# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6358 | 0 | 1.0000 | Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Deltaalr) showed auxotrophy for D-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented D-alanine auxotrophy in the L. plantarum Deltaalr and L. lactis Deltaalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to D-cycloserine, a competitive inhibitor of Alr (600 and 200 micro g/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that D-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Deltaalr. The resulting strain could grow in the absence of D-alanine only when expression of the alr gene was induced with nisin. | 2002 | 12406763 |
| 446 | 1 | 0.9993 | Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Lactobacilli are common inhabitants of the gastrointestinal tracts of mammals and have received considerable attention due to their putative health-promoting properties. Little is known about the traits that enhance the ability of these bacteria to inhabit the gastrointestinal tract. In this paper we describe the development and application of a strategy based on in vivo expression technology (IVET) that enables detection of Lactobacillus reuteri genes specifically induced in the murine gut. A plasmid-based system was constructed containing 'ermGT (which confers lincomycin resistance) as the primary reporter gene for selection of promoters active in the gastrointestinal tract of mice treated with lincomycin. A second reporter gene, 'bglM (beta-glucanase), allowed differentiation between constitutive and in vivo inducible promoters. The system was successfully tested in vitro and in vivo by using a constitutive promoter. Application of the IVET system with chromosomal DNA of L. reuteri 100-23 and reconstituted lactobacillus-free mice revealed three genes induced specifically during colonization. Two of the sequences showed homology to genes encoding xylose isomerase (xylA) and peptide methionine sulfoxide reductase (msrB), which are involved in nutrient acquisition and stress responses, respectively. The third locus showed homology to the gene encoding a protein whose function is not known. Our IVET system has the potential to identify genes of lactobacilli that have not previously been functionally characterized but which may be essential for growth of these bacteria in the gastrointestinal ecosystem. | 2003 | 12676681 |
| 445 | 2 | 0.9993 | Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol. | 2002 | 12390353 |
| 263 | 3 | 0.9993 | Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria. BACKGROUND: In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. RESULTS: The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion. CONCLUSION: We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome. | 2005 | 15651989 |
| 8456 | 4 | 0.9992 | Identification of genes required by Bacillus thuringiensis for survival in soil by transposon-directed insertion site sequencing. Transposon-directed insertion site sequencing was used to identify genes required by Bacillus thuringiensis to survive in non-axenic plant/soil microcosms. A total of 516 genetic loci fulfilled the criteria as conferring survival characteristics. Of these, 127 (24.6 %) were associated with uptake and transport systems; 227 loci (44.0 %) coded for enzymatic properties; 49 (9.5 %) were gene regulation or sensory loci; 40 (7.8 %) were structural proteins found in the cell envelope or had enzymatic activities related to it and 24 (4.7 %) were involved in the production of antibiotics or resistance to them. Eighty-three (16.1 %) encoded hypothetical proteins or those of unknown function. The ability to form spores was a key survival characteristic in the microcosms: bacteria, inoculated in either spore or vegetative form, were able to multiply and colonise the soil, whereas a sporulation-deficient mutant was not. The presence of grass seedlings was critical to colonisation. Bacteria labelled with green fluorescent protein were observed to adhere to plant roots. The sporulation-specific promoter of spo0A, the key regulator of sporulation, was strongly activated in the rhizosphere. In contrast, the vegetative-specific promoters of spo0A and PlcR, a pleiotropic regulator of genes with diverse activities, were only very weakly activated. | 2014 | 24310935 |
| 268 | 5 | 0.9992 | Amplification of bacitracin transporter genes in the bacitracin producing Bacillus licheniformis. We have amplified the previously cloned and sequenced genes of the bacitracin exporter (bcr), a member of the ATP-binding transport protein family, within the chromosome of the bacitracin producing Bacillus licheniformis. Amplification of the transporter genes was followed by greatly increased bacitracin resistance. Antibiotic production was enhanced at a low level of bcr genes amplification. An enlarged increase in the copy number of the bcr genes negatively affects the overall growth of bacteria. | 1997 | 9418256 |
| 385 | 6 | 0.9992 | Introduction of a mini-gene encoding a five-amino acid peptide confers erythromycin resistance on Bacillus subtilis and provides temporary erythromycin protection in Proteus mirabilis. A 15-bp mini-gene was introduced into Bacillus subtilis and into stable protoplast-like L-forms of Proteus mirabilis. This mini-gene encoded the peptide MVLFV and modeled a fragment of Escherichia coli 23S rRNA responsible for E. coli erythromycin (Ery) resistance. Expression of the introduced mini-gene conferred permanent Ery resistance on B. subtilis. In L-forms of P. mirabilis, the Ery-protective effect was maintained in the course of several generations. Herewith, the mechanism of Ery resistance mediated by expression of specific short peptides was shown to exist in evolutionary distant bacteria. Three new plasmids were constructed containing the gene under study transcriptionally fused with the genes encoding glutamylendopeptidase of Bacillus licheniformis or delta-endotoxin of Bacillus thuringiensis. The Ery resistance pentapeptide (E-peptide) mini-gene served as an efficient direct transcriptional reporter and allowed to select bacillar glutamylendopeptidase with improved productivity. The mini-genes encoding E-peptides may be applied as selective markers to transform both Gram-positive and Gram-negative bacteria. The small size of the E-peptide mini-genes makes them attractive selective markers for vector construction. | 2000 | 10620668 |
| 386 | 7 | 0.9992 | A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. The neo (neomycin-resistance) gene of transposon Tn5 encodes the enzyme neomycin phosphotransferase II (EC 2.7.1.95), which confers resistance to various aminoglycoside antibiotics, including kanamycin and G418. The gene is widely used as a selectable marker in the transformation of organisms as diverse as bacteria, yeast, plants, and animals. We found a mutation that involves a glutamic to aspartic acid conversion at residue 182 in the protein encoded by the chimeric neomycin phosphotransferase II genes of several commonly used transformation vectors. The mutation substantially reduces phosphotransferase activity but does not appear to affect the stability of the neomycin phosphotransferase II mRNA or protein. Plants and bacteria transformed with the mutant gene are less resistant to antibiotics than those transformed with the normal gene. A simple restriction endonuclease digestion distinguishes between the mutant and the normal gene. | 1990 | 2159150 |
| 158 | 8 | 0.9991 | Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq. In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry. | 2021 | 33945164 |
| 6312 | 9 | 0.9991 | D-serine deaminase is a stringent selective marker in genetic crosses. The presence of the locus for D-serine deaminase (dsd) renders bacteria resistant to growth inhibition by D-serine and enables them to grow with D-serine as the sole nitrogen source. The two properties permit stringent selection in genetic crosses and make the D-serine deaminase gene an excellent marker, especially in the construction of strains for which the use of antibiotic resistance genes as selective markers is not allowed. | 1995 | 7814336 |
| 8455 | 10 | 0.9991 | RT-PCR: characterization of long multi-gene operons and multiple transcript gene clusters in bacteria. Reverse transcription (RT)-PCR is a valuable tool widely used for analysis of gene expression. In bacteria, RT-PCR is helpful beyond standard protocols of northern blot RNA/DNA hybridization (to identify transcripts) and primer extension (to locate their start points), as these methods have been difficult with transcripts that are low in abundance or unstable, similar to long multi-gene operons. In this report, RT-PCR is adapted to analyze transcripts that form long multi-gene operons--where they start and where they stop. The transcripts can also be semiquantitated to follow the expression of genes under different growth conditions. Examples using RT-PCR are presented with two different multi-gene systems for metal cation resistance to silver and mercury ions. The silver resistance system [9 open reading frames (ORFs); 12.5 kb] is shown by RT-PCR to synthesize three nonoverlapping messenger RNAs that are transcribed divergently. In the mercury resistance system (8 ORFs; 6.3 kb), all the genes are transcribed in the same orientation, and two promoter sites produce overlapping transcripts. For RT-PCR, reverse transcriptase enzyme is used to synthesize first-strand cDNA that is used as a template for PCR amplification of single-gene products, from the beginning, middle or end of long multi-gene, multi-transcript gene clusters. | 1999 | 10572645 |
| 423 | 11 | 0.9991 | Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for D-serine utilization. As the first stage in investigating the genetic basis of natural variation in Escherichia coli, the gene(s) conferring the ability to use sucrose as a carbon and energy source (given the symbol sac+) was transferred from a wild strain to K12, which does not use sucrose. The sac+ region was transferred by two different methods. On both occasions it took a chromosomal location at minute 50.5 on the linkage map, between aroC and supN, in the region of the dsd genes, which confer the ability to use D-serine as a carbon and energy source. When the sac+ region was present in the K12 chromosome the bacteria were unable to use D-serine as a carbon and energy source. In F' sac+/dsd+ diploids, the dsd+ genes were similarly not expressed. Strain K12(sac+) bacteria were sensitive to inhibition by D-serine; they mutated to D-serine resistance with much greater frequency than did a dsd mutant of K12. Such bacteria also mutated frequently to use raffinose. Strain K12(sac+) bacteria did not utilize sucrose when they carried a mutation affecting the phosphotransferase system. | 1979 | 372492 |
| 443 | 12 | 0.9991 | Deletion mutant analysis of the Staphylococcus aureus plasmid pI258 mercury-resistance determinant. Deletion mutant analysis of the mercury-resistant determinant (mer operon) from the Staphylococcus aureus plasmid pI258 was used to verify the location of the merA and merB genes and to show the existence of mercuric ion transport gene(s). ORF5 was confirmed to be a transport gene and has an amino acid product sequence homologous to the merT gene products from several gram-negative bacteria and a Bacillus species. Deletion analysis established that inactivation of merA on a broad-spectrum mer resistance determinant resulted in a mercury-hypersensitive phenotype. Gene dosage had no apparent effect on the level of resistance conferred by the intact mer operon or on the expression of an inducible phenotype, except that when the intact pI258 mer operon was on a high copy number plasmid, uninduced cells possessed a volatilization rate that was at most only 3.5-fold less than that observed for induced cells. There was no need for mercury ion transport proteins for full resistance when the mer operon was expressed in a high copy number plasmid. | 1991 | 1954576 |
| 260 | 13 | 0.9991 | Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria. | 2011 | 21538255 |
| 6344 | 14 | 0.9991 | Acid-resistant genes of oral plaque microbiome from the functional metagenomics. Acid resistance is one of key properties assisting the survival of cariogenic bacteria in a dental caries environment, but only a few genes conferring acid resistance have been identified to data. Functional metagenomics provides a systematic method for investigating commensal DNA to identify genes that encode target functions. Here, the host strain Escherichia coli DH10B and a constructed bidirectional transcription vector pSKII(+)-lacZ contributed to the construction of a metagenomic library, and 46.6 Mb of metagenomic DNA was cloned from carious supragingival plaque of 8children along with screening for lethal functionality. The screen identified 2 positive clones that exhibited a similar aciduric phenotype to that of the positive controls. Bioinformatic analysis revealed that these two genes encoded an ATP/GTP-binding protein and a malate dehydrogenase. Moreover, we also performed functional screening of Streptococcus mutans, since it is one of the predominant cariogenic strains but was not identified in our initial screening. Five positive clones were retrieved. In conclusion, our improved functional metagenomics screening method helped in the identification of important acid resistance genes, thereby providing new insights into the mechanism underlying caries formation as well as in the prevention and treatment of early childhood caries (ECC). | 2018 | 29503702 |
| 6327 | 15 | 0.9991 | The Response of Enterococcus faecalis V583 to Chloramphenicol Treatment. Many Enterococcus faecalis strains display tolerance or resistance to many antibiotics, but genes that contribute to the resistance cannot be specified. The multiresistant E. faecalis V583, for which the complete genome sequence is available, survives and grows in media containing relatively high levels of chloramphenicol. No specific genes coding for chloramphenicol resistance has been recognized in V583. We used microarrays to identify genes and mechanisms behind the tolerance to chloramphenicol in V583, by comparison of cells treated with subinhibitory concentrations of chloramphenicol and untreated V583 cells. During a time course experiment, more than 600 genes were significantly differentially transcribed. Since chloramphenicol affects protein synthesis in bacteria, many genes involved in protein synthesis, for example, genes for ribosomal proteins, were induced. Genes involved in amino acid biosynthesis, for example, genes for tRNA synthetases and energy metabolism were downregulated, mainly. Among the upregulated genes were EF1732 and EF1733, which code for potential chloramphenicol transporters. Efflux of drug out of the cells may be one mechanism used by V583 to overcome the effect of chloramphenicol. | 2010 | 20628561 |
| 259 | 16 | 0.9991 | Dual-Plasmid Mini-Tn5 System to Stably Integrate Multicopy of Target Genes in Escherichia coli. The efficiency of valuable metabolite production by engineered microorganisms underscores the importance of stable and controllable gene expression. While plasmid-based methods offer flexibility, integrating genes into host chromosomes can establish stability without selection pressure. However, achieving site-directed multicopy integration presents challenges, including site selection and stability. We introduced a stable multicopy integration method by using a novel dual-plasmid mini-Tn5 system to insert genes into Escherichia coli's genome. The gene of interest was combined with a removable antibiotic resistance gene. After the selection of bacteria with inserted genes, the antibiotic resistance gene was removed. Optimizations yielded an integration efficiency of approximately 5.5 × 10(-3) per recipient cell in a single round. Six rounds of integration resulted in 19 and 5 copies of the egfp gene in the RecA(+) strain MG1655 and the RecA(-) strain XL1-Blue MRF', respectively. Additionally, we integrated a polyhydroxybutyrate (PHB) synthesis gene cluster into E. coli MG1655, yielding an 8-copy integration strain producing more PHB than strains with the cluster on a high-copy plasmid. The method was efficient in generating gene insertions in various E. coli strains, and the inserted genes were stable after extended culture. This stable, high-copy integration tool offers potential for diverse applications in synthetic biology. | 2024 | 39418641 |
| 4495 | 17 | 0.9991 | Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance. Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild-type genes with mutated L3 genes in a chromosomal L3 deletion strain. In this way, the essential L3 gene is available for the bacteria while allowing replacement of the wild type with mutated L3 genes. This enables investigation of the effect of single mutations in Escherichia coli without a wild-type L3 background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations are placed in the loops of L3 near the PTC. Growth data show that 9 of the 10 mutations were well accepted in E. coli, although some of them came with a fitness cost. Only one of the mutants exhibited reduced susceptibility to linezolid, while five exhibited reduced susceptibility to tiamulin. | 2015 | 25845869 |
| 4498 | 18 | 0.9991 | A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. Gene amplifications have been detected as a transitory phenomenon in bacterial cultures. They are predicted to contribute to rapid adaptation by simultaneously increasing the expression of genes clustered on the chromosome. However, genome amplifications have rarely been described in natural isolates. Through DNA array analysis, we have identified two Streptococcus agalactiae strains carrying tandem genome amplifications: a fourfold amplification of 13.5 kb and a duplication of 92 kb. Both amplifications were located close to the terminus of replication and originated independently from any long repeated sequence. They probably arose in the human host and showed different stabilities, the 13.5-kb amplification being lost at a frequency of 0.003 per generation and the 92-kb tandem duplication at a frequency of 0.035 per generation. The 13.5-kb tandem amplification carried the five genes required for dihydrofolate biosynthesis and led to both trimethoprim (TMP) and sulfonamide (SU) resistance. Resistance to SU probably resulted from the increased synthesis of dihydropteroate synthase, the target of this antibiotic, whereas the amplification of the whole pathway was responsible for TMP resistance. This revealed a new mechanism of resistance to TMP involving an increased dihydrofolate biosynthesis. This is, to our knowledge, the first reported case of naturally occurring antibiotic resistance resulting from genome amplification in bacteria. The low stability of DNA segment amplifications suggests that their role in antibiotic resistance might have been underestimated. | 2008 | 18024520 |
| 157 | 19 | 0.9991 | Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation. | 2008 | 17920150 |