Antibiotic resistance in plastisphere. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
641601.0000Antibiotic resistance in plastisphere. Microbial life on plastic debris, called plastisphere, has invoked special attention on aquatic ecosystems as emerging habitats for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). There is scarce information concerning how properties of plastics influence ARGs and ARB, the effect of biofilms on enrichment of ARGs and ARB, and, especially, the influence of plastic transformation on ARGs and ARB. Limited research has shown that microplastic (MP) surfaces influence proliferation of antibiotic resistance (AR), aged MPs exhibit increased toxicity due to more adsorption-desorption of AR, and MP transformation is correlated with disseminating AR. Prevention measures of AR include minimizing MP releasing into aquatic environments and sewage treatment plants. The future research should aim to identify the interface mechanisms of transformed MNPs and antibiotics alone, or mixed with other contaminants, property changes of MNPs, and associated toxicity evaluation.202540265125
641010.9999Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Antibiotic resistance genes (ARGs) and microplastics in the environment are of great public concern due to their potential risk to human health. Microplastics can form distinct bacterial communities and absorb pollutants from the surrounding environment, which provide potential hosts and exert possible selection pressure of ARGs. We provide a practical evaluation of the scientific literature regarding this issue. The occurrence and transport of ARGs on microplastics in wastewater treatment plants, aquatic, terrestrial, and air environments were summarized. Selective enrichment of ARGs and antibiotic resistance bacteria on microplastics have been confirmed in different environments. Aggregates may be crucial to understand the behavior and transport of ARGs on microplastics, especially in the aquatic and terrestrial environment. Microplastics could be a carrier of ARGs between the environment and animals. Accumulation of pollutants and dense bacterial communities on microplastics provide favorable conditions for higher transfer rate and evolution of ARGs. More studies are still needed to understand the enrichment, transport, and transfer of ARGs on microplastics and provide a fundamental basis for evaluating their exposure health risk to humans.202133940744
641420.9999Microplastic biofilms in water treatment systems: Fate and risks of pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes. Microplastics (MPs) biofilms in drinking water and wastewater treatment plants (DWTPs and WWTPs) have gained increasing attention due to their potential to come into close contact with humans. This review examines the fate of pathogenic bacteria, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in MP biofilms and their impacts on operations in DWTPs and WWTPs, as well as the associated microbial risks for ecology and human health. The literature shows that pathogenic bacteria, ARBs, and ARGs with high resistance can persist on MP surfaces and may escape treatment plants, contaminating drinking and receiving water. Nine potential pathogens, ARB, and ARGs can be retained in DWTPs and sixteen in WWTPs. While MP biofilms can improve the removal of MPs themselves, as well as the associated heavy metals and antibiotic compounds, they can also induce biofouling, hinder the effectiveness of chlorination and ozonation, and cause the formation of disinfection by-products. Furthermore, the operation-resistant pathogenic bacteria, ARB, and ARGs on MPs may have adverse impacts on receiving ecosystems, as well as human health, including a range of human diseases, from skin infections to pneumonia and meningitis. Given the significant implications of MP biofilms for aquatic ecosystems and human health, further research is necessary on the disinfection resistance of microbial populations in MP biofilm. This study provides valuable insights into the comprehensive understanding of the changes of MP biofilms in water and wastewater treatment systems as well as their impacts on ecology and human health.202337268132
641530.9999Research progress on the origin, fate, impacts and harm of microplastics and antibiotic resistance genes in wastewater treatment plants. Previous studies reported microplastics (MPs), antibiotics, and antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). There is still a lack of research progress on the origin, fate, impact and hazards of MPs and ARGs in WWTPs. This paper fills a gap in this regard. In our search, we used "microplastics", "antibiotic resistance genes", and "wastewater treatment plant" as topic terms in Web of Science, checking the returned results for relevance by examining paper titles and abstracts. This study mainly explores the following points: (1) the origins and fate of MPs, antibiotics and ARGs in WWTPs; (2) the mechanisms of action of MPs, antibiotics and ARGs in sludge biochemical pools; (3) the impacts of MPs in WWTPs and the spread of ARGs; (4) and the harm inflicted by MPs and ARGs on the environment and human body. Contaminants in sewage sludge such as MPs, ARGs, and antibiotic-resistant bacteria enter the soil and water. Contaminants can travel through the food chain and thus reach humans, leading to increased illness, hospitalization, and even mortality. This study will enhance our understanding of the mechanisms of action among MPs, antibiotics, ARGs, and the harm they inflict on the human body.202438678134
641340.9998Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. Microplastics (MPs) and antibiotic resistance genes (ARGs) have become the increasing attention and global research hotpots due to their unique ecological and environmental effects. As susceptible locations for MPs and ARGs, aquaculture environments play an important role in their enrichment and transformation. In this review, we focused on the MPs, ARGs, and the effects of their interactions on the aquaculture environments. The facts that antibiotics have been widely applied in different kinds of agricultural productions (e.g., aquaculture) and that most of antibiotics enter the water environment with rainfall and residual in the aquaculture environment have been resulting in the emergence of antibiotic resistance bacteria (ARB). Moreover, the water MPs are effective carriers of the environmental microbes and ARB, making them likely to be continuously imported into the aquaculture environments. As a result, the formation of the compound pollutions may also enter the aquatic organisms through the food chains and eventually enter the human body after a long-term enrichment. Furthermore, the compound pollutions result in the joint toxic effects on the human health and the ecological environment. In summary, this review aims to emphasize the ecological effects and the potential hazards on the aquaculture environments where interactions between MPs and ARGs results, and calls for to reduce the use of the plastic products and the antibiotics in the aquaculture environments.202133265004
641750.9998Fate of environmental pollutants: A review. A review of the literature published in 2019 on topics associated with the fate of environmental pollutants is presented. Environmental pollutants covered include pharmaceuticals, antibiotic-resistant bacteria and genes, pesticides and veterinary medicines, personal care products and emerging pollutants, PFAS, microplastics, nanomaterials, heavy metals and radionuclides, nutrients, pathogens and indicator organisms, and oil and hydrocarbons. For each pollutant, the occurrence in the environment and/or their fate in engineered as well as natural systems in matrices including water, soil, wastewater, stormwater, runoff, and/or manure is presented based on the published literature. The review includes current developments in understanding pollutants in natural and engineered systems, and relevant physico-chemical processes, as well as biological processes.202032671926
640160.9998Antibiotics and antibiotic resistance genes in landfills: A review. Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance.202234597560
641170.9998Are microplastics in aquaculture an undeniable driver in accelerating the spread of antibiotic resistance genes? Aquaculture products have been a key source of protein in the human food supply. Contamination by microplastics and antibiotic resistance genes (ARGs) directly affects food quality and safety. Plastic fishing gear and the long-term misuse of antibiotics result in the persistent residue, migration, and spread of microplastics and ARGs in the aquaculture environment, causing in ecological imbalance and endangering human security. Microplastics can act as "petri dishes" for the reproduction, communication, and spread of ARGs, which adds an additional layer of complexity to the global issues surrounding microplastics and ARGs. Aquaculture has become an important source of microplastics and ARGs in natural waters. Accordingly, this paper mainly discusses the contribution of aquaculture to the presence of microplastics and ARGs in aquatic ecosystems. Microplastics and ARGs can (1) affect the production and quality of aquatic products; (2) influence the development and reproduction of aquatic organisms; and (3) accelerate the spread of resistant bacteria. How to eliminate microplastics and ARGs and block their transmission has become a worldwide problem. Actually, further research is required to understand the scale and scope of these effects.202337840081
642080.9998Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. Overutilization and misuse of antibiotics in recent decades markedly intensified the rapid proliferation and diffusion of antibiotic resistance genes (ARGs) within the environment, thereby elevating ARGs to the status of a global public health crisis. Recognizing that soil acts as a critical reservoir for ARGs, environmental researchers have made great progress in exploring the sources, distribution, and spread of ARGs in soil. However, the microscopic state and micro-interfacial behavior of ARGs in soil remains inadequately understood. In this study, we reviewed the micro-interfacial behaviors of antibiotic-resistant bacteria (ARB) in soil and porous media, predominantly including migration-deposition, adsorption, and biofilm formation. Meanwhile, adsorption, proliferation, and degradation were identified as the primary micro-interfacial behaviors of ARGs in the soil, with component of soil serving as significant determinant. Our work contributes to the further comprehension of the microstates and processes of ARB and ARGs in the soil environments and offers a theoretical foundation for managing and mitigating the risks associated with ARG contamination.202439180776
640990.9998Bacterial perspectives on the dissemination of antibiotic resistance genes in domestic wastewater bio-treatment systems: beneficiary to victim. Domestic wastes, ranging from sewage and sludge to municipal solid waste, are usually treated in bioprocessing systems. These systems are regarded as main conduits for the elevated levels of antibiotic resistance genes (ARGs) observed in the environment. This paper mainly reviews recent studies on the occurrence and dynamics of ARGs in wastewater bio-treatment systems and discusses the ins and outs of ARG dissemination from the perspective of the microbial community. Our analysis shows that concentration of antibiotics through adsorption to microbial aggregates triggers the bacteria to acquire ARGs, which can be facilitated by the presence of mobile genetic elements. Notably, the acquisition and flow of ARGs during the rapid dissemination process is directed towards and for the best interests of the microbial community as a whole, and is influenced by surrounding nutrient levels, toxicant types, and sensitivities of the species in the prevailing antibiotic-stressed conditions. Furthermore, our review argues that predation of ARG-carrying bacteria by bacteriophages does periodically enhance the accessibility of ARGs to bacteria, which indirectly facilitates the recruitment of ARGs into environmental microbial communities.201829198067
6423100.9998Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. Soil plays a vital role as a nutrient source for microflora and plants in ecosystems. The accumulation and proliferation of antibiotics resistance bacteria (ARB) and antibiotics resistance genes (ARGs) causes emerging soil contamination and pollution, posing new challenges for soil remediation, recovery, and conservation. Fertilizer application in agriculture is one of the most important sources of ARB and ARGs contamination in soils. The recent existing techniques for the remediation of soil polluted with ARB and ARGs are very limited in terms of ARB and ARGs removal in soil. Bioelectrochemical remediation using bioelectrochemical systems such as microbial fuel cells and microbial electrolysis cells are promising technologies for the removal of ARB and ARGs in soil. Herein, diverse sources of ARB and ARGs in soil have been reviewed, their effects on soil microbial diversity have been analyzed, and the causes of ARB and ARGs rapid proliferation in soil are explained. Bioelectrochemical systems used for the remediation of soil contaminated with ARB and ARGs is still in its infancy stage and presents serious disadvantage and limits, therefore it needs to be well understood and implemented. In general, merging soil contamination of ARB and ARGs is an increasing concern threatening the soil ecosystem while the remediation technologies are still challenging. Efforts need to be made to develop new, effective, and efficient technologies for soil remediation and conservation to tackle the spread of ARB and ARGs and overcome the new challenges posed by ARB and ARGs contamination in soil.202336563979
6412110.9998Microplastics and Antibiotic Resistance: The Magnitude of the Problem and the Emerging Role of Hospital Wastewater. The role of microplastics (MPs) in the spread of antibiotic resistance genes (ARGs) is increasingly attracting global research attention due to their unique ecological and environmental effects. The ubiquitous use of plastics and their release into the environment by anthropic/industrial activities are the main sources for MP contamination, especially of water bodies. Because of their physical and chemical characteristics, MPs represent an ideal substrate for microbial colonization and formation of biofilm, where horizontal gene transfer is facilitated. In addition, the widespread and often injudicious use of antibiotics in various human activities leads to their release into the environment, mainly through wastewater. For these reasons, wastewater treatment plants, in particular hospital plants, are considered hotspots for the selection of ARGs and their diffusion in the environment. As a result, the interaction of MPs with drug-resistant bacteria and ARGs make them vectors for the transport and spread of ARGs and harmful microorganisms. Microplastic-associated antimicrobial resistance is an emerging threat to the environment and consequently for human health. More studies are required to better understand the interaction of these pollutants with the environment as well as to identify effective management systems to reduce the related risk.202337239594
6422120.9998Is the application of organic fertilizers becoming an undeniable source of microplastics and resistance genes in agricultural systems? The application of organic fertilizers is becoming an undeniable source of microplastics and antibiotic resistance genes (ARGs) in agricultural soils. The complex microbial activity further transfers resistance genes and their host bacteria to agricultural products and throughout the entire food chain. Therefore, the current main focus is on reducing the abundance of microplastics and ARGs in organic fertilizers at the source, as well as managing microplastics and ARGs in soil. The control of microplastic abundance in organic fertilizers is currently only achieved through pre-composting selection and other methods. However, there are still many shortcomings in the research on the distribution characteristics, propagation and diffusion mechanisms, and control technologies of ARGs, and some key scientific issues still need to be urgently addressed. The high-temperature composting of organic waste can effectively reduce the abundance of ARGs in organic fertilizers to a certain extent. However, it is also important to consider the spread of ARGs in residual antibiotic-resistant bacteria (ARB). This article systematically explores the pathways and interactions of microplastics and resistance genes entering agricultural soils through the application of organic fertilizers. The removal of microplastics and ARGs from organic fertilizers was discussed in detail. Based on the limitations of existing research, further investigation in this area is expected to provide valuable insights for the development and practical implementation of technologies aimed at reducing soil microplastics and resistance genes.202438142997
7497130.9998Microplastic biofilms promote the horizontal transfer of antibiotic resistance genes in estuarine environments. As emerging pollutants, microplastics can aggregate microorganisms on their surfaces and form biofilms, enriching antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Consequently, microplastic biofilms have become a focal point of research. Horizontal gene transfer is one of the primary mechanisms by which bacteria acquire antibiotic resistance, with much of the research focusing on suspended bacteria. However, microplastic biofilms, as hotspots for horizontal gene transfer, also merit significant investigation. This study primarily explored and compared the frequency of ARG conjugative transfer between suspended bacteria and microplastic biofilms. The results demonstrated that, compared to suspended bacteria, microplastic biofilms enhanced the frequency of ARG conjugative transfer by 7.2-19.6 times. Among them, biofilms on polyethylene microplastics showed the strongest promotion of conjugation. After the formation of microplastic biofilms, there was a significant increase in bacterial density within the biofilms, which raised the collision frequency of donor and recipient bacteria. Then microplastic biofilms facilitated the gene expression levels of outer membrane proteins, enhanced bacterial gene transfer capabilities, promoted the synthesis of conjugative pili, accelerated the formation of conjugative pairing systems, and elevated the expression levels of genes related to DNA replication and transfer systems, thereby enhancing the conjugative transfer of ARGs within microplastic biofilms. Among different types of microplastic biofilms, polyethylene biofilms exhibited the highest bacterial density, thus showing the highest frequency of ARG conjugation. This study highlights the risks associated with ARG conjugative transfer following the formation of microplastic biofilms and provides insights into the risks of microplastic and antibiotic resistance propagation in estuarine environments.202439368156
6425140.9997Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources.202438699475
6394150.9997Potential Environmental and Human Health Risks Caused by Antibiotic-Resistant Bacteria (ARB), Antibiotic Resistance Genes (ARGs) and Emerging Contaminants (ECs) from Municipal Solid Waste (MSW) Landfill. The disposal of municipal solid waste (MSW) directly at landfills or open dump areas, without segregation and treatment, is a significant concern due to its hazardous contents of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and metal resistance genes (MGEs). The released leachate from landfills greatly effects the soil physicochemical, biological, and groundwater properties associated with agricultural activity and human health. The abundance of ARB, ARGs, and MGEs have been reported worldwide, including MSW landfill sites, animal husbandry, wastewater, groundwater, soil, and aerosol. This review elucidates the occurrence and abundance of ARB, ARGs, and MRGs, which are regarded as emerging contaminants (ECs). Recently, ECs have received global attention because of their prevalence in leachate as a substantial threat to environmental and public health, including an economic burden for developing nations. The present review exclusively discusses the demands to develop a novel eco-friendly management strategy to combat these global issues. This review also gives an intrinsic discussion about the insights of different aspects of environmental and public health concerns caused due to massive leachate generation, the abundance of antibiotics resistance (AR), and the effects of released leachate on the various environmental reservoirs and human health. Furthermore, the current review throws light on the source and fate of different ECs of landfill leachate and their possible impact on the nearby environments (groundwater, surface water, and soil) affecting human health. The present review strongly suggests the demand for future research focuses on the advancement of the removal efficiency of contaminants with the improvement of relevant landfill management to reduce the potential effects of disposable waste. We propose the necessity of the identification and monitoring of potential environmental and human health risks associated with landfill leachate contaminants.202133915892
6396160.9997Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene. As two pollutants with similar transport pathways, microplastics (MPs) and antibiotics (ATs) inevitably co-exist in water environments, and their interaction has become a topic of intense research interest for scholars over the past few years. This paper comprehensively and systematically reviews the current interaction between MPs and ATs, in particular, the role played by biofilm developed MPs (microplastic biofilm). A summary of the formation process of microplastic biofilm and its unique microbial community structure is presented in the paper. The formation of microplastic biofilm can enhance the adsorption mechanisms of ATs on primary MPs. Moreover, microplastic biofilm system is a diverse and vast reservoir of genetic material, and this paper reviews the mechanisms by which microplastics with biofilm drive the production of antibiotic resistance genes (ARGs) and the processes that selectively enrich for more ARGs. Meanwhile, the enrichment of ARGs may lead to the development of microbial resistance and the gradual loss of the antimicrobial effect of ATs. The transfer pathways of ARGs affected by microplastic biofilm are outlined, and ARGs dependent transfer of antibiotic resistance bacteria (ARB) is mainly through horizontal gene transfer (HGT). Furthermore, the ecological implications of the interaction between microplastic biofilm and ATs and perspectives for future research are reviewed. This review contributes to a new insight into the aquatic ecological environmental risks and the fate of contaminants (MPs, ATs), and is of great significance for controlling the combined pollution of these two pollutants.202337517232
6419170.9997Can microplastics and disinfectant resistance genes pose conceivable threats to water disinfection process? Microplastic pollution in the environment has aroused widespread concerns, however, the potential environmental risks caused by excessive use of disinfectants are still unknown. Disinfectants with doses below the threshold can enhance the communication of resistance genes in pathogenic microorganisms, promoting the development and spread of antimicrobial activity. Problematically, the intensification of microplastic pollution and the increase of disinfectant consumption will become a key driving force for the growth of disinfectant resistance bacteria (DRB) and disinfectant resistance genes (DRGs) in the environment. Disinfection plays a crucial role in ensuring water safety, however, the presence of microplastics and DRGs seriously disturb the water disinfection process. Microplastics can reduce the concentration of disinfectant in the local environment around microorganisms and improve their tolerance. Microorganisms can improve their resistance to disinfectants or generate resistance genes via phenotypic adaptation, gene mutations, and horizontal gene transfer. However, very limited information is available on the impact of DRB and DRGs on disinfection process. In this paper, the contribution of microplastics to the migration and transmission of DRGs was analyzed. The challenges posed by the presence of microplastics and DRGs on conventional disinfection were thoroughly discussed. The knowledge gaps faced by relevant current research and further research priorities have been proposed in order to provide a scientific basis in the future.202337730038
7430180.9997Sources of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) in the Soil: A Review of the Spreading Mechanism and Human Health Risks. Soil is an essential part of our ecosystem and plays a crucial role as a nutrient source, provides habitat for plants and other organisms. Overuse of antibiotics has accelerated the development and dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). ARB and ARGs are recognized as emerging environmental contaminants causing soil pollution and serious risks to public health. ARB and ARGs are discharged into soils through several pathways. Application of manure in agriculture is one of the primary sources of ARB and ARGs dissemination in the soil. Different sources of contamination by ARB and ARGs were reviewed and analyzed as well as dissemination mechanisms in the soil. The effects of ARB and ARGs on soil bacterial community were evaluated. Furthermore, the impact of different sources of manure on soil microbial diversity as well as the effect of antibiotics on the development of ARB and ARGs in soils was analyzed. Human health risk assessments associated with the spreading of ARB and ARGs in soils were investigated. Finally, recommendations and mitigation strategies were proposed.202133948742
6440190.9997Fate and transport of biological microcontaminants bound to microplastics in the soil environment. Microplastics, fragmented plastic particles with a maximum dimension <5 mm, are an emerging contaminant of concern that can also serve as a vector of other chemical and biological contaminants. Compared to chemical contaminants, the potential of microplastics to adsorb biological microcontaminants such as antibiotic resistance genes, small interference RNAs, and pathogenic viruses is not well understood. Many current microplastic studies are based in the aquatic environment (freshwater, seawater, and wastewater), even though the terrestrial environment is considered both an important sink and source of microplastics. Microplastics co-occur with biological microcontaminants in many terrestrial environments including agricultural soils, where biosolids containing both contaminants are often applied as a soil amendment. Recent research suggests that microplastics in these environments can increase gene persistence and flow, which could have unintended downstream consequences for environmental microbiome health and resilience. Antibiotic resistance genes and silencing RNAs bound to microplastics, for example, have the potential to increase resistance and alter gene expression in environmental bacteria, respectively. This review evaluates the sources and pathways of microplastics and biological microcontaminants in the terrestrial environment as well as potential sorption mechanisms that can encourage long-range transport and persistence. Novel sources of biological microcontaminants are considered, and the role of microplastics in promoting the persistence and flow of biological microcontaminants evaluated. Finally, future research directions are suggested to increase understanding of the mechanisms that drive the fate and transport of microplastic-biological microcontaminant complexes in the terrestrial environment and better inform risk management.202337247742