# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6344 | 0 | 1.0000 | Acid-resistant genes of oral plaque microbiome from the functional metagenomics. Acid resistance is one of key properties assisting the survival of cariogenic bacteria in a dental caries environment, but only a few genes conferring acid resistance have been identified to data. Functional metagenomics provides a systematic method for investigating commensal DNA to identify genes that encode target functions. Here, the host strain Escherichia coli DH10B and a constructed bidirectional transcription vector pSKII(+)-lacZ contributed to the construction of a metagenomic library, and 46.6 Mb of metagenomic DNA was cloned from carious supragingival plaque of 8children along with screening for lethal functionality. The screen identified 2 positive clones that exhibited a similar aciduric phenotype to that of the positive controls. Bioinformatic analysis revealed that these two genes encoded an ATP/GTP-binding protein and a malate dehydrogenase. Moreover, we also performed functional screening of Streptococcus mutans, since it is one of the predominant cariogenic strains but was not identified in our initial screening. Five positive clones were retrieved. In conclusion, our improved functional metagenomics screening method helped in the identification of important acid resistance genes, thereby providing new insights into the mechanism underlying caries formation as well as in the prevention and treatment of early childhood caries (ECC). | 2018 | 29503702 |
| 6346 | 1 | 0.9997 | Identification of unknown acid-resistant genes of oral microbiotas in patients with dental caries using metagenomics analysis. Acid resistance is critical for the survival of bacteria in the dental caries oral micro-environment. However, there are few acid-resistant genes of microbiomes obtained through traditional molecular biology experimental techniques. This study aims to try macrogenomics technologies to efficiently identify acid-resistant genes in oral microbes of patients with dental caries. Total DNA was extracted from oral microbiota obtained from thirty dental caries patients and subjected to high-throughput sequencing. This data was used to build a metagenomic library, which was compared to the sequences of two Streptococcus mutant known acid-resistant genes, danK and uvrA, using a BLAST search. A total of 19 and 35 unknown gene sequences showed similarities with S. mutans uvrA and dnaK in the metagenomic library, respectively. Two unknown genes, mo-dnaK and mo-uvrA, were selected for primer design and bioinformatic analysis based on their sequences. Bioinformatics analysis predicted them encoding of a human heat-shock protein (HSP) 70 and an ATP-dependent DNA repair enzyme, respectively, closely related with the acid resistance mechanism. After cloning, these genes were transferred into competent Escherichia coli for acid resistance experiments. E. coli transformed with both genes demonstrated acid resistance, while the survival rate of E. coli transformed with mo-uvrA was significantly higher in an acidic environment (pH = 3). Through this experiment we found that identify unknown acid-resistant genes in oral microbes of patients with caries by establishing a metagenomic library is very efficient. Our results provide an insight into the mechanisms and pathogenesis of dental caries for their treatment without affecting oral probiotics. | 2021 | 33675438 |
| 4454 | 2 | 0.9997 | Functional verification of computationally predicted qnr genes. BACKGROUND: The quinolone resistance (qnr) genes are widely distributed among bacteria. We recently developed and applied probabilistic models to identify tentative novel qnr genes in large public collections of DNA sequence data including fragmented metagenomes. FINDINGS: By using inducible recombinant expressions systems the functionality of four identified qnr candidates were evaluated in Escherichia coli. Expression of several known qnr genes as well as two novel candidates provided fluoroquinolone resistance that increased with elevated inducer concentrations. The two novel, functionally verified qnr genes are termed Vfuqnr and assembled qnr 1. Co-expression of two qnr genes suggested non-synergistic action. CONCLUSION: The combination of a computational model and recombinant expression systems provides opportunities to explore and identify novel antibiotic resistance genes in both genomic and metagenomic datasets. | 2013 | 24257207 |
| 6335 | 3 | 0.9997 | Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics. | 2021 | 34756069 |
| 4382 | 4 | 0.9997 | A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Intracellular bacteria survive within eukaryotic host cells and are difficult to kill with certain antibiotics. As a result, antibiotic resistance in intracellular bacteria is becoming commonplace in healthcare institutions. Owing to the lack of methods available for transforming these bacteria, we evaluated the mechanisms of resistance using molecular methods and in silico genome analysis. The objective of this review was to understand the molecular mechanisms of antibiotic resistance through in silico comparisons of the genomes of obligate and facultative intracellular bacteria. The available data on in vitro mutants reported for intracellular bacteria were also reviewed. These genomic data were analysed to find natural mutations in known target genes involved in antibiotic resistance and to look for the presence or absence of different resistance determinants. Our analysis revealed the presence of tetracycline resistance protein (Tet) in Bartonella quintana, Francisella tularensis and Brucella ovis; moreover, most of the Francisella strains possessed the blaA gene, AmpG protein and metallo-beta-lactamase family protein. The presence or absence of folP (dihydropteroate synthase) and folA (dihydrofolate reductase) genes in the genome could explain natural resistance to co-trimoxazole. Finally, multiple genes encoding different efflux pumps were studied. This in silico approach was an effective method for understanding the mechanisms of antibiotic resistance in intracellular bacteria. The whole genome sequence analysis will help to predict several important phenotypic characteristics, in particular resistance to different antibiotics. In the future, stable mutants should be obtained through transformation methods in order to demonstrate experimentally the determinants of resistance in intracellular bacteria. | 2008 | 18619818 |
| 8382 | 5 | 0.9997 | Transcriptional and Functional Analysis of Bifidobacterium animalis subsp. lactis Exposure to Tetracycline. Commercial probiotic bacteria must be tested for acquired antibiotic resistance elements to avoid potential transfer to pathogens. The European Food Safety Authority recommends testing resistance using microdilution culture techniques previously used to establish inhibitory thresholds for the Bifidobacterium genus. Many Bifidobacterium animalis subsp. lactis strains exhibit increased resistance to tetracycline, historically attributed to the ribosomal protection gene tet(W). However, some strains that harbor genetically identical tet(W) genes show various inhibition levels, suggesting that other genetic elements also contribute to observed differences. Here, we adapted several molecular assays to confirm the inhibition of B. animalis subsp. lactis strains Bl-04 and HN019 and employed RNA sequencing to assess the transcriptional differences related to genomic polymorphisms. We detected specific stress responses to the antibiotic by correlating ATP concentration to number of viable genome copies from droplet digital PCR and found that the bacteria were still metabolically active in high drug concentrations. Transcriptional analyses revealed that several polymorphic regions, particularly a novel multidrug efflux transporter, were differentially expressed between the strains in each experimental condition, likely having phenotypic effects. We also found that the tet(W) gene was upregulated only during subinhibitory tetracycline concentrations, while two novel tetracycline resistance genes were upregulated at high concentrations. Furthermore, many genes involved in amino acid metabolism and transporter function were upregulated, while genes for complex carbohydrate utilization, protein metabolism, and clustered regularly interspaced short palindromic repeat(s) (CRISPR)-Cas systems were downregulated. These results provide high-throughput means for assessing antibiotic resistances of two highly related probiotic strains and determine the genetic network that contributes to the global tetracycline response.IMPORTANCEBifidobacterium animalis subsp. lactis is widely used in human food and dietary supplements. Although well documented to be safe, B. animalis subsp. lactis strains must not contain transferable antibiotic resistance elements. Many B. animalis subsp. lactis strains have different resistance measurements despite being genetically similar, and the reasons for this are not well understood. In the current study, we sought to examine how genomic differences between two closely related industrial B. animalis subsp. lactis strains contribute to different resistance levels. This will lead to a better understanding of resistance, identify future targets for analysis of transferability, and expand our understanding of tetracycline resistance in bacteria. | 2018 | 30266728 |
| 4381 | 6 | 0.9997 | Specific Gene Loci of Clinical Pseudomonas putida Isolates. Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host's immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria. | 2016 | 26820467 |
| 4380 | 7 | 0.9997 | Comparative genome analysis of ciprofloxacin-resistant Pseudomonas aeruginosa reveals genes within newly identified high variability regions associated with drug resistance development. The alarming rise of ciprofloxacin-resistant Pseudomonas aeruginosa has been reported in several clinical studies. Though the mutation of resistance genes and their role in drug resistance has been researched, the process by which the bacterium acquires high-level resistance is still not well understood. How does the genomic evolution of P. aeruginosa affect resistance development? Could the exposure of antibiotics to the bacteria enrich genomic variants that lead to the development of resistance, and if so, how are these variants distributed through the genome? To answer these questions, we performed 454 pyrosequencing and a whole genome analysis both before and after exposure to ciprofloxacin. The comparative sequence data revealed 93 unique resistance strain variation sites, which included a mutation in the DNA gyrase subunit A gene. We generated variation-distribution maps comparing the wild and resistant types, and isolated 19 candidates from three discrete resistance-associated high variability regions that had available transposon mutants, to perform a ciprofloxacin exposure assay. Of these region candidates with transposon disruptions, 79% (15/19) showed a reduction in the ability to gain high-level resistance, suggesting that genes within these high variability regions might enrich for certain functions associated with resistance development. | 2013 | 23808957 |
| 8385 | 8 | 0.9997 | Function and Phylogeny of Bacterial Butyryl Coenzyme A:Acetate Transferases and Their Diversity in the Proximal Colon of Swine. Studying the host-associated butyrate-producing bacterial community is important, because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl coenzyme A (CoA):acetate-CoA transferase (EC 2.3.8.3) as a gene of primary importance for butyrate production in intestinal ecosystems; however, this gene family (but) remains poorly defined. We developed tools for the analysis of butyrate-producing bacteria based on 12 putative but genes identified in the genomes of nine butyrate-producing bacteria obtained from the swine intestinal tract. Functional analyses revealed that eight of these genes had strong But enzyme activity. When but paralogues were found within a genome, only one gene per genome encoded strong activity, with the exception of one strain in which no gene encoded strong But activity. Degenerate primers were designed to amplify the functional but genes and were tested by amplifying environmental but sequences from DNA and RNA extracted from swine colonic contents. The results show diverse but sequences from swine-associated butyrate-producing bacteria, most of which clustered near functionally confirmed sequences. Here, we describe tools and a framework that allow the bacterial butyrate-producing community to be profiled in the context of animal health and disease. IMPORTANCE: Butyrate is a compound produced by the microbiota in the intestinal tracts of animals. This compound is of critical importance for intestinal health, and yet studying its production by diverse intestinal bacteria is technically challenging. Here, we present an additional way to study the butyrate-producing community of bacteria using one degenerate primer set that selectively targets genes experimentally demonstrated to encode butyrate production. This work will enable researchers to more easily study this very important bacterial function that has implications for host health and resistance to disease. | 2016 | 27613689 |
| 267 | 9 | 0.9997 | Molecular characterization of resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in petroleum-contaminated soil. PCR assays for analyzing resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in soil were developed. Sequence analysis of amplicons showed that the PCR successfully retrieved transporter gene fragments from soil. Most of the genes retrieved from petroleum-contaminated soils formed a cluster (cluster PCS) that was distantly related to known transporter genes. Competitive PCR showed that the abundance of PCS genes is increased in petroleum-contaminated soil. | 2005 | 15640241 |
| 262 | 10 | 0.9997 | Genome scanning in Haemophilus influenzae for identification of essential genes. We have developed a method for identifying essential genes by using an in vitro transposition system, with a small (975 bp) insertional element containing an antibiotic resistance cassette, and mapping these inserts relative to the deduced open reading frames of Haemophilus influenzae by PCR and Southern analysis. Putative essential genes are identified by two methods: mutation exclusion or zero time analysis. Mutation exclusion consists of growing an insertional library and identifying open reading frames that do not contain insertional elements: in a growing population of bacteria, insertions in essential genes are excluded. Zero time analysis consists of monitoring the fate of individual insertions after transformation in a growing culture: the loss of inserts in essential genes is observed over time. Both methods of analysis permit the identification of genes required for bacterial survival. Details of the mutant library construction and the mapping strategy, examples of mutant exclusion, and zero time analysis are presented. | 1999 | 10438768 |
| 3808 | 11 | 0.9997 | Expression Profiling of Antibiotic-Resistant Bacteria Obtained by Laboratory Evolution. To elucidate the mechanisms of antibiotic resistance, integrating phenotypic and genotypic features in resistant strains is important. Here, we describe the expression profiling of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution, and a method for extracting a small number of genes whose expression changes can contribute to the acquisition of resistance. | 2017 | 27873258 |
| 3805 | 12 | 0.9997 | De Novo Characterization of Genes That Contribute to High-Level Ciprofloxacin Resistance in Escherichia coli. Sensitization of resistant bacteria to existing antibiotics depends on the identification of candidate targets whose activities contribute to resistance. Using a transposon insertion library in an Escherichia coli mutant that was 2,000 times less susceptible to ciprofloxacin than its parent and the relative fitness scores, we identified 19 genes that contributed to the acquired ciprofloxacin resistance and mapped the shortest genetic path that increased the antibiotic susceptibility of the resistant bacteria back to a near wild-type level. | 2016 | 27431218 |
| 4383 | 13 | 0.9997 | Importance of Core Genome Functions for an Extreme Antibiotic Resistance Trait. Extreme antibiotic resistance in bacteria is associated with the expression of powerful inactivating enzymes and other functions encoded in accessory genomic elements. The contribution of core genome processes to high-level resistance in such bacteria has been unclear. In the work reported here, we evaluated the relative importance of core and accessory functions for high-level resistance to the aminoglycoside tobramycin in the nosocomial pathogen Acinetobacter baumannii Three lines of evidence establish the primacy of core functions in this resistance. First, in a genome scale mutant analysis using transposon sequencing and validation with 594 individual mutants, nearly all mutations reducing tobramycin resistance inactivated core genes, some with stronger phenotypes than those caused by the elimination of aminoglycoside-inactivating enzymes. Second, the core functions mediating resistance were nearly identical in the wild type and a deletion mutant lacking a genome resistance island that encodes the inactivating enzymes. Thus, most or all of the core resistance determinants important in the absence of the enzymes are also important in their presence. Third, reductions in tobramycin resistance caused by different core mutations were additive, and highly sensitive double and triple mutants (with 250-fold reductions in the MIC) that retained accessory resistance genes could be constructed. Core processes that contribute most strongly to intrinsic tobramycin resistance include phospholipid biosynthesis, phosphate regulation, and envelope homeostasis.IMPORTANCE The inexorable increase in bacterial antibiotic resistance threatens to undermine many of the procedures that transformed medicine in the last century. One strategy to meet the challenge antibiotic resistance poses is the development of drugs that undermine resistance. To identify potential targets for such adjuvants, we identified the functions underlying resistance to an important class of antibiotics for one of the most highly resistant pathogens known. | 2017 | 29233894 |
| 260 | 14 | 0.9997 | Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria. | 2011 | 21538255 |
| 6248 | 15 | 0.9997 | Characterization of a stable, metronidazole-resistant Clostridium difficile clinical isolate. BACKGROUND: Clostridium difficile are gram-positive, spore forming anaerobic bacteria that are the leading cause of healthcare-associated diarrhea, usually associated with antibiotic usage. Metronidazole is currently the first-line treatment for mild to moderate C. difficile diarrhea however recurrence occurs at rates of 15-35%. There are few reports of C. difficile metronidazole resistance in the literature, and when observed, the phenotype has been transient and lost after storage or exposure of the bacteria to freeze/thaw cycles. Owing to the unstable nature of the resistance phenotype in the laboratory, clinical significance and understanding of the resistance mechanisms is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Genotypic and phenotypic characterization was performed on a metronidazole resistant clinical isolate of C. difficile. Whole-genome sequencing was used to identify potential genetic contributions to the phenotypic variation observed with molecular and bacteriological techniques. Phenotypic observations of the metronidazole resistant strain revealed aberrant growth in broth and elongated cell morphology relative to a metronidazole-susceptible, wild type NAP1 strain. Comparative genomic analysis revealed single nucleotide polymorphism (SNP) level variation within genes affecting core metabolic pathways such as electron transport, iron utilization and energy production. CONCLUSIONS/SIGNIFICANCE: This is the first characterization of stable, metronidazole resistance in a C. difficile isolate. The study provides an in-depth genomic and phenotypic analysis of this strain and provides a foundation for future studies to elucidate mechanisms conferring metronidazole resistance in C. difficile that have not been previously described. | 2013 | 23349739 |
| 4708 | 16 | 0.9997 | Proteomic analysis of nalidixic acid resistance in Escherichia coli: identification and functional characterization of OM proteins. The worldwide emergence of antibiotic-resistant bacteria poses a serious threat to human health. To understand the mechanisms of the resistance is extremely important to the control of these bacteria. In the current study, proteomic methodologies were utilized to characterize OM proteome of Escherichia coli with nalidixic acid (NA) resistance. The OM proteins TolC, OmpT, OmpC and OmpW were found to be up-regulated, and FadL was down-regulated in the NA-resistant E. coli strains. The changes at the level of protein expression were validated using Western blotting. Furthermore, the possible roles these altered proteins played in regulation of NA resistance were investigated using genetically modified strains with the deletion of these genes. The results obtained from functional characterization of these genetically modified strains suggest that TolC and OmpC may play more important roles in the control of NA resistance than other OM proteins identified. To gain better understanding of the mechanisms of NA resistance, we also characterized the role of the two-component system EnvZ/OmpR which is responsible for the regulation of OmpC and OmpF expression in response to NA resistance using their genetically modified strains. Our results suggest that OmpF and the EnvZ/OmpR are also important participants of the pathways regulating the NA resistance of E. coli. | 2008 | 18438992 |
| 4495 | 17 | 0.9997 | Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance. Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild-type genes with mutated L3 genes in a chromosomal L3 deletion strain. In this way, the essential L3 gene is available for the bacteria while allowing replacement of the wild type with mutated L3 genes. This enables investigation of the effect of single mutations in Escherichia coli without a wild-type L3 background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations are placed in the loops of L3 near the PTC. Growth data show that 9 of the 10 mutations were well accepted in E. coli, although some of them came with a fitness cost. Only one of the mutants exhibited reduced susceptibility to linezolid, while five exhibited reduced susceptibility to tiamulin. | 2015 | 25845869 |
| 4635 | 18 | 0.9997 | A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve. Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve-sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island.IMPORTANCEBifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this, because probiotic bacteria are used for human and animal consumption, one of the safety concerns over these bacteria is the presence of antibiotic resistance genes, since the human gut is a densely populated habitat that could favor the transfer of genetic material to potential pathogens. In this study, we analyzed the genetic basis responsible for the erythromycin and clindamycin resistance phenotype of B. breve CECT7263. We were able to identify and characterize a novel gene homologous to rRNA methylase genes which confers erythromycin and clindamycin resistance. This gene seems to be very uncommon in other bifidobacteria and in the gut microbiomes of both adults and infants. Even though conjugation experiments showed the absence of transferability under in vitro conditions, it has been predicted to be located in a putative genomic island recently acquired by specific bifidobacterial strains. | 2018 | 29500262 |
| 6345 | 19 | 0.9996 | Transfer RNA gene numbers may not be completely responsible for the codon usage bias in asparagine, isoleucine, phenylalanine, and tyrosine in the high expression genes in bacteria. It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β', respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes. | 2012 | 23053196 |