Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. Microplastics (MPs) and antibiotic resistance genes (ARGs) have become the increasing attention and global research hotpots due to their unique ecological and environmental effects. As susceptible locations for MPs and ARGs, aquaculture environments play an important role in their enrichment and transformation. In this review, we focused on the MPs, ARGs, and the effects of their interactions on the aquaculture environments. The facts that antibiotics have been widely applied in different kinds of agricultural productions (e.g., aquaculture) and that most of antibiotics enter the water environment with rainfall and residual in the aquaculture environment have been resulting in the emergence of antibiotic resistance bacteria (ARB). Moreover, the water MPs are effective carriers of the environmental microbes and ARB, making them likely to be continuously imported into the aquaculture environments. As a result, the formation of the compound pollutions may also enter the aquatic organisms through the food chains and eventually enter the human body after a long-term enrichment. Furthermore, the compound pollutions result in the joint toxic effects on the human health and the ecological environment. In summary, this review aims to emphasize the ecological effects and the potential hazards on the aquaculture environments where interactions between MPs and ARGs results, and calls for to reduce the use of the plastic products and the antibiotics in the aquaculture environments. | 2021 | 33265004 |
| 6504 | 10 | 0.9998 | Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Bacterial resistance is a naturally occurring process. However, bacterial antibiotic resistance has emerged as a major public health problem in recent years. The accumulation of antibiotics in the environment, including in wastewaters and drinking water, has contributed to the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes (ARGs). Such can be justified by the growing consumption of antibiotics and their inadequate elimination. The conventional water treatments are ineffective in promoting the complete elimination of antibiotics and bacteria, mainly in removing ARGs. Therefore, ARGs can be horizontally transferred to other microorganisms within the aquatic environment, thus promoting the dissemination of antibiotic resistance. In this review, we discuss the efficiency of conventional water treatment processes in removing agents that can spread/stimulate the development of antibiotic resistance and the promising strategies for water remediation, mainly those based on nanotechnology and microalgae. Despite the potential of some of these approaches, the elimination of ARGs remains a challenge that requires further research. Moreover, the development of new processes must avoid the release of new contaminants for the environment, such as the chemicals resulting from nanomaterials synthesis, and consider the utilization of green and eco-friendly alternatives such as biogenic nanomaterials and microalgae-based technologies. | 2022 | 35455389 |
| 6475 | 11 | 0.9998 | An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts. | 2022 | 35457533 |
| 6420 | 12 | 0.9998 | Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. Overutilization and misuse of antibiotics in recent decades markedly intensified the rapid proliferation and diffusion of antibiotic resistance genes (ARGs) within the environment, thereby elevating ARGs to the status of a global public health crisis. Recognizing that soil acts as a critical reservoir for ARGs, environmental researchers have made great progress in exploring the sources, distribution, and spread of ARGs in soil. However, the microscopic state and micro-interfacial behavior of ARGs in soil remains inadequately understood. In this study, we reviewed the micro-interfacial behaviors of antibiotic-resistant bacteria (ARB) in soil and porous media, predominantly including migration-deposition, adsorption, and biofilm formation. Meanwhile, adsorption, proliferation, and degradation were identified as the primary micro-interfacial behaviors of ARGs in the soil, with component of soil serving as significant determinant. Our work contributes to the further comprehension of the microstates and processes of ARB and ARGs in the soil environments and offers a theoretical foundation for managing and mitigating the risks associated with ARG contamination. | 2024 | 39180776 |
| 6410 | 13 | 0.9998 | Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Antibiotic resistance genes (ARGs) and microplastics in the environment are of great public concern due to their potential risk to human health. Microplastics can form distinct bacterial communities and absorb pollutants from the surrounding environment, which provide potential hosts and exert possible selection pressure of ARGs. We provide a practical evaluation of the scientific literature regarding this issue. The occurrence and transport of ARGs on microplastics in wastewater treatment plants, aquatic, terrestrial, and air environments were summarized. Selective enrichment of ARGs and antibiotic resistance bacteria on microplastics have been confirmed in different environments. Aggregates may be crucial to understand the behavior and transport of ARGs on microplastics, especially in the aquatic and terrestrial environment. Microplastics could be a carrier of ARGs between the environment and animals. Accumulation of pollutants and dense bacterial communities on microplastics provide favorable conditions for higher transfer rate and evolution of ARGs. More studies are still needed to understand the enrichment, transport, and transfer of ARGs on microplastics and provide a fundamental basis for evaluating their exposure health risk to humans. | 2021 | 33940744 |
| 6505 | 14 | 0.9998 | Treatment Processes for Microbial Resistance Mitigation: The Technological Contribution to Tackle the Problem of Antibiotic Resistance. Advances generated in medicine, science, and technology have contributed to a better quality of life in recent years; however, antimicrobial resistance has also benefited from these advances, creating various environmental and health problems. Several determinants may explain the problem of antimicrobial resistance, such as wastewater treatment plants that represent a powerful agent for the promotion of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG), and are an important factor in mitigating the problem. This article focuses on reviewing current technologies for ARB and ARG removal treatments, which include disinfection, constructed wetlands, advanced oxidation processes (AOP), anaerobic, aerobic, or combined treatments, and nanomaterial-based treatments. Some of these technologies are highly intensive, such as AOP; however, other technologies require long treatment times or high doses of oxidizing agents. From this review, it can be concluded that treatment technologies must be significantly enhanced before the environmental and heath problems associated with antimicrobial resistance can be effectively solved. In either case, it is necessary to achieve total removal of bacteria and genes to avoid the possibility of regrowth given by the favorable environmental conditions at treatment plant facilities. | 2020 | 33260585 |
| 6481 | 15 | 0.9998 | Fate and effects of veterinary antibiotics in soil. Large amounts of veterinary antibiotics are applied worldwide to farm animals and reach agricultural fields by manure fertilization, where they might lead to an increased abundance and transferability of antibiotic-resistance determinants. In this review we discuss recent advances, limitations, and research needs in determining the fate of veterinary antibiotics and resistant bacteria applied with manure to soil, and their effects on the structure and function of soil microbial communities in bulk soils and the rhizosphere. The increased abundance and mobilization of antibiotic-resistance genes (ARGs) might contribute to the emergence of multi-resistant human pathogens that increasingly threaten the successful antibiotic treatment of bacterial infections. | 2014 | 24950802 |
| 6409 | 16 | 0.9998 | Bacterial perspectives on the dissemination of antibiotic resistance genes in domestic wastewater bio-treatment systems: beneficiary to victim. Domestic wastes, ranging from sewage and sludge to municipal solid waste, are usually treated in bioprocessing systems. These systems are regarded as main conduits for the elevated levels of antibiotic resistance genes (ARGs) observed in the environment. This paper mainly reviews recent studies on the occurrence and dynamics of ARGs in wastewater bio-treatment systems and discusses the ins and outs of ARG dissemination from the perspective of the microbial community. Our analysis shows that concentration of antibiotics through adsorption to microbial aggregates triggers the bacteria to acquire ARGs, which can be facilitated by the presence of mobile genetic elements. Notably, the acquisition and flow of ARGs during the rapid dissemination process is directed towards and for the best interests of the microbial community as a whole, and is influenced by surrounding nutrient levels, toxicant types, and sensitivities of the species in the prevailing antibiotic-stressed conditions. Furthermore, our review argues that predation of ARG-carrying bacteria by bacteriophages does periodically enhance the accessibility of ARGs to bacteria, which indirectly facilitates the recruitment of ARGs into environmental microbial communities. | 2018 | 29198067 |
| 6445 | 17 | 0.9998 | Microplastics: Disseminators of antibiotic resistance genes and pathogenic bacteria. Microplastics (MPs) are emerging pollutants that linger in the air, water, and land. Beyond their physical and chemical risks, there is growing evidence that MPs contribute to the worldwide antimicrobial resistance (AMR) dilemma by acting as carriers of harmful microbes and antibiotic resistance genes (ARGs). Despite an increase in research, the available literature is dispersed, and the part that MPs play in influencing microbial populations and fostering resistance is still not well understood. This review summarizes current research on how MPs contribute to the spread of antibiotic resistance. We concentrated on the ways in which MPs support horizontal gene transfer (HGT) processes such as conjugation, transformation, and transduction, assist biofilm development, and offer surfaces for microbial colonization. Evidence from a variety of settings suggests that MPs serve as vectors for opportunistic pathogens, such as the ESKAPE group, and ARGs, increasing the survival and movement of resistance determinants in ecosystems. Through the consolidation of current developments, this review emphasizes MPs as active resistance vectors instead of passive pollutants. We also point out important limitations, such as the lack of standardized procedures, inadequate risk assessment frameworks, and the absence of real-world exposure research. It is imperative that these issues be approached from a One Health standpoint in order to reduce the risks of both plastic pollution and antibiotic resistance. | 2025 | 41056605 |
| 6483 | 18 | 0.9998 | Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil. | 2023 | 36830244 |
| 6403 | 19 | 0.9998 | Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. Antibiotics have revolutionised medicine in the last century and enabled the prevention of bacterial infections that were previously deemed untreatable. However, in parallel, bacteria have increasingly developed resistance to antibiotics through various mechanisms. When resistant bacteria find their way into terrestrial and aquatic environments, animal and human exposures increase, e.g., via polluted soil, food, and water, and health risks multiply. Understanding the fate and transport of antibiotic resistant bacteria (ARB) and the transfer mechanisms of antibiotic resistance genes (ARGs) in aquatic environments is critical for evaluating and mitigating the risks of resistant-induced infections. The conceptual understanding of sources and pathways of antibiotics, ARB, and ARGs from society to the water environments is essential for setting the scene and developing an appropriate framework for modelling. Various factors and processes associated with hydrology, ecology, and climate change can significantly affect the fate and transport of ARB and ARGs in natural environments. This article reviews current knowledge, research gaps, and priorities for developing water quality models to assess the fate and transport of ARB and ARGs. The paper also provides inputs on future research needs, especially the need for new predictive models to guide risk assessment on AR transmission and spread in aquatic environments. | 2024 | 37788551 |