Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
635401.0000Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. A plasmid-borne copper resistance operon (lco) was identified from Lactococcus lactis subsp. lactis LL58-1. The lco operon consists of three structural genes lcoABC. The predicted products of lcoA and lcoB were homologous to chromosomally encoded prolipoprotein diacylglyceral transferases and two uncharacterized proteins respectively, and the product of lcoC is similar to several multicopper oxidases, which are generally plasmid-encoded. This genetic organization represents a new combination of genes for copper resistance in bacteria. The three genes are co-transcribed from a copper-inducible promoter, which is controlled by lcoRS encoding a response regulator and a kinase sensor. The five genes are flanked by two insertion sequences, almost identical to IS-LL6 from L. lactis. Transposon mutagenesis and subcloning analysis indicated that the three structural genes were all required for copper resistance. Copper assay results showed that the extracellular concentration of copper of L. lactis LM0230 containing the lco operon was significantly higher than that of the host strain when copper was added at concentrations from 2 to 3 mM. The results suggest that the lco operon conferred copper resistance by reducing the intracellular accumulation of copper ions in L. lactis.200212384305
18010.9989Bacterial resistances to inorganic mercury salts and organomercurials. Environmental and clinical isolates of mercury-resistant (resistant to inorganic mercury salts and organomercurials) bacteria have genes for the enzymes mercuric ion reductase and organomercurial lyase. These genes are often plasmid-encoded, although chromosomally encoded resistance determinants have been occasionally identified. Organomercurial lyase cleaves the C-Hg bond and releases Hg(II) in addition to the appropriate organic compound. Mercuric reductase reduces Hg(II) to Hg(O), which is nontoxic and volatilizes from the medium. Mercuric reductase is a FAD-containing oxidoreductase and requires NAD(P)H and thiol for in vitro activity. The crystal structure of mercuric ion reductase has been partially solved. The primary sequence and the three-dimensional structure of the mercuric reductase are significantly homologous to those of other flavin-containing oxidoreductases, e.g., glutathione reductase and lipoamide dehydrogenase. The active site sequences are the most conserved region among these flavin-containing enzymes. Genes encoding other functions have been identified on all mercury ion resistance determinants studied thus far. All mercury resistance genes are clustered into an operon. Hg(II) is transported into the cell by the products of one to three genes encoded on the resistance determinants. The expression of the operon is regulated and is inducible by Hg(II). In some systems, the operon is inducible by both Hg(II) and some organomercurials. In gram-negative bacteria, two regulatory genes (merR and merD) were identified. The (merR) regulatory gene is transcribed divergently from the other genes in gram-negative bacteria. The product of merR represses operon expression in the absence of the inducers and activates transcription in the presence of the inducers. The product of merD coregulates (modulates) the expression of the operon. Both merR and merD gene products bind to the same operator DNA. The primary sequence of the promoter for the polycistronic mer operon is not ideal for efficient transcription by the RNA polymerase. The -10 and -35 sequences are separated by 19 (gram-negative systems) or 20 (gram-positive systems) nucleotides, 2 or 3 nucleotides longer than the 17-nucleotide optimum distance for binding and efficient transcription by the Escherichia coli sigma 70-containing RNA polymerase. The binding site of MerR is not altered by the presence of Hg(II) (inducer). Experimental data suggest that the MerR-Hg(II) complex alters the local structure of the promoter region, facilitating initiation of transcription of the mer operon by the RNA polymerase. In gram-positive bacteria MerR also positively regulates expression of the mer operon in the presence of Hg(II).19921311113
44320.9989Deletion mutant analysis of the Staphylococcus aureus plasmid pI258 mercury-resistance determinant. Deletion mutant analysis of the mercury-resistant determinant (mer operon) from the Staphylococcus aureus plasmid pI258 was used to verify the location of the merA and merB genes and to show the existence of mercuric ion transport gene(s). ORF5 was confirmed to be a transport gene and has an amino acid product sequence homologous to the merT gene products from several gram-negative bacteria and a Bacillus species. Deletion analysis established that inactivation of merA on a broad-spectrum mer resistance determinant resulted in a mercury-hypersensitive phenotype. Gene dosage had no apparent effect on the level of resistance conferred by the intact mer operon or on the expression of an inducible phenotype, except that when the intact pI258 mer operon was on a high copy number plasmid, uninduced cells possessed a volatilization rate that was at most only 3.5-fold less than that observed for induced cells. There was no need for mercury ion transport proteins for full resistance when the mer operon was expressed in a high copy number plasmid.19911954576
18530.9988The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated.200010788346
37240.9988A chromosomal locus required for copper resistance, competitive fitness, and cytochrome c biogenesis in Pseudomonas fluorescens. A chromosomal locus required for copper resistance and competitive fitness was cloned from a strain of Pseudomonas fluorescens isolated from copper-contaminated agricultural soil. Sequence analysis of this locus revealed six open reading frames with homology to genes involved in cytochrome c biogenesis in other bacteria, helC, cycJ, cycK, tipB, cycL, and cycH, with the closest similarity being to the aeg-46.5(yej) region of the Escherichia coli chromosome. The proposed functions of these genes in other bacteria include the binding, transport, and coupling of heme to apocytochrome c in the periplasm of these Gram-negative bacteria. Putative heme-binding motifs were present in the predicted products of cycK and cycL, and TipB contained a putative disulfide oxidoreductase active site proposed to maintain the heme-binding site of the apocytochrome in a reduced state for ligation of heme. Tn3-gus mutagenesis showed that expression of the genes was constitutive but enhanced by copper, and confirmed that the genes function both in copper resistance and production of active cytochrome c. However, two mutants in cycH were copper-sensitive and oxidase-positive, suggesting that the functions of these genes, rather than cytochrome c oxidase itself, were required for resistance to copper.19968692990
43950.9988Sequence and organization of pMAC, an Acinetobacter baumannii plasmid harboring genes involved in organic peroxide resistance. Acinetobacter baumannii 19606 harbors pMAC, a 9540-bp plasmid that contains 11 predicted open-reading frames (ORFs). Cloning and transformation experiments using Acinetobacter calcoaceticus BD413 mapped replication functions within a region containing four 21-bp direct repeats (ori) and ORF 1, which codes for a predicted replication protein. Subcloning and tri-parental mating experiments mapped mobilization functions to the product of ORF 11 and an adjacent predicted oriT. Three ORFs code for proteins that share similarity to hypothetical proteins encoded by plasmid genes found in other bacteria, while the predicted products of three others do not match any known sequence. The product of ORF 8 is similar to Ohr, a hydroperoxide reductase responsible for organic peroxide detoxification and resistance in bacteria. This ORF is immediately upstream of a coding region whose product is related to the MarR family of transcriptional regulators. Disk diffusion assays showed that A. baumannii 19606 is resistant to the organic peroxide-generating compounds cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (t-BHP), although to levels lower than those detected in Pseudomonas aeruginosa PAO1. Cloning and introduction of the ohr and marR ORFs into Escherichia coli was associated with an increase in resistance to CHP and t-BHP. This appears to be the first case in which the genetic determinants involved in organic peroxide resistance are located in an extrachromosomal element, a situation that can facilitate the horizontal transfer of genetic elements coding for a function that protects bacterial cells from oxidative damage.200616530832
40460.9988Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. pLm74 is the smallest known plasmid in Listeria monocytogenes. It confers resistance to the toxic divalent cation cadmium. It contains a 3.1-kb EcoRI fragment which hybridizes with the cadAC genes of plasmid pI258 of Staphylococcus aureus. When introduced into cadmium-sensitive L. monocytogenes or Bacillus subtilis strains, this fragment conferred cadmium resistance. The DNA sequence of the 3.1-kb EcoRI fragment contains two open reading frames, cadA and cadC. The deduced amino acid sequences are similar to those of the cad operon of plasmid pI258 of S. aureus, known to prevent accumulation of Cd2+ in the bacteria by an ATPase efflux mechanism. The cadmium resistance determinant of L. monocytogenes does not confer zinc resistance, in contrast to the cadAC determinant of S. aureus, suggesting that the two resistance mechanisms are slightly different. Slot blot DNA-RNA hybridization analysis showed cadmium-inducible synthesis of L. monocytogenes cadAC RNA.19948188605
49470.9988The mercury resistance operon of the IncJ plasmid pMERPH exhibits structural and regulatory divergence from other Gram-negative mer operons. The bacterial mercury resistance determinant carried on the IncJ plasmid pMERPH has been characterized further by DNA sequence analysis. From the sequence of a 4097 bp Bg/II fragment which confers mercury resistance, it is predicted that the determinant consists of the genes merT, merP, merC and merA. The level of DNA sequence similarity between these genes and those of the mer determinant of Tn21 was between 56 center dot 4 and 62 center dot 4%. A neighbour-joining phylogenetic tree of merA gene sequences was constructed which suggested that pMERPH bears the most divergent Gram-negative mer determinant characterized to date. Although the determinant from pMERPH has been shown to be inducible, no regulatory genes have been found within the Bg/II fragment and it is suggested that a regulatory gene may be located elsewhere on the plasmid. The cloned determinant has been shown to express mercury resistance constitutively. Analysis of the pMERPH mer operator/promoter (O/P) region in vivo has shown constitutive expression from the mer PTCPA promoter, which could be partially repressed by the presence of a trans-acting MerR protein from a Tn21-like mer determinant. This incomplete repression of mer PTCPA promoter activity may be due to the presence of an extra base between the -35 and -10 sequences of the promoter and/or to variation in the MerR binding sites in the O/P region. Expression from the partially repressed mer PTCPA promoter could be restored by the addition of inducing levels of Hg2+ ions. Using the polymerase chain reaction with primers designed to amplify regions in the merP and merA genes, 1 center dot 37 kb pMERPH-like sequences have been amplified from the IncJ plasmid R391, the environmental isolate SE2 and from DNA isolated directly from non-cultivated bacteria in River Mersey sediment. This suggests that pMERPH-like sequences, although rare, are nevertheless persistent in natural environments.19968932707
44080.9987Nucleotide sequence analysis reveals similarities between proteins determining methylenomycin A resistance in Streptomyces and tetracycline resistance in eubacteria. Previous studies had localised the gene (mmr) for resistance to methylenomycin A (Mm) to a 2.5-kb PstI fragment in the middle of a cluster of Mm biosynthetic genes from the Streptomyces coelicolor plasmid SCP1. In this paper, the gene has been more precisely located by sub-cloning, and the nucleotide sequence of the whole fragment has been determined. The predicted mmr-specified protein (Mr 49238) would be hydrophobic, with some homology at the amino acid level to tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria. Comparisons of hydropathy plots of the amino acid sequences reinforces the idea that the proteins are similar. It is suggested that Mm resistance may be conferred by a membrane protein, perhaps controlling efflux of the antibiotic. No significant homology was detected by hybridisation analysis between mmr and a cloned oxytetracycline (OTc)-resistance gene (tetB) of the OTc producer Streptomyces rimosus, and no cross-resistance was conferred by these genes. Sequences on both sides of mmr appear to encode proteins. The direction of translation in each case would be opposite to that of mmr translation. This suggests that mmr is transcribed as a monocistronic mRNA from a bidirectional promoter. An extensive inverted repeat sequence between the stop codons of mmr and the converging gene may function as a bidirectional transcription terminator.19872828187
635590.9987Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria were previously shown to carry plasmid-borne copper resistance genes related to the cop and pco operons of Pseudomonas syringae and Escherichia coli, respectively. However, instead of the two-component (copRS and pcoRS) systems determining copper-inducible expression of the operons in P. syringae and E. coli, a novel open reading frame, copL, was found to be required for copper-inducible expression of the downstream multicopper oxidase copA in X. axonopodis. copL encodes a predicted protein product of 122 amino acids that is rich in histidine and cysteine residues, suggesting a possible direct interaction with copper. Deletions or frameshift mutations within copL, as well as an amino acid substitution generated at the putative start codon of copL, caused a loss of copper-inducible transcriptional activation of copA. A nonpolar insertion of a kanamycin resistance gene in copL resulted in copper sensitivity in the wild-type strain. However, repeated attempts to complement copL mutations in trans failed. Analysis of the genomic sequence databases shows that there are copL homologs upstream of copAB genes in X. axonopodis pv. citri, X. campestris pv. campestris, and Xylella fastidiosa. The cloned promoter area upstream of copA in X. axonopodis pv. vesicatoria did not function in Pseudomonas syringae or in E. coli, nor did the P. syringae cop promoter function in Xanthomonas. However, a transcriptional fusion of the Xanthomonas cop promoter with the Pseudomonas copABCDRS was able to confer resistance to copper in Xanthomonas, showing divergence in the mechanisms of regulation of the resistance to copper in phytopathogenic bacteria.200515691931
442100.9987Mercuric reductase in environmental gram-positive bacteria sensitive to mercury. According to existing data, mercury resistance operons (mer operons) are in general thought to be rare in bacteria, other than those from mercury-contaminated sites. We have found that a high proportion of strains in environmental isolates of Gram-positive bacteria express mercuric reductase (MerA protein): the majority of these strains are apparently sensitive to mercury. The expression of MerA was also inducible in all cases. These results imply the presence of phenotypically cryptic mer resistance operons, with both the merA (mercuric reductase) and merR (regulatory) genes still present, but the possible absence of the transport function required to complete the resistance mechanism. This indicates that mer operons or parts thereof are more widely spread in nature than is suggested by the frequency of mercury-resistant bacteria.19921427009
446110.9987Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Lactobacilli are common inhabitants of the gastrointestinal tracts of mammals and have received considerable attention due to their putative health-promoting properties. Little is known about the traits that enhance the ability of these bacteria to inhabit the gastrointestinal tract. In this paper we describe the development and application of a strategy based on in vivo expression technology (IVET) that enables detection of Lactobacillus reuteri genes specifically induced in the murine gut. A plasmid-based system was constructed containing 'ermGT (which confers lincomycin resistance) as the primary reporter gene for selection of promoters active in the gastrointestinal tract of mice treated with lincomycin. A second reporter gene, 'bglM (beta-glucanase), allowed differentiation between constitutive and in vivo inducible promoters. The system was successfully tested in vitro and in vivo by using a constitutive promoter. Application of the IVET system with chromosomal DNA of L. reuteri 100-23 and reconstituted lactobacillus-free mice revealed three genes induced specifically during colonization. Two of the sequences showed homology to genes encoding xylose isomerase (xylA) and peptide methionine sulfoxide reductase (msrB), which are involved in nutrient acquisition and stress responses, respectively. The third locus showed homology to the gene encoding a protein whose function is not known. Our IVET system has the potential to identify genes of lactobacilli that have not previously been functionally characterized but which may be essential for growth of these bacteria in the gastrointestinal ecosystem.200312676681
292120.9987Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Tetracycline-resistance determinants encoding active efflux of the drug are widely distributed in gram-negative bacteria and unique with respect to genetic organization and regulation of expression. Each determinant consists of two genes called tetA and tetR, which are oriented with divergent polarity, and between them is a central regulatory region with overlapping promoters and operators. The amino acid sequences of the encoded proteins are 43-78% identical. The resistance protein TetA is a tetracycline/metal-proton antiporter located in the cytoplasmic membrane, while the regulatory protein TetR is a tetracycline inducible repressor. TetR binds via a helix-turn-helix motif to the two tet operators, resulting in repression of both genes. A detailed model of the repressor-operator complex has been proposed on the basis of biochemical and genetic data. The tet genes are differentially regulated so that repressor synthesis can occur before the resistance protein is expressed. This has been demonstrated for the Tn10-encoded tet genes and may be a common property of all tet determinants, as suggested by the similar locations of operators with respect to promoters. Induction is mediated by a tetracycline-metal complex and requires only nanomolar concentrations of the drug. This is the most sensitive effector-inducible system of transcriptional regulation known to date. The crystal structure of the TetR-tetracycline/metal complex shows the Tet repressor in the induced, non-DNA binding conformation. The structural interpretation of many noninducible TetR mutants has offered insight into the conformational changes associated with the switch between inducing and repressing structures of TetR. Tc is buried in the core of TetR, where it is held in place by multiple contacts to the protein.19947826010
428130.9986Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLS1. The streptococcal plasmid pMV158 and its derivative pLS1 are able to replicate and confer tetracycline resistance in both Gram-positive and Gram-negative bacteria. Copy numbers of pLS1 were 24, 4 and 4 molecules per genome in Streptococcus pneumoniae, Bacillus subtilis and Escherichia coli, respectively. Replication of the streptococcal plasmids in E. coli required functional polA and recA genes. A copy-number mutation corresponding to a 332 base-pair deletion of pLS1 doubled the plasmid copy number in all three species. Determination of the complete DNA sequence of pLS1 revealed transcriptional and translational signals and four open reading frames. A putative inhibitory RNA was encoded in the region deleted by the copy-control mutation. Two putative mRNA transcripts encoded proteins for replication functions and tetracycline resistance, respectively. The repB gene encoded a trans-acting, 23,000 Mr protein necessary for replication, and the tet gene encoded a very hydrophobic, 50,000 Mr protein required for tetracycline resistance. The polypeptides corresponding to these proteins were identified by specific labeling of plasmid-encoded products. The tet gene of pLS1 was highly homologous to tet genes in two other plasmids of Gram-positive origin but different in both sequence and mode of regulation from tet genes of Gram-negative origin.19862438417
178140.9986Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. Bacteria mediate resistance to organomercurial and inorganic mercuric salts by metabolic conversion to nontoxic elemental mercury, Hg(0). The genes responsible for mercury resistance are organized in the mer operon, and such operons are often found in plasmids that also bear drug resistance determinants. We have subcloned three of these mer genes, merR, merB, and merA, and have studied their protein products via protein overproduction and purification, and structural and functional characterization. MeR is a metalloregulatory DNA-binding protein that acts as a repressor of both its own and structural gene transcription in the absence of Hg(II); in addition it acts as a positive effector of structural gene transcription when Hg(II) is present. MerB, organomercury lyase, catalyzes the protonolytic fragmentation of organomercurials to the parent hydrocarbon and Hg(II) by an apparent SE2 mechanism. MerA, mercuric ion reductase, is an FAD-containing and redox-active disulfide-containing enzyme with homology to glutathione reductase. It has evolved the unique catalytic capacity to reduce Hg(II) to Hg(0) and thereby complete the detoxification scheme.19883277886
181150.9986Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270. Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium.201626637599
363160.9986Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11. Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III].201525753102
6357170.9986Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Production of pediocin in Pediococcus acidilactici is associated with pMBR1.0, which encodes prepediocin, a pediocin immunity protein, and two proteins involved in secretion and precursor processing. These four genes are organized as an operon under control of a single promoter. We have constructed shuttle vectors that contain all four structural genes, the chromosomal promoter ST(P2201) from Streptococcus thermophilus, and repA from the 2-kbp S. thermophilus plasmid pER8. The recombinant plasmid, pPC318, expressed and secreted active pediocin in Escherichia coli. Streptococcus thermophilus, Lactococcus lactis subsp. lactis, and Enterococcus faecalis were electrotransformed with pPC418, a modified vector fitted with an erythromycin resistance tracking gene. Pediocin was produced and secreted in each of the lactic acid bacteria, and production was stable for up to ten passages. The expression of pediocin in dairy fermentation microbes has important implications for bacteriocins as food preservatives in dairy products.199910489440
445180.9986Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol.200212390353
6324190.9986Genetic and biochemical basis of tetracycline resistance. Properties of several, well characterized, tetracycline resistance determinants were compared. The determinants in Tn1721 and Tn10 (both from Gram-negative bacteria) each contain two genes; one encodes a repressor that regulates both its own transcription and that of a membrane protein that confers resistance by promoting efflux of the drug. Determinants from Gram-positive bacteria also encode efflux proteins, but expression of resistance is probably regulated by translational attenuation. The likely tetracycline binding site (a common dipeptide) in each efflux protein was predicted. The presence of the common binding site is consistent with the ability of an efflux protein originating in Bacillus species to be expressed in Escherichia coli.19863542941