# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6380 | 0 | 1.0000 | Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'. | 2011 | 21487198 |
| 6991 | 1 | 0.9988 | Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Brackish water aquaculture has brought numerous economic benefits, whereas anthropogenic activities in aquaculture may cause the dissemination of antibiotic resistance genes (ARGs) in brackish water sediments. The intricate relationships between environmental factors and microbial communities as well as their role in ARGs dissemination in brackish water aquaculture remain unclear. This study applied PCR and 16S sequencing to identify the variations in ARGs, class 1 integron gene (intI1) and microbial communities in brackish water aquaculture sediment. The distribution of ARGs in brackish water aquaculture sediment was similar to that in freshwater aquaculture, and the sulfonamide resistance gene sul1 was the indicator of ARGs. Proteobacteria and Firmicutes were the dominant phyla, and Paenisporosarcina (p_ Firmicutes) was the dominant genus. The results of correlation, network and redundancy analysis indicated that the microbial community in the brackish water aquaculture sediment was function-driven. The neutral model and variation partitioning analysis were used to verify the ecological processes of the bacterial community. The normalized stochasticity ratio showed that pond bacteria community was dominated by determinacy, which was affected by aquaculture activities. The total nitrogen and organic matter influenced the abundance of ARGs, while Proteobacteria and Thiobacillus (p_Proteobacteria) were the key antibiotic-resistant hosts. Our study provides insight into the prevalence of ARGs in brackish water aquaculture sediments, and indicates that brackish water aquaculture is a reservoir of ARGs. | 2023 | 36436623 |
| 6995 | 2 | 0.9987 | Insight into the spatiotemporal distribution of antibiotic resistance genes in estuarine sediments during long-term ecological restoration. In this study, we aimed to investigate the long-term spatiotemporal changes in hydrodynamics, antibiotics, nine typical subtypes of antibiotic resistance genes (ARGs), class 1 integron gene (intI1), and microbial communities in the sediments of a semi-enclosed estuary during ecological restoration with four treatment stages (influent (#1), effluent of the biological treatment area (#2), oxic area (#3), and plant treatment area (#4)). Ecological restoration of the estuary reduced common pollutants (nitrogen and phosphorus) in the water, whereas variations in ARGs showed noticeable seasonal and spatial features. The absolute abundance of ARGs at sampling site #2 considerably increased in autumn and winter, while it significantly increased at sampling site #3 in spring and summer. The strong intervention of biological treatment (from #1 to #2) and aerators (from #2 to #3) in the estuary substantially affected the distribution of ARGs and dominant antibiotic-resistant bacteria (ARB). The dominant ARB (Thiobacillus) in estuarine sediments may have low abundance but important dissemination roles. Meanwhile, redundancy and network analysis revealed that the microbial communities and intl1 were key factors related to ARG dissemination, which was affected by spatial and seasonal ecological restoration. A positive correlation between low flow velocity and certain ARGs (tetM, tetW, tetA, sul2, and ermC) was observed, implying that flow optimization should also be considered in future ecological restoration to remediate ARGs. Furthermore, the absolute abundance of ARGs can be utilized as an index to evaluate the removal capacity of ARGs by estuarine restoration. | 2023 | 36827800 |
| 7640 | 3 | 0.9987 | Gut microbiome and antibiotic resistance genes in plateau model animal (Ochotona curzoniae) exhibit a relative stability under cold stress. Antibiotic resistance genes (ARGs) carried by gut pathogens may pose a threat to the host and ecological environment. However, few studies focus on the effects of cold stress on intestinal bacteria and ARGs in plateau animals. Here, we used 16S rRNA gene sequencing and gene chip technique to explore the difference of gut microbes and ARGs in plateau pika under 4 °C and 25 °C. The results showed that tetracycline and aminoglycoside resistance genes were the dominant ARGs in pika intestine. Seven kinds of high-risk ARGs (aadA-01, aadA-02, ermB, floR, mphA-01, mphA-02, tetM-02) existed in pika's intestine, and cold had no significant effect on the composition and structure of pika's intestinal ARGs. The dominant phyla in pika intestine were Bacteroidetes and Firmicutes. Cold influenced 0.47 % of pika intestinal bacteria in OTU level, while most other bacteria had no significant change. The diversity and community assembly of intestinal bacteria in pika remained relatively stable under cold conditions, while low temperature decreased gut microbial network complexity. In addition, low temperature led to the enrichment of glycine biosynthesis and metabolism-related pathways. Moreover, the correlation analysis showed that eight opportunistic pathogens (such as Clostridium, Staphylococcus, Streptococcus, etc.) detected in pika intestine might be potential hosts of ARGs. | 2024 | 39137548 |
| 6871 | 4 | 0.9987 | Distinct profile of bacterial community and antibiotic resistance genes on microplastics in Ganjiang River at the watershed level. Microplastics are of great public concern due to their wide distribution and the potential risk to humans and animals. In this study, the microplastic pollution associated with bacterial communities, human pathogenic bacteria, and antibiotic resistance genes (ARGs) were investigated compared to water, sediment, and natural wood particles. Microplastics were widely distributed in surface water of the Ganjiang River at a watershed level with an average value of 407 particles m(-3). The fragment was the main microplastic shape found in the basin. Microplastics had significantly higher observed species and Chao1 index of bacterial communities than those in water, but comparable to wood particles. However, there was no difference in the microplastics pollution and alpha diversity indices of bacterial between different reaches along the Ganjiang River. Flavobacterium, Rhodoferax, Pseudomonas, and Janthinobacterium on the microplastics were all found to be enriched compared with water and sediment. Principal component analysis of the composition and function profile of bacterial communities showed that microplastics provide a new microbial niche in the Ganjiang River, which was distinct from water, sediment, and natural wood. Pseudomonas genus dominated the composition of human pathogenic bacteria on the microplastics, which was significantly different from water and sediment. No difference was observed in the relative abundance of total ARGs among the four media. However, microplastic and wood particles showed similar composition patterns of ARGs compared with water and sediment. | 2021 | 34048747 |
| 6828 | 5 | 0.9987 | Unraveling antibiotic resistomes associated with bacterial and viral communities in intertidal mudflat aquaculture area. The extensive use of antibiotics in intertidal mudflat aquaculture area has substantially increased the dissemination risk of antibiotic resistance genes (ARGs). As hosts of ARGs, bacteria and virus exert vital effects on ARG dissemination. However, the insights for the interrelationships among ARGs, bacteria, and virus have not been thoroughly explored in intertidal mudflat. Therefore, this study attempts to unravel the occurrence, dissemination, evolution, and driving mechanisms of ARGs associated with bacterial and viral communities using metagenomic sequencing in a typical intertidal mudflat. Abundant and diverse ARGs (22 types and 437 subtypes) were identified and those of ARGs were higher in spring than in autumn. It is worthy noted that virus occupied a more essential position than bacteria for ARGs dissemination through network analysis. Meanwhile, nitrogen exerted indirect effect on ARG profiles by shaping viral and bacterial diversity. According to the results of neutral and null models, deterministic processes dominated the ARG community assembly by controlling sediment nitrogen and antibiotics. Homogeneous and variable selection dominated phylogenetic turnover of ARG community, contributing 46.15% and 45.90% of the total processes, respectively. This study can hence theoretically support for the ARG pollution control and management in intertidal mudflat aquaculture area. | 2023 | 37506645 |
| 7263 | 6 | 0.9987 | A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing. In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L) was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP) sludge. | 2014 | 24905407 |
| 7139 | 7 | 0.9987 | Variations in antibiotic resistance genes and microbial community in sludges passing through biological nutrient removal and anaerobic digestion processes in municipal wastewater treatment plants. Antimicrobial resistance (AMR) represents a relentless, silent pandemic. Contributing to this are wastewater treatment plants (WWTPs), a potential source of antibiotic resistance genes' (ARGs) transmission to the environment, threatening public health. The presence of ARGs in pathogenic bacteria and their release into the environment by WWTPs threatens the public health. The current study investigated changes in ARGs' abundance in biological nutrient removal (BNR) processes and anaerobic digestion (AD) reactors of two WWTPs. Also, microbial community structure, which is known to shape the distribution and abundance of ARGs, was also analyzed. The relative abundance of eight ARGs (tetX, tetA, tetM, TEM, sul1, sul2, ermB and qnrD) was quantified as ARGs' copies/16 S rRNA gene copies using quantitative polymerase chain reaction (qPCR). Microbial community composition was assessed by 16 S rRNA microbiome sequencing analysis. TetX was prevalent among the eight ARGs, followed by TEM and sul1. However, its abundance was decreased in the AD sludges compared to BNR sludges. Proteobacteria was the major bacterial phylum found in all the sludge samples, while Arcobacter, 12up and Acidovorax were the predominant genera. Acinetobacter and Flavobacterium were significantly more abundant in the BNR sludges, while 12up and Aeromonas were predominant in AD sludges. Principal component analysis (PCA) revealed a clear difference in dominant ARGs and bacteria between the sludges in the processes of BNR and AD of the two WWTPs. Clinically relevant bacterial genera, Klebsiella and Enterococcus, found in both the BNR and AD sludges, were significantly correlated with the tetX gene. Throughout this study, the relationship between microbial communities and specific ARGs was revealed, illustrating that the composition of the microbial community could play a vital role in the abundance of ARGs. These results will better inform future studies aimed at controlling the spread of ARGs and their potential hosts from WWTPs. | 2023 | 36427585 |
| 7373 | 8 | 0.9986 | Distributional Pattern of Bacteria, Protists, and Diatoms in Ocean according to Water Depth in the Northern South China Sea. Ocean microbiomes provide insightful details about the condition of water and the global impact of marine ecosystems. A fine-scale analysis of ocean microbes may shed light on the dynamics and function of the ocean microbiome community. In this study, we evaluated the changes in the community and function of marine bacteria, protists, and diatoms corresponding to different ocean depths using next-generation sequencing methods. We found that diatoms displayed a potential water-depth pattern in species richness (alpha diversity) and community composition (beta diversity). However, for bacteria and protists, there was no significant relationship between water depth and species richness. This may be related to the biological characteristics of diatoms. The photosynthesis of diatoms and their distribution may be associated with the fluctuating light regime in the underwater climate. Moreover, salinity displayed negative effects on the abundance of some diatom and bacterial groups, which indicates that salinity may be one of the factors restricting ocean microorganism diversity. In addition, compared to the global ocean microbiome composition, function, and antibiotic resistance genes, a water depth pattern due to the fine-scale region was not observed in this study. IMPORTANCE Fine-scale analysis of ocean microbes provides insights into the dynamics and functions of the ocean microbiome community. Here, using amplicon and metagenome sequencing methods, we found that diatoms in the northern South China Sea displayed a potential water-depth pattern in species richness and community composition, which may be related to their biological characteristics. The potential effects of the differences in geographic sites mainly occurred in the diatom and bacterial communities. Moreover, given the correlation between the environmental factors and relative abundance of antibiotic resistance genes (ARGs), the study of ocean ARG distribution patterns should integrate the potential effects of environmental factors. | 2022 | 36222702 |
| 6994 | 9 | 0.9986 | Seasonal variations in antibiotic resistance genes in estuarine sediments and the driving mechanisms. Estuary sediments are chemically contaminated by adjacent coastal industrial cities, but the impact of organic pollutants on antibiotic resistance genes (ARGs) in estuarine sediments is unknown. We comprehensively analyzed the complex interactions between chemical pollutants (heavy metals and organic pollutants), mobile genetic elements (MGEs), and ARGs in estuarine sediments during various seasons. The results indicate that under the effects of the chemically polluted river water, the number of different estuarine sediment ARGs increased by 76.9%-92.3% in summer and 5.9%-35.3% in winter, and the abundance of these ARGs increased by 29-5195 times in summer and 48-239 times in winter. The abundance of sediment ARGs in distinct estuaries showed different seasonal trends. Seasonal changes had a greater impact on the abundance of estuarine sediment ARGs than on their diversity. The diversity of estuarine sediment ARGs was positively correlated with the chemical pollution levels. Furthermore, chemical pollution was positively correlated with MGEs, and MGEs were correlated with ARG abundance. These results indicate that ARGs are enriched in bacteria via horizontal gene transfer triggered by chemical pollution, promoting multi-antibiotic resistance in estuarine sediment bacteria. These findings have implications for our understanding of the distribution and propagation of ARGs in chemically polluted estuarine sediments. | 2020 | 31520936 |
| 6808 | 10 | 0.9986 | Antibiotics and antibiotic resistance change bacterial community compositions in marine sediments. Emerging contaminants, including antibiotics, antibiotic-resistant bacteria (ARB), and extracellular antibiotic resistance genes (eARGs), have been detected in large numbers in the aquatic environment. The effects of emerging contaminants on bacterial communities in marine sediments are not well studied. In this study, the effects of emerging contaminants (antibiotics, ARB, and eARGs) on the variations of bacterial populations in marine sediments of the Bohai Sea, Yellow Sea, East China Sea, and South China Sea were investigated. The results showed that the abundance of the host bacterial phylum Probacteria in the marine sediments of the Bohai Sea was the lowest among the four seas after exposure to different antibiotics, ARB, and eARGs. The inputs of exogenous antibiotics and resistance genes significantly affected the community function, resulting in significant differences in community abundance at the genus level. The abundance of Halomonas, Sulfitobacter, and Alcanivorax in the four sea areas displayed noteworthy differences in response to the addition of exogenous antibiotics and eARGs. These findings contribute to a more comprehensive understanding of the intricate interplay between emerging contaminants and the dynamics of bacterial communities in natural ecosystems. | 2024 | 38135101 |
| 6810 | 11 | 0.9986 | Heavy metals and microbiome are negligible drivers than mobile genetic elements in determining particle-attached and free-living resistomes in the Yellow River. Suspended particles in water can shelter both microorganisms and contaminants. However, the emerging pollutants antibiotic resistance genes (ARGs) in free-living (FL) or particle-attached (PA) bacteria in aquatic environments are less explored. In this study, we compared the free-living and particle-attached ARGs during four seasons in the Yellow River using high-throughput quantitative PCR techniques and 16S rRNA gene sequencing. Our results demonstrated that both the free-living water and particles were dominated by tetracycline and beta-lactamase resistance genes. The PA-ARGs had a higher absolute abundance than FL-ARGs in the Yellow River, regardless of the season. Both PA-ARGs and FL-ARGs had the highest absolute abundance and diversity during winter. Mobile genetic elements (MGEs) were the dominant driver for both size-fractionated ARGs. However, the microbiome had less influence on PA-ARG profiles than the FL-ARG profiles, while the effects of the heavy metals on ARGs were negligible. The community assembly of both FL-ARG and PA-ARG can be explained by neutral processes. Several opportunistic pathogens (e.g., Escherichia coli) associated with human health exhibited a higher relative abundance in the particles than during a free-living lifestyle. Parts of these pathogens were potential ARG hosts. As such, it is important to monitor the ARGs and opportunistic pathogens from size-fractionated bacteria and develop targeted strategies to manage ARG dissemination and opportunistic pathogens to ensure public health. | 2022 | 34736202 |
| 7047 | 12 | 0.9986 | Characteristics of airborne bacterial communities and antibiotic resistance genes under different air quality levels. Pathogenic bacteria and antibiotic resistance genes (ARGs) in bioaerosols are major threats to human health. In this study, the microbial community structure and ARG distribution characteristics of airborne bacteria in total suspended particulates (TSP) and PM(2.5) were investigated under different air quality levels in Xinxiang, Central China. The results revealed that with the deterioration of air quality, the concentrations of airborne bacteria in both TSP and PM(2.5) decreased; however, the relative amounts of pathogenic bacteria increased. The predominant genera in pathogenic bacteria of Bacillus, Sphingomonas, Corynebacterium, Rhodococcus, and Staphylococcus were identified in both TSP and PM(2.5). Although the airborne bacteria concentrations and absolute abundances of ARGs in TSP were higher than those in PM(2.5) under identical air quality conditions, the bacterial community structure and relative amounts of pathogenic bacteria were similar. In addition, the relationship between environmental factors of ions, metal elements, and meteorological parameters and the community structures of airborne bacteria and pathogenic bacteria were also analyzed. The effects of soluble ions and metal elements on several dominant genera of total bacteria and pathogenic bacteria differed, probably due to the strong tolerance of pathogenic bacteria to harsh atmospheric environments Different subtypes of ARGs showed various distribution characteristics with variations in air quality. The deterioration of air quality can inhibit the dissemination of ARGs, as the minimum values of all ARGs and class 1 integrase intI1 were observed under Severely Polluted conditions. This study provides a comprehensive understanding of the effect of air pollution levels on the airborne bacteria community composition and ARG distribution. | 2022 | 35180669 |
| 7012 | 13 | 0.9986 | Bacterial communities, metabolic functions and resistance genes to antibiotics and metals in two saline seafood wastewater treatment systems. This study investigated the bacterial communities, metabolic functions, antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in two alternating anaerobic/aerobic biological filters (A/O-BFs) treating saline seafood wastewater (SSW). Firmicutes was the most abundant phylum in both systems, and halophilic and alkaliphilic bacteria were largely enriched. 15 potential pathogens were obtained. Metabolism was the predominant bacterial function. 49 ARGs and 7 MRGs were detected, and the total abundance of ARGs increased while that of MRGs decreased. Clear shifts in bacterial structure and function, ARGs and MRGs were observed in both systems and at different heights. Co-occurrence of ARGs and MRGs and their hosts were identified. ARGs and MRGs mainly negatively correlated with bacterial functions, which were also the important contributors to shifts in bacterial communities and functions. This study highlights the importance of investigating ARGs and MRGs in SSW treatment systems and their complex interactions with bacterial communities and functions. | 2019 | 31121446 |
| 6886 | 14 | 0.9986 | Bacterial community and antibiotic resistance genes assembly processes were shaped by different mechanisms in the deep-sea basins of the Western Pacific Ocean. As the intrinsic property of microorganisms, antibiotic resistance genes (ARGs) are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, human activities often obscure the natural distribution of ARGs through deterministic selective pressures. The deep-sea basin of the western Pacific Ocean is one of the least disturbed areas globally by human activities, providing a natural laboratory to investigate the intrinsic mechanisms governing ARGs in natural environments. In this study, we analyzed bacterial community and ARG diversity in 15 surface sediment samples from three deep-sea basins in the western Pacific Ocean. The relative abundance of ARGs in the surface sediments ranged from 3.10 × 10(-3) to 5.37 × 10(-2) copies/16S rRNA copies, with multidrug and β-lactam resistance genes dominated in all samples (49.06%-100%). The bacteria were mainly dominated by the Proteobacteria. The principal coordinate analysis (PCoA) showed significant spatial heterogeneity of ARGs and bacteria among the three basins. Null model, neutral community models (NCM), and normalized stochasticity ratio (NST) indicated that bacterial community was dominated by stochastic assembly, driven by geographic barriers leading to independent evolution. Conversely, the NST revealed that the ARGs profile was mainly shaped by deterministic processes. Environmental factors are more crucial than geographical factors and bacterial community for ARG occurrence among the selected factors. Meanwhile, we found that the spread of ARGs was mainly through vertical gene transfer in the pre-antibiotic era. The disparity between the assembly processes of bacterial community and ARGs may be attributed to the fact that ARG hosts were not the dominant bacteria in the community. This study first reported the distribution and assembly processes of ARGs and bacterial community in surface sediments of the western Pacific. | 2024 | 39481517 |
| 6902 | 15 | 0.9986 | Antibiotic resistance genes in surface water and groundwater from mining affected environments. Mining activities are known to generate a large amount of mine tailings and acid mine drainage which contain varieties of heavy metals. Heavy metals play an important role in co-selection for bacterial antibiotic resistance. However, the characteristics of antibiotic resistance genes (ARGs) in mining-affected water environments are still unclear. Here we investigated the pollution of metals, profiles of ARGs, mobile genetic elements (MGEs) and microbial community in mining-affected surface water and groundwater. The results showed that in the tested water samples, the concentrations of Zn and Mn were the highest, and Ni was the lowest. Higher abundances of ARGs with great proportion of sulfonamides, chloramphenicols and tetracyclines resistance genes were found in mining-affected water when compared with those without mining activities. Additionally, there were positive correlations between heavy metals (especially Ni, Zn and Mn) and these ARGs. Linear regression analysis suggested that MGEs were positively correlated with ARGs. In addition, total phosphorus was correlated with ARGs (p < 0.05). The microbial community was different between the mining-affected water and the reference (p < 0.05). Proteobacteria, Bacteroidetes and Actinobacteria were dominant phyla in the surface water and groundwater. Network analysis showed that many ARGs were significantly associated with these dominant bacteria, which suggested they might be potential hosts for these ARGs. These findings provide a clear evidence that the mining activities in the study area had a significant impact on surface water and groundwater to different degrees. | 2021 | 33571766 |
| 8028 | 16 | 0.9986 | The fate of antibiotic resistance genes, microbial community, and potential pathogens in the maricultural sediment by live seaweeds and oxytetracycline. Three common seaweeds including Ulva fasciata, Codium cylindricum and Ishige okamurai were used for the remediation of maricultural wastewater and sediment in the presence/absence of trace level of oxytetracycline (OTC) in lab-scale experiments. Higher NO(3)(-)-N and PO(4)(3-)-P removal rates were achieved due to the presence of seaweeds, and trace OTC also had a positive effect on NO(3)(-)-N removal. A slight variation of 2.10-2.15% were observed in the total relative abundances of antibiotic resistance genes (ARGs) of different sediment samples after one-month operation. However, the variation of ARGs profiles by the co-existence of different seaweeds and OTC was in the descending order of Ishige okamurai > Codium cylindricum > Ulva fasciata, which was in accordance with the variation of microbial hosts at genus level. The abundance of dominant tetracycline resistance genes promoted by the co-existence of different seaweeds and OTC in compared with the presence of single seaweed or OTC via metagenomic sequencing and qPCR analysis, and the co-existence of Ishige okamurai and OTC exhibited the largest impact. The potential pathogens were more sensitive to the co-existence of seaweed and OTC than single seaweeds. Meanwhile, a variety of ARGs were enriched in the pathogens, and the dominant pathogenic bacteria of Vibrio had 133 Vibrio species with 28 subtypes of ARGs. The variation of ARGs profiles in the sediment were strongly related with the dominant phyla Proteobacteria, Actinobacteria, Firmicutes, Planctomycetes and Cyanobacteria. Besides, Nitrate level exhibited more significant effect on ∑ARGs, ARGs resistant to vancomycin and streptogramin_a, while phosphate level exhibited more positively significant effect on ARGs resistant to fosmidomycin, ATFBT and cephalosporin. | 2022 | 35780677 |
| 7576 | 17 | 0.9986 | Spatial behavior and source tracking of extracellular antibiotic resistance genes in a chlorinated drinking water distribution system. Antibiotic resistance genes (ARGs) are receiving increasing concerns due to the antibiotic resistance crisis. Nevertheless, little is known about the spatial behavior and sources of extracellular ARGs (eARGs) in the chlorinated drinking water distribution systems (DWDSs). Here, tap water was continuously collected to reveal the occurrence of both eARGs and intracellular ARGs (iARGs) along a chlorinated DWDS. Afterward, the correlation between eARGs, eDNA-releasing communities, and communities of planktonic bacteria was further analyzed. The eARG concentration decreased significantly, whereas the proportion of vanA and bla(NDM-1) increased. Further, the diversity of the eDNA-releasing community increased markedly with increasing distance from the drinking water treatment plant (DWTP). Moreover, the dominant eDNA-releasing bacteria shifted from Acinetobacter, Pseudomonas, and Methylobacterium-Methylorubrum in finished water from the DWTP to Bacteroides, Faecalibacterium, Staphylococcus, and Parabacteroides in the DWDS. In terms of eARG source, thirty genera were significantly correlated with seven types of eARGs that resulted from the lysis of dead planktonic bacteria and detached biofilms. Conversely, the iARGs concentration increased, whereas the biodiversity of the planktonic bacteria community decreased in the sampling points along the DWDSs. Our findings provide critical insights into the spatial behavior and sources of eARGs, highlighting the health risks associated with ARGs in DWDSs. | 2022 | 34902725 |
| 6827 | 18 | 0.9986 | Metagenomic profiles of planktonic bacteria and resistome along a salinity gradient in the Pearl River Estuary, South China. Estuarine ecosystems undergo pronounced and intricate changes due to the mixing of freshwater and saltwater. Additionally, urbanization and population growth in estuarine regions result in shifts in the planktonic bacterial community and the accumulation of antibiotic resistance genes (ARGs). The dynamic changes in bacterial communities, environmental factors, and carriage of ARGs from freshwater to seawater, as well as the complex interrelationships among these factors, have yet to be fully elucidated. Here, we conducted a comprehensive study based on metagenomic sequencing and full-length 16S rRNA sequencing, covering the entire Pearl River Estuary (PRE) in Guangdong, China. The abundance and distribution of the bacterial community, ARGs, mobile genetic elements (MGEs), and bacterial virulence factors (VFs) were analyzed on a site-by-site basis through sampling along the salinity gradient in PRE, from upstream to downstream. The structure of the planktonic bacterial community undergoes continuous changes in response to variations in estuarine salinity, with the phyla Proteobacteria and Cyanobacteria being dominant bacterial throughout the entire region. The diversity and abundance of ARGs and MGEs gradually decreased with the direction of water flow. A large number of ARGs were carried by potentially pathogenic bacteria, especially in Alpha-proteobacteria and Beta-proteobacteria. Multi-drug resistance genes have the highest abundance and subtypes in PRE. In addition, ARGs are more linked to some MGEs than to specific bacterial taxa and disseminate mainly by HGT and not by vertical transfer in the bacterial communities. Various environmental factors, such as salinity and nutrient concentrations, have a significantly impact on the community structure and distribution of bacteria. In conclusion, our results represent a valuable resource for further investigating the intricate interplay between environmental factors and anthropogenic disturbances on bacterial community dynamics. Moreover, they contribute to a better understanding of the relative impact of these factors on the dissemination of ARGs. | 2023 | 37211102 |
| 6885 | 19 | 0.9985 | Abundant bacteria shaped by deterministic processes have a high abundance of potential antibiotic resistance genes in a plateau river sediment. Recent research on abundant and rare bacteria has expanded our understanding of bacterial community assembly. However, the relationships of abundant and rare bacteria with antibiotic resistance genes (ARGs) remain largely unclear. Here, we investigated the biogeographical patterns and assembly processes of the abundant and rare bacteria from river sediment at high altitudes (Lhasa River, China) and their potential association with the ARGs. The results showed that the abundant bacteria were dominated by Proteobacteria (55.4%) and Cyanobacteria (13.9%), while the Proteobacteria (33.6%) and Bacteroidetes (18.8%) were the main components of rare bacteria. Rare bacteria with a large taxonomic pool can provide function insurance in bacterial communities. Spatial distribution of persistent abundant and rare bacteria also exhibited striking differences. Strong selection of environmental heterogeneity may lead to deterministic processes, which were the main assembly processes of abundant bacteria. In contrast, the assembly processes of rare bacteria affected by latitude were dominated by stochastic processes. Abundant bacteria had the highest abundance of metabolic pathways of potential drug resistance in all predicted functional genes and a high abundance of potential ARGs. There was a strong potential connection between these ARGs and mobile genetic elements, which could increase the ecological risk of abundant taxa and human disease. These results provide insights into sedimental bacterial communities and ARGs in river ecosystems. | 2022 | 36406442 |