# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 632 | 0 | 1.0000 | The Role of the Two-Component System PhoP/PhoQ in Intrinsic Resistance of Yersinia enterocolitica to Polymyxin. Polymyxin is the "last resort" of antibiotics. The self-induced resistance to polymyxin in Gram-negative bacteria could be mediated by lipopolysaccharide (LPS) modification, which is regulated by the two-component system, PhoP/PhoQ. Yersinia enterocolitica is a common foodborne pathogen. However, PhoP/PhoQ has not been thoroughly studied in Y. enterocolitica. In this study, the functions of PhoP/PhoQ in Y. enterocolitica intrinsic resistance were investigated. The resistance of Y. enterocolitica was found to decrease with the deletion of PhoP/PhoQ. Further, PhoP/PhoQ was found to play an important role in maintaining membrane permeability, intercellular metabolism, and reducing membrane depolarization. Based on subsequent studies, the binding ability of polymyxin to Y. enterocolitica was decreased by the modification of LPS with structures, such as L-Ara4N and palmitate. Analysis of the gene transcription levels revealed that the LPS modification genes, pagP and arn operon, were downregulated with the deletion of PhoP/PhoQ in Y. enterocolitica during exposure to polymyxin. In addition, pmrA, pmrB, and eptA were downregulated in the mutants compared with the wild-type strain. Such findings demonstrate that PhoP/PhoQ contributes to the intrinsic resistance of Y. enterocolitica toward polymyxins. LPS modification with L-Ara4N or palmitate is mainly responsible for the resistance of Y. enterocolitica to polymyxins. The transcription of genes related to LPS modification and PmrA/PmrB can be both affected by PhoP/PhoQ in Y. enterocolitica. This study adds to current knowledge regarding the role of PhoP/PhoQ in intrinsic resistance of Y. enterocolitica to polymyxin. | 2022 | 35222323 |
| 631 | 1 | 0.9997 | Effects of Regulatory Network Organization and Environment on PmrD Connector Activity and Polymyxin Resistance in Klebsiella pneumoniae and Escherichia coli. Polymyxins are a class of cyclic peptides with antimicrobial activity against Gram-negative bacteria. In Enterobacteriaceae, the PhoQ/PhoP and PmrB/PmrA two-component systems regulate many genes that confer resistance to both polymyxins and host antimicrobial peptides. The activities of these two-component systems are modulated by additional proteins that are conserved across Enterobacteriaceae, such as MgrB, a negative regulator of PhoQ, and PmrD, a "connector" protein that activates PmrB/PmrA in response to PhoQ/PhoP stimulation. Despite the conservation of many protein components of the PhoQ/PhoP-PmrD-PmrB/PmrA network, the specific molecular interactions and regulatory mechanisms vary across different genera. Here, we explore the role of PmrD in modulating this signaling network in Klebsiella pneumoniae and Escherichia coli We show that in K. pneumoniae, PmrD is not required for polymyxin resistance arising from mutation of mgrB-the most common cause of spontaneous polymyxin resistance in this bacterium-suggesting that direct activation of polymyxin resistance genes by PhoQ/PhoP plays a critical role in this resistance pathway. However, for conditions of low pH or intermediate iron concentrations, both of which stimulate PmrB/PmrA, we find that PmrD does contribute to resistance. We further show that in E. coli, PmrD functions as a connector between PhoQ/PhoP and PmrB/PmrA, in contrast with previous reports. In this case, activity also depends on PmrB/PmrA stimulation, or on very high activation of PhoQ/PhoP. Our results indicate that the importance of the PmrD connector in modulating the polymyxin resistance network depends on both the network organization and on the environmental conditions associated with PmrB stimulation. | 2021 | 33361295 |
| 633 | 2 | 0.9997 | The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. PhoP-PhoQ is a two-component regulatory system that has been identified as essential for virulence and cationic antimicrobial peptide resistance in several other Gram-negative bacteria. This study demonstrated that mutation of phoQ caused reduced twitching motility, biofilm formation and rapid attachment to surfaces, 2.2-fold reduced cytotoxicity to human lung epithelial cells, substantially reduced lettuce leaf virulence, and a major, 10 000-fold reduction in competitiveness in chronic rat lung infections. Microarray analysis revealed that PhoQ controlled the expression of many genes consistent with these phenotypes and with its known role in polymyxin B resistance. It was also demonstrated that PhoQ controls the expression of many genes outside the known PhoP regulon. | 2009 | 19246741 |
| 630 | 3 | 0.9997 | Molecular characterization of the PhoPQ-PmrD-PmrAB mediated pathway regulating polymyxin B resistance in Klebsiella pneumoniae CG43. BACKGROUND: The cationic peptide antibiotic polymyxin has recently been reevaluated in the treatment of severe infections caused by gram negative bacteria. METHODS: In this study, the genetic determinants for capsular polysaccharide level and lipopolysaccharide modification involved in polymyxin B resistance of the opportunistic pathogen Klebsiella pneumoniae were characterized. The expressional control of the genes responsible for the resistance was assessed by a LacZ reporter system. The PmrD connector-mediated regulation for the expression of pmr genes involved in polymyxin B resistance was also demonstrated by DNA EMSA, two-hybrid analysis and in vitro phosphor-transfer assay. RESULTS: Deletion of the rcsB, which encoded an activator for the production of capsular polysaccharide, had a minor effect on K. pneumoniae resistance to polymyxin B. On the other hand, deletion of ugd or pmrF gene resulted in a drastic reduction of the resistance. The polymyxin B resistance was shown to be regulated by the two-component response regulators PhoP and PmrA at low magnesium and high iron, respectively. Similar to the control identified in Salmonella, expression of pmrD in K. pneumoniae was dependent on PhoP, the activated PmrD would then bind to PmrA to prolong the phosphorylation state of the PmrA, and eventually turn on the expression of pmr for the resistance to polymyxin B. CONCLUSIONS: The study reports a role of the capsular polysaccharide level and the pmr genes for K. pneumoniae resistance to polymyxin B. The PmrD connector-mediated pathway in governing the regulation of pmr expression was demonstrated. In comparison to the pmr regulation in Salmonella, PhoP in K. pneumoniae plays a major regulatory role in polymyxin B resistance. | 2010 | 20653976 |
| 706 | 4 | 0.9996 | Effect of PhoP-PhoQ activation by broad repertoire of antimicrobial peptides on bacterial resistance. Pathogenic bacteria can resist their microenvironment by changing the expression of virulence genes. In Salmonella typhimurium, some of these genes are controlled by the two-component system PhoP-PhoQ. Studies have shown that activation of the system by cationic antimicrobial peptides (AMPs) results, among other changes, in outer membrane remodeling. However, it is not fully clear what characteristics of AMPs are required to activate the PhoP-PhoQ system and whether activation can induce resistance to the various AMPs. For that purpose, we investigated the ability of a broad repertoire of AMPs to traverse the inner membrane, to activate the PhoP-PhoQ system, and to induce bacterial resistance. The AMPs differ in length, composition, and net positive charge, and the tested bacteria include two wild-type (WT) Salmonella strains and their corresponding PhoP-PhoQ knock-out mutants. A lacZ-reporting system was adapted to follow PhoP-PhoQ activation. The data revealed that: (i) a good correlation exists among the extent of the positive charge, hydrophobicity, and amphipathicity of an AMP and its potency to activate PhoP-PhoQ; (ii) a +1 charged peptide containing histidines was highly potent, suggesting the existence of an additional mechanism independent of the peptide charge; (iii) the WT bacteria are more resistant to AMPs that are potent activators of PhoP-PhoQ; (iv) only a subset of AMPs, independent of their potency to activate the system, is more toxic to the mutated bacteria compared with the WT strains; and (v) short term exposure of WT bacteria to these AMPs does not enhance resistance. Overall, this study advances our understanding of the molecular mechanism by which AMPs activate PhoP-PhoQ and induce bacterial resistance. It also reveals that some AMPs can overcome such a resistance mechanism. | 2012 | 22158870 |
| 704 | 5 | 0.9996 | Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†). One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires L-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for L-Ara4N synthesis and transfer to the LPS. The absence of L-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that L-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides. | 2012 | 22742453 |
| 703 | 6 | 0.9996 | Bacterial modification of LPS and resistance to antimicrobial peptides. Antimicrobial peptides (APs) are ubiquitous in nature and are thought to kill micro-organisms by affecting membrane integrity. These positively charged peptides interact with negative charges in the LPS of Gram-negative bacteria. A common mechanism of resistance to AP killing is LPS modification. These modifications include fatty acid additions, phosphoethanolamine (PEtN) addition to the core and lipid A regions, 4-amino-4-deoxy-L-arabinose (Ara4N) addition to the core and lipid A regions, acetylation of the O-antigen, and possibly hydroxylation of fatty acids. In Salmonella typhimurium, LPS modifications are induced within host tissues by the two-component regulatory systems PhoPQ and PmrAB. PmrAB activation results in AP resistance by Ara4N addition to lipid A through the activation of at least 8 genes, 7 of which are transcribed as an operon. Loss of this operon and, therefore, Ara4N LPS modification, affects S. typhimurium virulence when administered orally. Transposon mutagenesis of Proteus mirabilis also suggests that LPS modifications affect AP resistance and virulence phenotypes. Therefore, LPS modification in Gram-negative bacteria plays a significant role during infection in resistance to host antimicrobial factors, avoidance of immune system recognition, and maintenance of virulence phenotypes. | 2001 | 11521084 |
| 6218 | 7 | 0.9995 | An allele of an ancestral transcription factor dependent on a horizontally acquired gene product. Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties. | 2012 | 23300460 |
| 705 | 8 | 0.9995 | First structure of the polymyxin resistance proteins. PmrA/PmrB and PhoP/PhoQ are a pair of two-component systems (TCSs) that allow the Gram-negative bacteria to survive the cationic antimicrobial peptide polymyxin B. The two TCSs are linked by the polymyxin resistance protein, PmrD. The PhoP-activated PmrD protects the phosphorylated response regulator PmrA from dephosphorylation, and promotes the transcription of PmrA-activated genes responsible for polymyxin resistance. PmrD is the first protein identified to mediate the connectivity between two TCSs by protecting the phosphorylated response regulator of the downstream TCS. PmrD shows no homology to proteins with known structures. We present here the solution structure of PmrD from Escherichia coli, the first three-dimensional structure of the PmrD family. Our study provides the structural basis of the novel interacting mechanism of bacterial two-component signal-transduction systems. | 2007 | 17686460 |
| 4706 | 9 | 0.9995 | Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis. | 2022 | 36286534 |
| 8886 | 10 | 0.9995 | Transcriptional analysis reveals the relativity of acid tolerance and antimicrobial peptide resistance of Salmonella. The objective of this study was to comprehensively identify the target genes induced by acid stimulation in Salmonella, and to clarify the relativity of acid tolerance and antimicrobial peptide resistance. A clinical S. Typhimurium strain, S6, was selected and performed a transcriptome analysis under the acid tolerance response. In total, we found 1461 genes to be differentially expressed, including 721 up-regulated and 740 down-regulated genes. Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport, virulence, and motility. Interestingly, KEGG pathway analysis demonstrated that the induced genes by acid were enriched in cationic antimicrobial peptide resistance, sulfur relay system, ABC transporters, and two-component system pathway. Therein, PhoQ belonging to the two-component system PhoP-PhoQ that promotes virulence by detecting the macrophage phagosome and controls the transcript levels of many genes associated with the resistance to AMPs; MarA, a multiple antibiotic resistance factor; SapA, one of the encoding gene of sapABCDF operon that confers resistance to small cationic peptides of Salmonella; YejB, one of the encoding gene of yejABEF operon that confers resistance to antimicrobial peptides and contributes to the virulence of Salmonella, were all induced by acid stimulation, and could potentially explain that there is a correlation between acid tolerance and AMPs resistance, and finally affects the virulence of intracellular pathogenic bacteria. | 2019 | 31472260 |
| 8308 | 11 | 0.9995 | PhoPQ Regulates Quinolone and Cephalosporin Resistance Formation in Salmonella Enteritidis at the Transcriptional Level. The two-component system (TCS) PhoPQ has been demonstrated to be crucial for the formation of resistance to quinolones and cephalosporins in Salmonella Enteritidis (S. Enteritidis). However, the mechanism underlying PhoPQ-mediated antibiotic resistance formation remains poorly understood. Here, it was shown that PhoP transcriptionally regulated an assortment of genes associated with envelope homeostasis, the osmotic stress response, and the redox balance to confer resistance to quinolones and cephalosporins in S. Enteritidis. Specifically, cells lacking the PhoP regulator, under nalidixic acid and ceftazidime stress, bore a severely compromised membrane on the aspects of integrity, fluidity, and permeability, with deficiency to withstand osmolarity stress, an increased accumulation of intracellular reactive oxygen species, and dysregulated redox homeostasis, which are unfavorable for bacterial survival. The phosphorylated PhoP elicited transcriptional alterations of resistance-associated genes, including the outer membrane porin ompF and the aconitate hydratase acnA, by directly binding to their promoters, leading to a limited influx of antibiotics and a well-maintained intracellular metabolism. Importantly, it was demonstrated that the cavity of the PhoQ sensor domain bound to and sensed quinolones/cephalosporins via the crucial surrounding residues, as their mutations abrogated the binding and PhoQ autophosphorylation. This recognition mode promoted signal transduction that activated PhoP, thereby modulating the transcription of downstream genes to accommodate cells to antibiotic stress. These findings have revealed how bacteria employ a specific TCS to sense antibiotics and combat them, suggesting PhoPQ as a potential drug target with which to surmount S. Enteritidis. IMPORTANCE The prevalence of quinolone and cephalosporin-resistant S. Enteritidis is of increasing clinical concern. Thus, it is imperative to identify novel therapeutic targets with which to treat S. Enteritidis-associated infections. The PhoPQ two-component system is conserved across a variety of Gram-negative pathogens, by which bacteria adapt to a range of environmental stimuli. Our earlier work has demonstrated the importance of PhoPQ in the resistance formation in S. Enteritidis to quinolones and cephalosporins. In the current work, we identified a global profile of genes that are regulated by PhoP under antibiotic stresses, with a focus on how PhoP regulated downstream genes, either positively or negatively. Additionally, we established that PhoQ sensed quinolones and cephalosporins in a manner of directly binding to them. These identified genes and pathways that are mediated by PhoPQ represent promising targets for the development of a drug potentiator with which to neutralize antibiotic resistance in S. Enteritidis. | 2023 | 37184399 |
| 6318 | 12 | 0.9995 | Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Phenotypic differences among closely related bacteria have been largely ascribed to species-specific genes, such as those residing in pathogenicity islands. However, we now report that the differential regulation of homologous genes is the mechanism responsible for the divergence of the enteric bacteria Salmonella enterica and Escherichia coli in their ability to make LPS modifications mediating resistance to the antibiotic polymyxin B. In S. enterica serovar Typhimurium, the PmrA/PmrB two-component system governing polymyxin B resistance is induced in low Mg(2+) in a process that requires the PmrD protein and by Fe(3+) in a PmrD-independent fashion. We establish that E. coli K-12 induces PmrA-activated gene transcription and polymyxin B resistance in response to Fe(3+), but that it is blind to the low Mg(2+) signal. The highly divergent PmrD protein is responsible for this phenotype as replacement of the E. coli pmrD gene by its Salmonella counterpart resulted in an E. coli strain that transcribed PmrA-activated genes and displayed polymyxin B resistance under the same conditions as Salmonella. Molecular analysis of natural isolates of E. coli and Salmonella revealed that the PmrD proteins are conserved within each genus and that selection might have driven the divergence between the Salmonella and E. coli PmrD proteins. Investigation of PmrD function demonstrated statistically different distributions for the Salmonella and E. coli isolates in PmrD-dependent transcription occurring in low Mg(2+). Our results suggest that the differential regulation of conserved genes may have ecological consequences, determining the range of niches a microorganism can occupy. | 2004 | 15569938 |
| 8968 | 13 | 0.9995 | Antibiotic stress, genetic response and altered permeability of E. coli. BACKGROUND: Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The number and activity of efflux pumps and outer membrane proteins that constitute porins play major roles in the definition of intrinsic resistance in Gram-negative bacteria that is altered under antibiotic exposure. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the genetic regulation of porins and efflux pumps of Escherichia coli during prolonged exposure to increasing concentrations of tetracycline and demonstrate, with the aid of quantitative real-time reverse transcriptase-polymerase chain reaction methodology and western blot detection, the sequence order of genetic expression of regulatory genes, their relationship to each other, and the ensuing increased activity of genes that code for transporter proteins of efflux pumps and down-regulation of porin expression. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that, in addition to the transcriptional regulation of genes coding for membrane proteins, the post-translational regulation of proteins involved in the permeability of Gram-negative bacteria also plays a major role in the physiological adaptation to antibiotic exposure. A model is presented that summarizes events during the physiological adaptation of E. coli to tetracycline exposure. | 2007 | 17426813 |
| 9779 | 14 | 0.9995 | Mechanisms of Polymyxin Resistance. Polymyxin antibiotics are increasingly being used as last-line therapeutic options against a number of multidrug resistant bacteria. These antibiotics show strong bactericidal activity against a range of Gram-negative bacteria, but with the increased use of these antibiotics resistant strains are emerging at an alarming rate. Furthermore, some Gram-negative species, such as Neisseria meningitidis, Proteus mirabilis and Burkholderia spp., are intrinsically resistant to the action of polymyxins. Most identified polymyxin resistance mechanisms in Gram-negative bacteria involve changes to the lipopolysaccharide (LPS) structure, as polymyxins initially interact with the negatively charged lipid A component of LPS. The controlled addition of positively charged residues such as 4-amino-(L)-arabinose, phosphoethanolamine and/or galactosamine to LPS results in a reduced negative charge on the bacterial surface and therefore reduced interaction between the polymyxin and the LPS. Polymyxin resistant species produce LPS that intrinsically contains one or more of these additions. While the genes necessary for most of these additions are chromosomally encoded, plasmid-borne phosphoethanolamine transferases (mcr-1 to mcr-8) have recently been identified and these plasmids threaten to increase the rate of dissemination of clinically relevant colistin resistance. Uniquely, Acinetobacter baumannii can also become highly resistant to polymyxins via spontaneous mutations in the lipid A biosynthesis genes lpxA, lpxC or lpxD such that they produce no LPS or lipid A. A range of other non-LPS-dependent polymyxin resistance mechanisms has also been identified in bacteria, but these generally result in only low levels of resistance. These include increased anionic capsular polysaccharide production in Klebsiella pneumoniae, expression of efflux systems such as MtrCDE in N. meningitidis, and altered expression of outer membrane proteins in a small number of species. | 2019 | 31364071 |
| 8943 | 15 | 0.9995 | Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. BACKGROUND: Many Gram-positive and Gram-negative bacteria produce large quantities of indole as an intercellular signal in microbial communities. Indole demonstrated to affect gene expression in Escherichia coli as an intra-species signaling molecule. In contrast to E. coli, Salmonella does not produce indole because it does not harbor tnaA, which encodes the enzyme responsible for tryptophan metabolism. Our previous study demonstrated that E. coli-conditioned medium and indole induce expression of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium for inter-species communication; however, the global effect of indole on genes in Salmonella remains unknown. RESULTS: To understand the complete picture of genes regulated by indole, we performed DNA microarray analysis of genes in the S. enterica serovar Typhimurium strain ATCC 14028s affected by indole. Predicted Salmonella phenotypes affected by indole based on the microarray data were also examined in this study. Indole induced expression of genes related to efflux-mediated multidrug resistance, including ramA and acrAB, and repressed those related to host cell invasion encoded in the Salmonella pathogenicity island 1, and flagella production. Reduction of invasive activity and motility of Salmonella by indole was also observed phenotypically. CONCLUSION: Our results suggest that indole is an important signaling molecule for inter-species communication to control drug resistance and virulence of S. enterica. | 2012 | 22632036 |
| 678 | 16 | 0.9994 | CpxAR of Actinobacillus pleuropneumoniae Contributes to Heat Stress Response by Repressing Expression of Type IV Pilus Gene apfA. Acute pleuropneumonia in swine, caused by Actinobacillus pleuropneumoniae, is characterized by a high and sustained fever. Fever creates an adverse environment for many bacteria, leading to reduced bacterial proliferation; however, most pathogenic bacteria can tolerate higher temperatures. CpxAR is a two-component regulation system, ubiquitous among Gram-negative bacteria, which senses and responds to envelope alterations that are mostly associated with protein misfolding in the periplasm. Our previous study showed that CpxAR is necessary for the optimal growth of Actinobacillus pleuropneumoniae under heat stress. Here, we showed that mutation of the type IV pilin gene apfA rescued the growth defect of the cpxAR deletion strain under heat stress. RNA sequencing (RNA-seq) analyses revealed that 265 genes were differentially expressed in the ΔcpxAR strains grown at 42°C, including genes involved in type IV pilus biosynthesis. We also demonstrated direct binding of the CpxR protein to the promoter of the apf operon by an electrophoretic mobility shift assay and identified the binding site by a DNase I footprinting assay. In conclusion, our results revealed the important role of CpxAR in A. pleuropneumoniae resistance to heat stress by directly suppressing the expression of ApfA. IMPORTANCE Heat acts as a danger signal for pathogens, especially those infecting mammalian hosts in whom fever indicates infection. However, some bacteria have evolved exquisite mechanisms to survive under heat stress. Studying the mechanism of resistance to heat stress is crucial to understanding the pathogenesis of A. pleuropneumoniae during the acute stage of infection. Our study revealed that CpxAR plays an important role in A. pleuropneumoniae resistance to heat stress by directly suppressing expression of the type IV pilin protein ApfA. | 2022 | 36259970 |
| 9780 | 17 | 0.9994 | Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr -1, -1.5, -2, -3, -3.2 or -5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance. | 2021 | 34723787 |
| 707 | 18 | 0.9994 | Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. Gram-negative bacteria often modify their lipopolysaccharide (LPS), thereby increasing resistance to antimicrobial agents and avoidance of the host immune system. However, it is unclear how bacteria adjust the levels and activities of LPS-modifying enzymes in response to the modification status of their LPS. We now address this question by investigating the major regulator of LPS modifications in Salmonella enterica. We report that the PmrA/PmrB system controls expression of a membrane peptide that inhibits the activity of LpxT, an enzyme responsible for increasing the LPS negative charge. LpxT's inhibition and the PmrA-dependent incorporation of positively charged L-4-aminoarabinose into the LPS decrease Fe(3+) binding to the bacterial cell. Because Fe(3+) is an activating ligand for the sensor PmrB, transcription of PmrA-dependent LPS-modifying genes is reduced. This mechanism enables bacteria to sense their cell surface by its effect on the availability of an inducing signal for the system regulating cell-surface modifications. | 2012 | 22921935 |
| 8964 | 19 | 0.9994 | Analysis of the Oxidative Stress Regulon Identifies soxS as a Genetic Target for Resistance Reversal in Multidrug-Resistant Klebsiella pneumoniae. In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP(+)) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae. IMPORTANCE Antimicrobial resistance is a global health challenge. Few new antibiotics have been developed for use over the years, and preserving the efficacy of existing compounds is an important step to protect public health. This paper describes a study that examines the effects of exogenously induced oxidative stress on K. pneumoniae and uncovers a target that could be useful to harness as a strategy to mitigate resistance. | 2021 | 34098732 |