# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6307 | 0 | 1.0000 | High-density transposon libraries utilising outward-oriented promoters identify mechanisms of action and resistance to antimicrobials. The use of bacterial transposon mutant libraries in phenotypic screens is a well-established technique for determining which genes are essential or advantageous for growth in conditions of interest. Standard, inactivating, transposon libraries cannot give direct information about genes whose over-expression gives a selective advantage. We report the development of a system wherein outward-oriented promoters are included in mini-transposons, generation of transposon mutant libraries in Escherichia coli and Pseudomonas aeruginosa and their use to probe genes important for growth under selection with the antimicrobial fosfomycin, and a recently-developed leucyl-tRNA synthase inhibitor. In addition to the identification of known mechanisms of action and resistance, we identify the carbon-phosphorous lyase complex as a potential resistance liability for fosfomycin in E. coli and P. aeruginosa. The use of this technology can facilitate the development of novel mechanism-of-action antimicrobials that are urgently required to combat the increasing threat worldwide from antimicrobial-resistant pathogenic bacteria. | 2020 | 33186989 |
| 6308 | 1 | 0.9998 | A shotgun antisense approach to the identification of novel essential genes in Pseudomonas aeruginosa. BACKGROUND: Antibiotics in current use target a surprisingly small number of cellular functions: cell wall, DNA, RNA, and protein biosynthesis. Targeting of novel essential pathways is expected to play an important role in the discovery of new antibacterial agents against bacterial pathogens, such as Pseudomonas aeruginosa, that are difficult to control because of their ability to develop resistance, often multiple, to all current classes of clinical antibiotics. RESULTS: We aimed to identify novel essential genes in P. aeruginosa by shotgun antisense screening. This technique was developed in Staphylococcus aureus and, following a period of limited success in Gram-negative bacteria, has recently been used effectively in Escherichia coli. To also target low expressed essential genes, we included some variant steps that were expected to overcome the non-stringent regulation of the promoter carried by the expression vector used for the shotgun antisense libraries. Our antisense screenings identified 33 growth-impairing single-locus genomic inserts that allowed us to generate a list of 28 "essential-for-growth" genes: five were "classical" essential genes involved in DNA replication, transcription, translation, and cell division; seven were already reported as essential in other bacteria; and 16 were "novel" essential genes with no homologs reported to have an essential role in other bacterial species. Interestingly, the essential genes in our panel were suggested to take part in a broader range of cellular functions than those currently targeted by extant antibiotics, namely protein secretion, biosynthesis of cofactors, prosthetic groups and carriers, energy metabolism, central intermediary metabolism, transport of small molecules, translation, post-translational modification, non-ribosomal peptide synthesis, lipopolysaccharide synthesis/modification, and transcription regulation. This study also identified 43 growth-impairing inserts carrying multiple loci targeting 105 genes, of which 25 have homologs reported as essential in other bacteria. Finally, four multigenic growth-impairing inserts belonged to operons that have never been reported to play an essential role. CONCLUSIONS: For the first time in P. aeruginosa, we applied regulated antisense RNA expression and showed the feasibility of this technology for the identification of novel essential genes. | 2014 | 24499134 |
| 9513 | 2 | 0.9998 | Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacteria use ion motive force, while only a few systems have been shown to rely on ATP hydrolysis. However, recent reports on MDR proteins from gram-positive organisms, as well as genome analysis, indicate that the role of ABC-type MDR transporters in bacterial drug resistance might be underestimated. Detailed structural and mechanistic analyses of these proteins can help to understand their molecular mode of action and may eventually lead to the development of new strategies to counteract their actions, thereby increasing the effectiveness of drug-based therapies. This review focuses on recent advances in the analysis of ABC-type MDR transporters in bacteria. | 2007 | 17804667 |
| 4428 | 3 | 0.9998 | Multidrug resistance in enteric and other gram-negative bacteria. In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved. | 1996 | 8647368 |
| 9356 | 4 | 0.9998 | The expression of antibiotic resistance genes in antibiotic-producing bacteria. Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. | 2014 | 24964724 |
| 3824 | 5 | 0.9998 | Screening for novel antibiotic resistance genes. Knowledge of novel antibiotic resistance genes aids in the understanding of how antibiotics function and how bacteria fight them. This knowledge also allows future generations of an antibiotic or antibiotic group to be altered to allow the greatest efficacy. The method described here is very simple in theory. The bacterial strains are screened for antibiotic resistance. Cultures of the strain are grown, and DNA is extracted. A partial digest of the extraction is cloned into Escherichia coli, and the transformants are plated on selective media. Any colony that grows will possess the antibiotic resistance gene and can be further examined. In actual practice, however, this technique can be complicated. The detailed protocol will need to be optimized for each bacterial strain, vector, and cell line chosen. | 2010 | 20830570 |
| 9422 | 6 | 0.9998 | Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. | 2014 | 25419466 |
| 9417 | 7 | 0.9998 | General aspects of virus drug resistance with special reference to herpes simplex virus. The features of virus drug resistance are reviewed with examples from studies of herpes simplex virus drug-resistant mutants. Virus drug resistance, compared with drug resistance of bacteria or eukaryotes, is distinguished by its ability to provide information on drug selectivity. Identification of genes in which mutations arise to confer drug resistance defines gene products which contribute to antiviral selectivity. The gene products can then be dissected functionally with the aid of these mutations. Laboratory studies of the frequency of mutation to drug resistance and the features of drug-resistant mutants may have predictive value for the clinic. | 1986 | 3025148 |
| 9404 | 8 | 0.9998 | The Application of Transposon Insertion Sequencing in Identifying Essential Genes in B. fragilis. Essential genes are those that are indispensable for the survival of organism under specific growth conditions. Investigating essential genes in pathogenic bacteria not only helps to understand vital biological networks but also provides novel targets for drug development. Availability of genetic engineering tools and high-throughput sequencing methods has enabled essential genes identification in many pathogenic gram-positive and gram-negative bacteria. Bacteroides fragilis is one of the major bacteria specific of human gastrointestinal microbiota. When B. fragilis moves out of its niche, it turns into deadly pathogen. Here, we describe detailed method for the essential gene identification in B. fragilis. Generated transposon mutant pool can be used for other applications such as identification of genes responsible for drug resistance in B. fragilis. | 2022 | 34709623 |
| 4436 | 9 | 0.9998 | Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. A plasmid-borne transposon encodes enzymes and regulator proteins that confer resistance of enterococcal bacteria to the antibiotic vancomycin. Purification and characterization of individual proteins encoded by this operon has helped to elucidate the molecular basis of vancomycin resistance. This new understanding provides opportunities for intervention to reverse resistance. | 1996 | 8807824 |
| 6326 | 10 | 0.9998 | Identification of novel metronidazole-inducible genes in Mycobacterium smegmatis using a customized amplification library. The incidence of antibiotic resistance in pathogenic bacteria is rising. Bacterial resistance may be a natural defense of organisms, or it may result from spontaneous mutations or the acquisition of exogenous resistance genes. We grew spontaneous metronidazole-resistant Mycobacterium smegmatis mutants on solid medium cultures and employed differential expression using a customized amplification library to analyze the global gene profiles of metronidazole-resistant mutants under hypoxic conditions. In total, 66 genes involved in metronidazole resistance were identified and functionally characterized using the gene role category of M. smegmatis. Overall, genes associated with cell wall synthesis, such as methyltransferase and glycosyltransferase, and genes encoding drug transporters were highly expressed. The genes may be involved in the natural drug resistance of mycobacteria by increasing mycobacterial cell wall permeability and the efflux pumps of active drugs. In addition, the genes may play a role in dormancy. The genes identified in this study may lead to a better understanding of the mechanisms of metronidazole resistance during dormancy. | 2008 | 18373646 |
| 9420 | 11 | 0.9998 | The intrinsic resistance of bacteria. Antibiotic resistance is often considered to be a trait acquired by previously susceptible bacteria, on the basis of which can be attributed to the horizontal acquisition of new genes or the occurrence of spontaneous mutation. In addition to acquired resistance, bacteria have a trait of intrinsic resistance to different classes of antibiotics. An intrinsic resistance gene is involved in intrinsic resistance, and its presence in bacterial strains is independent of previous antibiotic exposure and is not caused by horizontal gene transfer. Recently, interest in intrinsic resistance genes has increased, because these gene products not only may provide attractive therapeutic targets for development of novel drugs that rejuvenate the activity of existing antibiotics, and but also might predict future emergence of resistant pathogens if they become mobilized. In the present review, we summarize the conventional examples of intrinsic resistance, including the impermeability of cellular envelopes, the activity of multidrug efflux pumps or lack of drug targets. We also demonstrate that transferases and enzymes involved in basic bacterial metabolic processes confer intrinsic resistance in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. We present as well information on the cryptic intrinsic resistance genes that do not confer resistance to their native hosts but are capable of conferring resistance when their expression levels are increased and the activation of the cryptic genes. Finally, we discuss that intrinsic genes could be the origin of acquired resistance, especially in the genus Acinetobacter. | 2016 | 27806928 |
| 9423 | 12 | 0.9998 | Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system. | 2019 | 31586049 |
| 9357 | 13 | 0.9998 | The bifunctional enzymes of antibiotic resistance. The evolutionary union of two genes--each encoding proteins of complementary enzymatic activity--into a single gene so as to allow the coordinated expression of these activities as a fusion polypeptide, is an increasingly recognized biological occurrence. The result of this genetic union is the bifunctional enzyme. This fusion of separate catalytic activities into a single protein, whose gene is regulated by a single promoter, is seen especially where the coordinated expression of the separate activities is highly desirable. Increasingly, a circumstance driving the evolution of the bifunctional enzyme in bacteria is the resistance response of bacteria to antibiotic chemotherapy. We summarize the knowledge on bifunctional antibiotic-resistance enzymes, as possible harbingers of clinically significant resistance mechanisms of the future. | 2009 | 19615931 |
| 4444 | 14 | 0.9998 | Mechanisms of resistance to fluoroquinolones. Fluoroquinolones have some of the properties of an 'ideal' anti-microbial agent. Because of their potent broad spectrum activity and absence of transferable mechanism of resistance or inactivating enzymes, it was hoped that clinical resistance to this useful group of drugs would not occur. However, over the years, due to intense selective pressure and relative lack of potency of the available quinolones against some strains, bacteria have evolved at least two mechanisms of resistance: (i) alteration of molecular targets, and (ii) reduction of drug accumulation. DNA gyrase and topoisomerase IV are the two molecular targets of fluoroquinolones. Mutations in specified regions (quinolone resistance-determining region) in genes coding for the gyrase and/or topoisomerase leads to clinical resistance. An efflux pump effective in pumping out hydrophilic quinolones has been described. Newer fluoroquinolones which recognize both molecular targets and have improved pharmacokinetic properties offer hope of higher potency, thereby reducing the probability of development of resistance. | 1999 | 10573971 |
| 6306 | 15 | 0.9998 | Retrieval of Enterobacteriaceae drug targets using singular value decomposition. MOTIVATION: The identification of potential drug target proteins in bacteria is important in pharmaceutical research for the development of new antibiotics to combat bacterial agents that cause diseases. RESULTS: A new model that combines the singular value decomposition (SVD) technique with biological filters composed of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of Escherichia coli (strain K12) has been created to predict potential antibiotic drug targets in the Enterobacteriaceae family. This model identified 99 potential drug target proteins in the studied family, which exhibit eight different functions and are protein-coding essential genes or similar to protein-coding essential genes of E.coli (strain K12), indicating that the disruption of the activities of these proteins is critical for cells. Proteins from bacteria with described drug resistance were found among the retrieved candidates. These candidates have no similarity to the human proteome, therefore exhibiting the advantage of causing no adverse effects or at least no known adverse effects on humans. CONTACT: rita_silverio@hotmail.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. | 2015 | 25480374 |
| 797 | 16 | 0.9998 | Increasing the PACE of characterising novel transporters by functional genomics. Since the late 1990's the genome sequences for thousands of species of bacteria have been released into public databases. The release of each new genome sequence typically revealed the presence of tens to hundreds of uncharacterised genes encoding putative membrane proteins and more recently, microbial metagenomics has revealed countless more of these uncharacterised genes. Given the importance of small molecule efflux in bacteria, it is likely that a significant proportion of these genes encode for novel efflux proteins, but the elucidation of these functions is challenging. We used transcriptomics to predict that the function of a gene encoding a hypothetical membrane protein is in efflux-mediated antimicrobial resistance. We subsequently confirmed this function and the likely native substrates of the pump by using detailed biochemical and biophysical analyses. Functional studies of homologs of the protein from other bacterial species determined that the protein is a prototype for a family of multidrug efflux pumps - the Proteobacterial Antimicrobial Compound Efflux (PACE) family. The general functional genomics approach used here, and its expansion to functional metagenomics, will very likely reveal the identities of more efflux pumps and other transport proteins of scientific, clinical and commercial interest in the future. | 2021 | 34492595 |
| 6335 | 17 | 0.9998 | Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics. | 2021 | 34756069 |
| 8915 | 18 | 0.9998 | Genetic regulation of host responses to Salmonella infection in mice. Salmonella spp are Gram-negative bacteria capable of infecting a wide range of host species, including humans, domesticated and wild mammals, reptiles, birds and insects. The outcome of an encounter between Salmonella and its host is dependent upon multiple factors including the host genetic background. To facilitate the study of the genetic factors involved in resistance to this pathogen, mouse models of Salmonella infection have been developed and studied for years, allowing identification of several genes and pathways that may influence the disease outcome. In this review, we will cover some of the genes involved in mouse resistance to Salmonella that were identified through the study of congenic mouse strains, cloning of spontaneous mouse mutations, use of site-directed mutagenesis or quantitative trait loci analysis. In parallel, the relevant information pertaining to genes involved in resistance to Salmonella in humans will be discussed. | 2002 | 12424619 |
| 8925 | 19 | 0.9998 | Insect Antimicrobial Peptide Complexes Prevent Resistance Development in Bacteria. In recent decades much attention has been paid to antimicrobial peptides (AMPs) as natural antibiotics, which are presumably protected from resistance development in bacteria. However, experimental evolution studies have revealed prompt resistance increase in bacteria to any individual AMP tested. Here we demonstrate that naturally occurring compounds containing insect AMP complexes have clear advantage over individual peptide and small molecule antibiotics in respect of drug resistance development. As a model we have used the compounds isolated from bacteria challenged maggots of Calliphoridae flies. The compound isolated from blow fly Calliphora vicina was found to contain three distinct families of cell membrane disrupting/permeabilizing peptides (defensins, cecropins and diptericins), one family of proline rich peptides and several unknown antimicrobial substances. Resistance changes under long term selective pressure of the compound and reference antibiotics cefotaxime, meropenem and polymyxin B were tested using Escherichia coli, Klebsiella pneumonia and Acinetobacter baumannii clinical strains. All the strains readily developed resistance to the reference antibiotics, while no signs of resistance growth to the compound were registered. Similar results were obtained with the compounds isolated from 3 other fly species. The experiments revealed that natural compounds containing insect AMP complexes, in contrast to individual AMP and small molecule antibiotics, are well protected from resistance development in bacteria. Further progress in the research of natural AMP complexes may provide novel solutions to the drug resistance problem. | 2015 | 26177023 |