Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
631001.0000Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BACKGROUND: The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in E. coli K-12 through homologous recombination using linear PCR products. The aim of this study was to induce mutations in the genome of some temperate Shiga toxin encoding bacteriophages. When phage genes are in the prophage state, they behave like chromosomal genes. This enables marker genes, such as antibiotic resistance genes, to be incorporated into the stx gene. Once the phages' lytic cycle is activated, recombinant Shiga toxin converting phages are produced. These phages can transfer the marker genes to the bacteria that they infect and convert. As the Red system's effectiveness decreased when used for our purposes, we had to introduce significant variations to the original method. These modifications included: confirming the stability of the target stx gene increasing the number of cells to be transformed and using a three-step PCR method to produce the amplimer containing the antibiotic resistance gene. RESULTS: Seven phages carrying two different antibiotic resistance genes were derived from phages that are directly involved in the pathogenesis of Shiga toxin-producing strains, using this modified protocol. CONCLUSION: This approach facilitates exploration of the transduction processes and is a valuable tool for studying phage-mediated horizontal gene transfer.200616984631
380810.9999Expression Profiling of Antibiotic-Resistant Bacteria Obtained by Laboratory Evolution. To elucidate the mechanisms of antibiotic resistance, integrating phenotypic and genotypic features in resistant strains is important. Here, we describe the expression profiling of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution, and a method for extracting a small number of genes whose expression changes can contribute to the acquisition of resistance.201727873258
382420.9998Screening for novel antibiotic resistance genes. Knowledge of novel antibiotic resistance genes aids in the understanding of how antibiotics function and how bacteria fight them. This knowledge also allows future generations of an antibiotic or antibiotic group to be altered to allow the greatest efficacy. The method described here is very simple in theory. The bacterial strains are screened for antibiotic resistance. Cultures of the strain are grown, and DNA is extracted. A partial digest of the extraction is cloned into Escherichia coli, and the transformants are plated on selective media. Any colony that grows will possess the antibiotic resistance gene and can be further examined. In actual practice, however, this technique can be complicated. The detailed protocol will need to be optimized for each bacterial strain, vector, and cell line chosen.201020830570
381730.9998A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. Uneven distribution of plasmid-based expression vectors to daughter cells during bacterial cell division results in an increasing proportion of plasmid free cells during growth. This is a major industrial problem leading to reduction of product yields and increased production costs during large-scale cultivation of vector-carrying bacteria. For this reason, a selection must be provided that kills the plasmid free cells. The most conventional method to obtain this desired selection is to insert some gene for antibiotic resistance in the plasmid and then grow the bacteria in the presence of the corresponding antibiotic. We describe here a host/plasmid Escherichia coli system with a totally stable plasmid that can be maintained without the use of antibiotic selection. The plasmid is maintained, since it carries the small essential gene infA (coding for translation initiation factor 1, IF1) in an E. coli strain that has been deleted for its chromosomal infA gene. As a result only plasmid carrying cells can grow, making the strain totally dependent on the maintenance of the plasmid. A selection based on antibiotics is thus not necessary during cultivation, and no antibiotic-resistance genes are present neither in the final strain nor in the final plasmid. Plasmid-free cells do not accumulate even after an extended period of continuous growth. Growth rates of the control and the plasmid harboring strains are indistinguishable from each other in both LB and defined media. The indicated approach can be used to modify existing production strains and plasmids to the described concept. The infA based plasmid stability system should eliminate industrial cultivation problems caused by the loss of expression vector and use of antibiotics in the cultivation medium. Also environmental problems caused by release of antibiotics and antibiotic resistance genes, that potentially can give horizontal gene transfer between bacterial populations, are eliminated.200415196766
631140.9998Development of an antibiotic marker-free platform for heterologous protein production in Streptomyces. BACKGROUND: The industrial use of enzymes produced by microorganisms is continuously growing due to the need for sustainable solutions. Nevertheless, many of the plasmids used for recombinant production of proteins in bacteria are based on the use of antibiotic resistance genes as selection markers. The safety concerns and legal requirements surrounding the increased use of antibiotic resistance genes have made the development of new antibiotic-free approaches essential. RESULTS: In this work, a system completely free of antibiotic resistance genes and useful for the production of high yields of proteins in Streptomyces is described. This system is based on the separation of the two components of the yefM/yoeBsl (antitoxin/toxin) operon; the toxin (yoeBsl) gene, responsible for host death, is integrated into the genome and the antitoxin gene (yefMsl), which inactivates the toxin, is located in the expression plasmid. To develop this system, the toxin gene was integrated into the genome of a strain lacking the complete operon, and the antibiotic resistance gene integrated along with the toxin was eliminated by Cre recombinase to generate a final host strain free of any antibiotic resistance marker. In the same way, the antibiotic resistance gene from the final expression plasmid was removed by Dre recombinase. The usefulness of this system was analysed by checking the production of two hydrolases from different Streptomyces. Production of both proteins, with potential industrial use, was high and stable over time after strain storage and after serial subcultures. These results support the robustness and stability of the positive selection system developed. CONCLUSIONS: The total absence of antibiotic resistance genes makes this system a powerful tool for using Streptomyces as a host to produce proteins at the industrial level. This work is the first Streptomyces antibiotic marker-free system to be described. Graphical abstract Antibiotic marker-free platform for protein expression in Streptomyces. The antitoxin gene present in the expression plasmid counteracts the effect of the toxin gene in the genome. In absence of the expression plasmid, the toxin causes cell death ensuring that only plasmid-containing cells persist.201728950904
926850.9998The expression of integron arrays is shaped by the translation rate of cassettes. Integrons are key elements in the rise and spread of multidrug resistance in Gram-negative bacteria. These genetic platforms capture cassettes containing promoterless genes and stockpile them in arrays of variable length. In the current integron model, expression of cassettes is granted by the P(c) promoter in the platform and is assumed to decrease as a function of its distance. Here we explored this model using a large collection of 136 antibiotic resistance cassettes and show the effect of distance is in fact negligible. Instead, cassettes have a strong impact in the expression of downstream genes because their translation rate affects the stability of the whole polycistronic mRNA molecule. Hence, cassettes with reduced translation rates decrease the expression and resistance phenotype of cassettes downstream. Our data puts forward an integron model in which expression is contingent on the translation of cassettes upstream, rather than on the distance to the P(c).202439455579
633560.9998Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics.202134756069
382570.9998Lack of detectable DNA uptake by transformation of selected recipients in mono-associated rats. BACKGROUND: An important concern revealed in the public discussion of the use of genetically modified (GM) plants for human consumption, is the potential transfer of DNA from these plants to bacteria present in the gastrointestinal tract. Especially, there is a concern that antibiotic resistance genes used for the construction of GM plants end up in pathogenic bacteria, eventually leading to untreatable disease. FINDINGS: Three different bacterial species (Escherichia coli, Bacillus subtilis, Streptococcus gordonii), all natural inhabitants of the food and intestinal tract environment were used as recipients for uptake of DNA. As source of DNA both plasmid and genomic DNA from GM plants were used in in vitro and in vivo transformation studies. Mono-associated rats, creating a worst-case scenario, did not give rise to any detectable transfer of DNA. CONCLUSION: Although we were unable to detect any transformation events in our experiment, it cannot be ruled out that this could happen in the GI tract. However, since several steps are required before expression of plant-derived DNA in intestinal bacteria, we believe this is unlikely, and antibiotic resistance development in this environment is more in danger by the massive use of antibiotics than the consumption of GM food harbouring antibiotic resistance genes.201020193062
438180.9998Specific Gene Loci of Clinical Pseudomonas putida Isolates. Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host's immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.201626820467
927590.9998Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.201121632619
3797100.9998Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates. Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut.201424955767
3796110.9998The presence of plasmids in bacterial hosts alters phage isolation and infectivity. Antibiotic resistance genes are often carried by plasmids, which spread intra- and inter genera bacterial populations, and also play a critical role in bacteria conferring phage resistance. However, it remains unknown about the influence of plasmids present in bacterial hosts on phage isolation and subsequent infectivity. In this study, using both Escherichia coli and Pseudomonas putida bacteria containing different plasmids, eight phages were isolated and characterized in terms of phage morphology and host range analysis, in conjunction with DNA and protein sequencing. We found that plasmids can influence both the phage isolation process and phage infectivity. In particular, the isolated phages exhibited different phage plaquing infectivity towards the same bacterial species containing different plasmids. Furthermore, the presence of plasmids was found to alter the expression of bacteria membrane protein, which correlates with bacterial cell surface receptors recognized by phages, thus affecting phage isolation and infectivity. Given the diverse and ubiquitous nature of plasmids, our findings highlight the need to consider plasmids as factors that can influence both phage isolation and infectivity.202237938681
9276120.9998In Vitro Assessment of the Fitness of Resistant M. tuberculosis Bacteria by Competition Assay. Bacteria become resistant by a number of different mechanisms, and these include mutation in chromosomal genes (1), acquisition of plasmids (2), insertion of bacteriophage, transposon or insertion sequence DNA (3-5), or gene mosaicism (6). There is a dogma that bacteria that become resistant pay a significant physiological price and that if antimicrobial prescribing is controlled it will result in the eradication of resistant organisms. There are only very few studies that investigate the physiology of resistance acquisition and these do show that a physiological price is paid for this change (7, 8). Once an organism acquires resistance through mutation, acquisition of resistance genes via plasmids, transposons and bacteriophages the initial physiological defect is compensated by the antibiotic selective pressure, which balances the physiological deficit imposed by the resistant mutation or additional DNA (8, 9).200121374423
9311130.9998Various plasmid strategies limit the effect of bacterial restriction-modification systems against conjugation. In bacteria, genes conferring antibiotic resistance are mostly carried on conjugative plasmids, mobile genetic elements that spread horizontally between bacterial hosts. Bacteria carry defence systems that defend them against genetic parasites, but how effective these are against plasmid conjugation is poorly understood. Here, we study to what extent restriction-modification (RM) systems-by far the most prevalent bacterial defence systems-act as a barrier against plasmids. Using 10 different RM systems and 13 natural plasmids conferring antibiotic resistance in Escherichia coli, we uncovered variation in defence efficiency ranging from none to 105-fold protection. Further analysis revealed genetic features of plasmids that explain the observed variation in defence levels. First, the number of RM recognition sites present on the plasmids generally correlates with defence levels, with higher numbers of sites being associated with stronger defence. Second, some plasmids encode methylases that protect against restriction activity. Finally, we show that a high number of plasmids in our collection encode anti-restriction genes that provide protection against several types of RM systems. Overall, our results show that it is common for plasmids to encode anti-RM strategies, and that, as a consequence, RM systems form only a weak barrier for plasmid transfer by conjugation.202439413206
3811140.9998Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Genes introduced by horizontal gene transfer (HGT) from other species constitute a significant portion of many bacterial genomes, and the evolutionary dynamics of HGTs are important for understanding the spread of antibiotic resistance and the emergence of new pathogenic strains of bacteria. The fitness effects of the transferred genes largely determine the fixation rates and the amount of neutral diversity of newly acquired genes in bacterial populations. Comparative analysis of bacterial genomes provides insight into what genes are commonly transferred, but direct experimental tests of the fitness constraints on HGT are scarce. Here, we address this paucity of experimental studies by introducing 98 random DNA fragments varying in size from 0.45 to 5 kb from Bacteroides, Proteus, and human intestinal phage into a defined position in the Salmonella chromosome and measuring the effects on fitness. Using highly sensitive competition assays, we found that eight inserts were deleterious with selection coefficients (s) ranging from ≈ -0.007 to -0.02 and 90 did not have significant fitness effects. When inducing transcription from a PBAD promoter located at one end of the insert, 16 transfers were deleterious and 82 were not significantly different from the control. In conclusion, a major fraction of the inserts had minor effects on fitness implying that extra DNA transferred by HGT, even though it does not confer an immediate selective advantage, could be maintained at selection-transfer balance and serve as raw material for the evolution of novel beneficial functions.201424536043
3815150.9998Development of a high-throughput platform to measure plasmid transfer frequency. Antibiotic resistance represents one of the greatest threats to global health. The spread of antibiotic resistance genes among bacteria occurs mostly through horizontal gene transfer via conjugation mediated by plasmids. This process implies a direct contact between a donor and a recipient bacterium which acquires the antibiotic resistance genes encoded by the plasmid and, concomitantly, the capacity to transfer the acquired plasmid to a new recipient. Classical assays for the measurement of plasmid transfer frequency (i.e., conjugation frequency) are often characterized by a high variability and, hence, they require many biological and technical replicates to reduce such variability and the accompanying uncertainty. In addition, classical conjugation assays are commonly tedious and time-consuming because they typically involve counting colonies on a large number of plates for the quantification of donors, recipients, and transconjugants (i.e., the bacteria that have received the genetic material by conjugation). Due to the magnitude of the antibiotic resistance problem, it is critical to develop reliable and rapid methods for the quantification of plasmid transfer frequency that allow the simultaneous analysis of many samples. Here, we present the development of a high-throughput, reliable, quick, easy, and cost-effective method to simultaneously accomplish and measure multiple conjugation events in 96-well plates, in which the quantification of donors, recipients, and transconjugants is estimated from the time required to reach a specific threshold value (OD(600) value) in the bacterial growth curves. Our method successfully discriminates different plasmid transfer frequencies, yielding results that are equivalent to those obtained by a classical conjugation assay.202337886666
4151160.9998Evolutionary relationships among genes for antibiotic resistance. The genes that determine resistance to antibiotics are commonly found encoded by extrachromosomal elements in bacteria. These were described first in Enterobacteriaceae and subsequently in a variety of other genera; their spread is associated with the increased use of antibiotics in human and animal medicine. Antibiotic-resistance genes that determine the production of enzymes which modify (detoxify) the antibiotics have been detected in antibiotic-producing organisms. It has been suggested that the producing strains provided the source of antibiotic-resistance genes that were then 'picked-up' by recombination. Recent studies of the nucleotide sequence of certain antibiotic-resistance genes indicate regions of strong homology in the encoded proteins. The implications of these similarities are discussed.19846559117
9277170.9998Plasmid incompatibility: more compatible than previously thought? It is generally accepted that plasmids containing the same origin of replication are incompatible. We have re-examined this concept in terms of the plasmid copy number, by introducing plasmids containing the same origin of replication and different antibiotic resistance genes into bacteria. By selecting for resistance to only one antibiotic, we were able to examine the persistence of plasmids carrying resistances to other antibiotics. We find that plasmids are not rapidly lost, but are able to persist in bacteria for multiple overnight growth cycles, with some dependence upon the nature of the antibiotic selected for. By carrying out the experiments with different origins of replication, we have been able to show that higher copy number leads to longer persistence, but even with low copy plasmids, persistence occurs to a significant degree. This observation holds significance for the field of protein engineering, as the presence of two or more plasmids within bacteria weakens, and confuses, the connection between screened phenotype and genotype, with the potential to wrongly assign specific phenotypes to incorrect genotypes.200717332010
4828180.9998Generating Transposon Insertion Libraries in Gram-Negative Bacteria for High-Throughput Sequencing. Transposon sequencing (Tn-seq) is a powerful method that combines transposon mutagenesis and massive parallel sequencing to identify genes and pathways that contribute to bacterial fitness under a wide range of environmental conditions. Tn-seq applications are extensive and have not only enabled examination of genotype-phenotype relationships at an organism level but also at the population, community and systems levels. Gram-negative bacteria are highly associated with antimicrobial resistance phenotypes, which has increased incidents of antibiotic treatment failure. Antimicrobial resistance is defined as bacterial growth in the presence of otherwise lethal antibiotics. The "last-line" antimicrobial colistin is used to treat Gram-negative bacterial infections. However, several Gram-negative pathogens, including Acinetobacter baumannii can develop colistin resistance through a range of molecular mechanisms, some of which were characterized using Tn-seq. Furthermore, signal transduction pathways that regulate colistin resistance vary within Gram-negative bacteria. Here we propose an efficient method of transposon mutagenesis in A. baumannii that streamlines generation of a saturating transposon insertion library and amplicon library construction by eliminating the need for restriction enzymes, adapter ligation, and gel purification. The methods described herein will enable in-depth analysis of molecular determinants that contribute to A. baumannii fitness when challenged with colistin. The protocol is also applicable to other Gram-negative ESKAPE pathogens, which are primarily associated with drug resistant hospital-acquired infections.202032716393
9310190.9998Bacterial resistance to antibiotics. Effective antibacterial drugs have been available for nearly 50 years. After the introduction of each new such drug, whether chemically synthesized or a naturally occurring antibiotic, bacterial resistance to it has emerged. The genetic mechanisms by which bacteria have acquired resistance were quite unexpected; a new evolutionary pathways has been revealed. Although some antibiotic resistance has resulted from mutational changes in structural proteins--targets for the drugs' action--most has resulted from the acquisition of new, ready-made genes from an external source--that is, from another bacterium. Vectors of the resistance genes are plasmids--heritable DNA molecules that are transmissible between bacterial cells. Plasmids without antibiotic-resistance genes are common in all kinds of bacteria. Resistance plasmids have resulted from the insertion of new DNA sequences into previously existing plasmids. Thus, the spread of antibiotic resistance is at three levels: bacteria between people or animals; plasmids between bacteria; and transposable genes between plasmids.19846319093