Monitoring antibiotic resistomes and bacterial microbiomes in the aerosols from fine, hazy, and dusty weather in Tianjin, China using a developed high-volume tandem liquid impinging sampler. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
639101.0000Monitoring antibiotic resistomes and bacterial microbiomes in the aerosols from fine, hazy, and dusty weather in Tianjin, China using a developed high-volume tandem liquid impinging sampler. Accurate quantification of the airborne antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is critically important to assess their health risks. However, the currently widely used high-volume filter sampler (HVFS) often causes the desiccation of the sample, interfering with subsequent bacterial culture. To overcome this limitation, a high-volume tandem liquid impinging sampler (HVTLIS) was developed and optimized to investigate the airborne bacterial microbiomes and antibiotic resistomes under different weathers in Tianjin, China. Results revealed that HVTLIS can capture significantly more diverse culturable bacteria, ARB, and ARGs than HVFS. Compared with fine and hazy weathers, dusty weather had significantly more diverse and abundant airborne bacteria, ARGs, and human opportunistic pathogens with the resistance to last-resort antibiotics of carbapenems and polymyxin B, implicating a potential human health threat of dusty bioaerosols. Intriguingly, we represented the first report of Saccharibacteria predominance in the bioaerosol, demonstrating that the potential advantage of HVTLIS in collecting airborne microbes.202032438084
713510.9982Exploring the disparity of inhalable bacterial communities and antibiotic resistance genes between hazy days and non-hazy days in a cold megacity in Northeast China. The physicochemical properties of inhalable particles during hazy days have been extensively studied, but their biological health threats have not been well-explored. This study aimed to explore the impacts of haze pollution on airborne bacteria and antibiotic-resistance genes (ARGs) by conducting a comparative study of the bacterial community structure and functions, pathogenic compositions, and ARGs between hazy days and non-hazy days in a cold megacity in Northeast China. The results suggested that bacterial communities were shaped by local weather and customs. In this study, cold-resistant and Chinese sauerkraut-related bacterial compositions were identified as predominant genera. In the comparative analysis, higher proportions of gram-negative bacteria and pathogens were detected on hazy days than on non-hazy days. Pollutants on hazy days provided more nutrients (sulfate, nitrate and ammonium) for bacterial metabolism but also caused more bacterial cell damage and death than on non-hazy days. This study also detected increases in the sub-types and average absolute abundance of airborne resistance genes on hazy days compared to non-hazy days. The results of this study revealed that particle pollution promotes the dissemination and exchange of pathogenic bacteria and ARGs among large urban populations, which leads to a higher potential for human inhalation exposure.202032512457
652920.9977The air-borne antibiotic resistome: Occurrence, health risks, and future directions. Antibiotic resistance comprising of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is an emerging problem causing global human health risks. Several reviews exist on antibiotic resistance in various environmental compartments excluding the air-borne resistome. An increasing body of recent evidence exists on the air-borne resistome comprising of antibiotic resistance in air-borne bioaerosols from various environmental compartments. However, a comprehensive review on the sources, dissemination, behavior, fate, and human exposure and health risks of the air-borne resistome is still lacking. Therefore, the current review uses the source-pathway-receptor-impact-mitigation framework to investigate the air-borne resistome. The nature and sources of antibiotic resistance in the air-borne resistome are discussed. The dissemination pathways, and environmental and anthropogenic drivers accounting for the transfer of antibiotic resistance from sources to the receptors are highlighted. The human exposure and health risks posed by air-borne resistome are presented. A health risk assessment and mitigation strategy is discussed. Finally, future research directions including key knowledge gaps are summarized.202234798728
650930.9977Detecting antibiotic resistance genes in anthropogenically impacted streams and rivers. Streams and rivers are widely impacted by human activities ranging from hydrological modifications to point and nonpoint pollution. Among the pollutants that enter lotic ecosystems are pharmaceuticals and personal care products, including antibiotics, that may play a role in the occurrence of antibiotic resistance genes (ARGs). Oftentimes, ARGs are detected based on culturing of bacteria or by using quantitative polymerase chain reaction; the limitations of these methods create barriers to our understanding. Use of more exhaustive methods, such as metagenomics, may overcome some of these barriers. The public health and ecological impacts of ARGs may be profound but are largely understudied. Antibiotic resistance is a growing concern for public health.202336621219
681840.9977Atmospheric antibiotic resistome driven by air pollutants. The atmosphere is an important reservoir and habitat for antibiotic resistance genes (ARGs) and is a main pathway to cause potential health risks through inhalation and ingestion. However, the distribution characteristics of ARGs in the atmosphere and whether they were driven by atmospheric pollutants remain unclear. We annotated 392 public air metagenomic data worldwide and identified 1863 ARGs, mainly conferring to tetracycline, MLS, and multidrug resistance. We quantified these ARG's risk to human health and identified their principal pathogenic hosts, Burkholderia and Staphylococcus. Additionally, we found that bacteria in particulate contaminated air carry more ARGs than in chemically polluted air. This study revealed the influence of typical pollutants in the global atmosphere on the dissemination and risk of ARGs, providing a theoretical basis for the prevention and mitigation of the global risks associated with ARGs.202337543315
681750.9977Distribution of Antibiotic Resistance Genes in Karst River and Its Ecological Risk. In recent years, karst water has been polluted by emerging pollutants such as antibiotics. In this study, the bacterial communities and antibiotic resistance genes (ARGs) in antibiotics contaminated karst river was studied in summer and winter. The concentration of antibiotics in winter karst river is higher than that in summer, and there are significant differences in structure of bacterial community and ARGs between karst river water samples. Aminoglycoside, beta-lactamase and multidrug are the main types of ARGs, and transposons play an important role in the spread of ARGs. The horizontal gene transfer (HGT) of ARGs between bacteria mediated by mobile genetic elements (MGEs) would cause the spread of ARGs and bring potential ecological risks. In addition, we found that the risk of antibiotic resistant pathogenic bacteria (ARPB) in winter was possibly higher than that in summer. It was suggested that the discharge of antibiotics, water amount and seasonal occurrence time of human intestinal diseases affect the risks caused by antibiotics contaminants. This study helps us to understand the transmission mechanism of ARGs and their potential seasonal ecological risks in complex karst water systems.202134392041
736260.9977Multi-antibiotic resistant bacteria in landfill bioaerosols: Environmental conditions and biological risk assessment. Landfills, as well as other waste management facilities are well-known bioaerosols sources. These places may foment antibiotic-resistance in bacterial bioaerosol (A.R.B.) due to inadequate pharmaceutical waste disposal. This issue may foster the necessity of using last-generation antibiotics with extra costs in the health care system, and deaths. The aim of this study was to reveal the multi-antibiotic resistant bacterial bioaerosol emitted by a sanitary landfill and the surrounding area. We evaluated the influence of environmental conditions in the occurrence of A.R.B. and biological risk assessment. Antibiotic resistance found in the bacteria aerosols was compared with the AWaRE consumption classification. We used the BIOGAVAL method to assess the workers' occupational exposure to antibiotic-resistant bacterial bioaerosols in the landfill. This study confirmed the multi-antibiotic resistant in bacterial bioaerosol in a landfill and in the surrounding area. Obtained mean concentrations of bacterial bioaerosols, as well as antibiotic-resistant in bacterial bioaerosol (A.R.B.), were high, especially for fine particles that may be a threat for human health. Results suggest the possible risk of antibiotic-resistance interchange between pathogenic and non-pathogenic species in the landfill facilities, thus promoting antibiotic multi-resistance genes spreading into the environment.202134482243
704670.9976Contributions of meat waste decomposition to the abundance and diversity of pathogens and antibiotic-resistance genes in the atmosphere. Airborne transmission of antibiotic-resistance genes (ARGs) in landfill and acquisition of antibiotic resistance by pathogenic bacteria are posing potential threat to human and environmental health. However, little is known about contribution of waste decomposition to airborne ARGs and pathogens during landfilling of household waste. Herein, the dynamic changes of microbial communities and ARGs were comparatively investigated in leachate and bioaerosol during the decomposition of chicken, fish, and pork wastes. Results found that chicken and pork decomposition could result in emitting high abundance of bioaerosol and pathogen, while fish fermentation will lead to high airborne microbial activity. The main pathogens were Bacilli, Burkholderia-Paraburkholderia and Mycobacterium in bioaerosols, but were Wohlfahrtiimonas, Peptoniphilus and Fusobacterium in leachate, suggesting that the ability of aerosolization of bacteria in leachate was independent of their abundance and diversity. Whereas, diversity and relative abundance of ARGs in leachate were significantly higher than bioaerosol. Moreover, the relative abundance of ARGs in leachate and bioaerosols was not completely relevant. The changes of pathogenic community contributed significantly to the prevalence of ARGs in bioaerosol and leachate. The results will define the contribution of household waste decomposition to airborne pathogen and ARG distribution and provide foundation for airborne bacterial exposure risk and control in landfill.202134088047
697680.9976Unveiling the critical role of overlooked consumer protist-bacteria interactions in antibiotic resistance gene dissemination in urban sewage systems. Antibiotic resistance genes (ARGs) are emerging contaminants of significant concern due to their role in facilitating the spread of antibiotic resistance, especially high-risk ARGs, which are characterized by high human accessibility, gene mobility, pathogenicity, and clinical availability. Studies have shown that cross-domain interactions, such as those between consumer protists (consumers) and bacteria, can influence bacterial diversity, distribution, and function through top-down control. The consumers-bacteria interactions may also affect the occurrence and distribution of ARGs, yet this has been scarcely explored in field investigations. We conducted a city-scale investigation of ARGs, protists, and bacterial communities across each unit of the urban sewage system (USS), including 49 sewage pumping stations (SW), as well as influent (IF), activated sludge (AS), and effluent (EF) from seven wastewater treatment plants. Interestingly, consumers-bacteria interactions, as indicated by indices of bipartite relevance networks (i.e., connectedness and cohesion), increased from SW and IF to AS and EF. Structural equation modelling (SEM) revealed that consumers-bacteria interactions had a greater influence on the abundance of total ARGs and high-risk ARGs than seasonal or environmental factors. Notably, the total effects of consumers-bacteria interactions in SEM were significant (P < 0.05) and comparable in both IF and EF, even with the decrease in ARG abundance from IF to EF. This suggests a potential risk of ARG spread to the environment, facilitated by consumer protists in the EF. Additionally, the relevance network also demonstrated an increasing trend in the relationships between consumer protists and potential hosts of high-risk ARGs from raw sewage (SW and IF) to AS and EF. Overall, this study emphasizes the importance of integrating multitrophic microbial interactions to better understand and mitigate the dissemination of ARGs in sewage systems.202539662352
697790.9976Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked.202235810986
7176100.9976Significant higher airborne antibiotic resistance genes and the associated inhalation risk in the indoor than the outdoor. Inhalation of airborne antibiotic resistance genes (ARGs) can lead to antimicrobial resistance and potential health risk. In modern society, increasing individuals stay more indoors, however, studies regarding the exposure to airborne ARGs in indoor environments and the associated risks remain limited. Here, we compared the variance of aerosol-associated ARGs, bacterial microbiomes, and their daily intake (DI) burden in dormitory, office, and outdoor environments in a university in Tianjin. The results indicated that compared to outdoor aerosols, indoors exhibited significantly higher absolute abundance of both ARG subtypes and mobile genetic elements (MGEs) (1-7 orders of magnitude), 16S rRNA genes (2-3 orders), and total culturable bacteria (1-3 orders). Furthermore, we observed that significantly different airborne bacterial communities are the major drivers contributing to the variance of aerosol-associated ARGs in indoor and outdoor aerosols. Notably, the high abundances of total bacteria, potential pathogenic genera, and ARGs (particularly those harbored by pathogens) in indoor and outdoor aerosols, especially in indoors, may pose an increased exposure risk via inhalation. The successful isolation of human pathogens such as Elizabethkingia anopheles, Klebsiella pneumonia, and Delftia lacustris resistant to the "last-resort" antibiotics carbapenems and polymyxin B from indoor aerosols further indicated an increased exposure risk in indoors. Together, this study highlights the potential risks associated with ARGs and their inhalation to human health in indoor environments.202133120141
6832110.9976Historical trajectories of antibiotics resistance genes assessed through sedimentary DNA analysis of a subtropical eutrophic lake. Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.202438621322
6510120.9976Antibiotic Resistance in Minimally Human-Impacted Environments. Antibiotic resistant bacteria (ARB) have become contaminants of concern in environmental systems. Studies investigating environmental ARB have primarily focused on environments that are greatly impacted by anthropogenic activity. Background concentrations of ARB in natural environments is not well understood. This review summarizes the current literature on the monitoring of ARB and antibiotic resistance genes (ARGs) in environments less impacted by human activity. Both ARB and ARGs have been detected on the Antarctic continent, on isolated glaciers, and in remote alpine environments. The methods for detecting and quantifying ARB and ARGs from the environment are not standardized and warrant optimization. Further research should be focused on the detection and quantification of ARB and ARGs along human gradients to better characterize the factors leading to their dissemination in remote environments.202032498349
7430130.9976Sources of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) in the Soil: A Review of the Spreading Mechanism and Human Health Risks. Soil is an essential part of our ecosystem and plays a crucial role as a nutrient source, provides habitat for plants and other organisms. Overuse of antibiotics has accelerated the development and dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). ARB and ARGs are recognized as emerging environmental contaminants causing soil pollution and serious risks to public health. ARB and ARGs are discharged into soils through several pathways. Application of manure in agriculture is one of the primary sources of ARB and ARGs dissemination in the soil. Different sources of contamination by ARB and ARGs were reviewed and analyzed as well as dissemination mechanisms in the soil. The effects of ARB and ARGs on soil bacterial community were evaluated. Furthermore, the impact of different sources of manure on soil microbial diversity as well as the effect of antibiotics on the development of ARB and ARGs in soils was analyzed. Human health risk assessments associated with the spreading of ARB and ARGs in soils were investigated. Finally, recommendations and mitigation strategies were proposed.202133948742
6826140.9976Impact of land use on antibiotic resistance genes and bacterial communities in rivers. River ecosystems support essential ecosystem functions and services, including supplying water for domestic, agricultural, and industrial activities, provisioning of hydropower and fisheries, supporting navigation and recreational activities, and regulating water quality. In recent decades, the presence and spread of antibiotic resistance genes (ARGs) have emerged as a key threat to ecosystem health and human well-being. Rivers that are surrounded by human-modified landscapes serve as primary repositories and sources of ARGs. However, our understanding of the relationship between the diversity of ARGs and land use remain limited. We collected 30 sediment samples from five rivers in Ningbo, China, and then classified the sampling sites into two groups (i.e., group A with low levels of human impacts and group B with intense human impact) based on land use in their upstream areas. In total, we found 31 types of ARGs and 148 phyla of bacteria in the samples. ARGs abundance had a positive relationship with the levels of anthropogenic activities, and exhibited significant difference between the two groups. Co-occurrence networks showed that the interrelationship between bacteria and ARGs was more complex in group B than in group A. Moreover, Structural Equation Modeling (SEM) revealed that anthropogenic activity not only posed direct effect on ARGs but also indirectly affected ARGs through bacteria. Our results underscore the profound impacts of land-use changes on the diversity of ARGs, bacteria communities, and their relationships, which highlight the need for integrating ARGs in river assessments in regions with human-dominated land use.202540154785
6825150.9976Bacteria and Antibiotic Resistance Genes (ARGs) in PM(2.5) from China: Implications for Human Exposure. Airborne transmission is one of the environmental dissemination pathways of antibiotic resistance genes (ARGs), and has critical implications for human exposure through inhalation. In this study, we focused on three regions of China to reveal some unique spatiotemporal features of airborne bacteria and ARGs in fine aerosols (PM(2.5)): (1) greater seasonal variations in the abundance of bacteria and ARGs in temperate urban Beijing than in the subtropical urban areas of the Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions, with regional disparities in bacterial communities; (2) geographical fingerprints of ARG profiles independent of seasonal cycles and land-use gradients within each region; (3) region-independent associations between the targeted ARGs and limited bacterial genera; (4) common correlations between ARGs and mobile genetic elements (MGEs) across regions; and (5) PM(2.5) at the higher end of ARG enrichment across various environmental and human media. The spatiotemporally differentiated bacterial communities and ARG abundances, and the compositions, mobility, and potential hosts of ARGs in the atmosphere have strong implications for human inhalational exposure over spatiotemporal scales. By comparing other contributing pathways for the intake of ARGs (e.g., drinking water and food ingestion) in China and the U.S.A., we identified the region-specific importance of inhalation in China as well as country-specific exposure scenarios. Our study thus highlights the significance of inhalation as an integral part of the aggregate exposure pathways of environmentally disseminated ARGs, which, in turn, may help in the formulation of adaptive strategies to mitigate the exposure risks in China and beyond.201930525504
7431160.9976Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? Recently, there has been increased concern about the presence of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), in treated domestic wastewaters, animal manures and municipal biosolids. The concern is whether these additional sources of ARB contribute to antibiotic resistance levels in the environment, that is, "environmental antibiotic resistance." ARB and ARG occur naturally in soil and water, and it remains unclear whether the introduction of ARB in liquid and solid municipal and animal wastes via land application have any significant impact on the background levels of antibiotic resistance in the environment, and whether they affect human exposure to ARB. In this current review, we examine and re-evaluate the incidence of ARB and ARG resulting from land application activities, and offer a new perspective on the threat of antibiotic resistance to public health via exposure from nonclinical environmental sources. Based on inputs of ARBs and ARGs from land application, their fate in soil due to soil microbial ecology principles, and background indigenous levels of ARBs and ARGs already present in soil, we conclude that while antibiotic resistance levels in soil are increased temporally by land application of wastes, their persistence is not guaranteed and is in fact variable, and often contradictory based on application site. Furthermore, the application of wastes may not produce the most direct impact of ARGs and ARB on public health. Further investigation is still warranted in agriculture and public health, including continued scrutiny of antibiotic use in both sectors.201829505255
6910170.9976Fallow practice mitigates antibiotic resistance genes in soil by shifting host bacterial survival strategies. Soil is a key reservoir of antibiotic resistance genes (ARGs), with cropland soils potentially transferring ARGs through the food chain, posing risks to human health. However, the profile of soil ARGs under different crop rotation patterns, particularly fallow practice aimed at enhancing soil fertility, remains inadequately understood. This study characterized the dynamic distribution of ARGs and survival strategies of ARGs host bacteria in two crop rotation patterns (rice-wheat rotation, RW, and rice-fallow rotation, RF), as well as the factors impacting the ARGs profiles. The results demonstrated ARGs abundance was significantly reduced by 45.04 % in the RF system, especially those related to multidrug resistance. In the RF system, the higher content of soil organic matter (SOM) serves as the primary nutrient source, driving a shift in host bacterial survival strategies toward K-strategists. Concurrently, the depletion of SOM restricts the proliferation of host bacteria, ultimately leading to a reduction in the abundance of ARGs. In contrast, fertilizer application in the RW system leads to NO(3)(-)-N accumulation, thereby favoring the proliferation of r-strategist bacteria that carry ARGs and exacerbating ARGs abundance in the soil. This study suggests that fallow could be an important field management practice for mitigating soil ARGs contamination in cropland.202540555016
6531180.9976A comprehensive framework of health risk assessment for antibiotic resistance in aquatic environments: Status, progress, and perspectives. Antibiotic resistance (AR), driven by antibiotics as emerging pollutants, has become a critical global health threat, jeopardizing both environmental and human health. The persistence and spread of AR in aquatic ecosystems are governed by the intricate interplay between antibiotics, antibiotic resistance genes (ARGs), and antibiotic-resistant bacteria (ARB), which collectively influences its occurrence, transportation, and fate in aquatic ecosystems. However, most assessments focus primarily on antibiotics and ARGs, often relying on single-factor criteria while overlooking critical influence factors such as ARG forms, non-antibiotic chemicals, antibiotic pressure, and microbial competition. Furthermore, many fail to incorporate potential future risks, limiting their predictive accuracy and overall effectiveness in addressing AR in aquatic environments. To bridge these research gaps, we introduce a comprehensive health risk assessment framework that integrates the interactions among antibiotics, ARGs, and ARB. The proposed approach comprises four steps: 1. Determining the type of water body; 2. Performing model simulations; 3. Assessing antibiotics and ARGs; and 4. Evaluating ARB. Finally, a comprehensive risk index for AR is established, along with a corresponding hierarchical risk ranking system. Moreover, to demonstrate the practical application of the framework, an assessment of antibiotic resistance risk was conducted using a typical lake in Northeast China as a case study, indicating the efficacy of the proposed framework in quantifying the multidimensional health risk of AR. This framework not only provides a crucial foundation for dynamic health risk assessment, but also paving the way for more effective mitigation strategies to safeguard both aquatic ecosystems and human health in the future.202540914069
6432190.9976Antibiotic resistance genes in the coastal atmosphere under varied weather conditions: Distribution, influencing factors, and transmission mechanisms. Antibiotic resistance genes (ARGs) have escalated to levels of concern worldwide as emerging environmental pollutants. Increasing evidence suggests that non-antibiotic antimicrobial substances expedite the spread of ARGs. However, the drivers and mechanisms involved in the generation and spread of ARGs in the atmosphere remain inadequately elucidated. Co-occurrence networks, mantel test analysis, and partial least squares path modeling were used to analyze the symbiotic relationships of ARGs with meteorological conditions, atmospheric pollutants, water-soluble inorganic ions, bacteria, mobile genetic elements (MGEs), antibacterial biocide and metal resistance genes, and to identify the direct drivers of ARGs. The types and abundance of ARGs exhibited different seasonal distribution. Specifically, the types exhibited a strong alignment with the diversity of air masses terrestrial sources, while the abundance displayed a significant positive correlation with both biocide resistance genes (BRGs) and metal resistance genes (MRGs). The contribution of bacterial communities and MGEs to the generation and spread of ARGs was constrained by the low levels of antibiotics in the atmosphere and the existence of "viral intermediates". Conversely, antibacterial biocides and metals influenced mutation rates, cellular SOS responses, and oxidative stress of bacteria, consequently facilitating the generation and spread of ARGs. Moreover, the co-selection among their derivatives, resistance genes, ensured a stable presence of ARGs. The research highlighted the significant impact of residual antimicrobial substances on both the generation and spread of ARGs. Elucidating the sources of aerosols and the co-selection mechanism linking with ARGs, BRGs, and MRGs were crucial for preserving the stability of ARGs in the atmosphere.202539824332