# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6290 | 0 | 1.0000 | Transcriptomic profiling of ceftriaxone-tolerant phenotypes of Neisseria gonorrhoeae reveals downregulation of ribosomal genes - a pilot study. Antibiotic tolerance is associated with failure of antibiotic treatment and accelerates the development of antimicrobial resistance. The molecular mechanisms underlying antimicrobial tolerance remain poorly understood. Tolerant bacteria can slow metabolism by extending the lag phase without altering antimicrobial susceptibility. We recently induced ceftriaxone (CRO) tolerance in the Neisseria gonorrhoeae reference strain WHO P. In the current study, we characterized the transcriptomic profiles of these CRO-tolerant phenotypes. To induce tolerance, WHO P strains were grown under 3-h intermittent CRO exposure (10× the MIC), followed by overnight growth in gonococcal (GC) broth for seven consecutive days, with cultures maintained in sextuplicate. Two control cultures were maintained without CRO exposure. The tolerance and CRO susceptibility of the isolates were assessed using a modified tolerance disc (TD) test. Total RNA was isolated from tolerant isolates (n = 12) and control (n = 3) strains, followed by Ribo depletion, Illumina Library preparation, and sequencing. Transcriptomic analysis revealed no differentially expressed genes after 1 day of CRO exposure. However, after 3 days of CRO exposure, 13 genes were found to be significantly downregulated, including tRNA-Ser (C7S06_RS03100) and tRNA-Leu (C7S06_RS04945) and ribosomal RNA genes (16S and 23S rRNA). Following 7 days of exposure, 51 genes were differentially expressed, with most downregulated, such as SecB (Protein-export chaperone SecB) and tRNA-Ser (C7S06_RS01850) and the 16S and 23S ribosomal RNA genes. The development of CRO-tolerance in N. gonorrhoeae was associated with the downregulation of various ribosomal genes and associated genes, reflecting a potential mechanism for bacterial survival under antibiotic stress. IMPORTANCE: Antibiotic tolerance allows some bacteria to survive antibiotic treatment, contributing to treatment failure and creating conditions that promote resistance. In this study, we showed that Neisseria gonorrhoeae, the bacteria that causes gonorrhea, can become tolerant to ceftriaxone-the last-line treatment used. By repeatedly exposing the bacteria to high doses of ceftriaxone, we observed the development of tolerance over several days. Using transcriptomic analysis, we found that tolerant bacteria consistently reduced the activity of genes involved in protein synthesis, including ribosomal RNAs and transfer RNAs. This suggests that N. gonorrhoeae may survive antibiotic stress by entering a low-metabolic state that makes the antibiotic less effective. These findings highlight a survival mechanism that does not rely on genetic resistance. Understanding this tolerance response is vital for improving current treatment approaches and could inform the development of new strategies to prevent antibiotic failure in gonorrhea and other infections. | 2025 | 40622217 |
| 6292 | 1 | 0.9998 | Genome-Wide Screening and Characterization of Genes Involved in Response to High Dose of Ciprofloxacin in Escherichia coli. The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Inevitably, considering its extensive use and misuse, resistance toward ciprofloxacin has increased in almost all clinically relevant bacteria. This study aimed to investigate the transcriptome changes at a high concentration of ciprofloxacin in Escherichia coli. In brief, 1,418 differentially expressed genes (DEGs) were identified, from which 773 genes were upregulated by ciprofloxacin, whereas 651 genes were downregulated. Enriched biological pathways reflected the upregulation of biological processes such as DNA damage and repair system, toxin/antitoxin systems, formaldehyde detoxification system. With kyoto encyclopedia of genes and genomes pathway analysis, higher expressed DEGs were associated with "LPS biosynthesis," "streptomycin biosynthesis," and "polyketide sugar unit biosynthesis." Lower expressed DEGs were associated with "biosynthesis of amino acids" and "flagellar assembly" pathways. After treatment of ciprofloxacin, lipopolysaccharide (LPS) release was increased by two times, and the gene expression level of LPS synthesis was elevated (p < 0.05) in both reference and clinical strains. Our results demonstrated that transient exposure to high-dose ciprofloxacin is a double-edged sword. Cautions should be taken when administering high-dose antibiotic treatment for infectious diseases. | 2022 | 35512736 |
| 6279 | 2 | 0.9998 | Comparative transcriptomics analyses of the different growth states of multidrug-resistant Acinetobacter baumannii. Multidrug-resistant (MDR) Acinetobacter baumannii is an important bacterial pathogen commonly associated with hospital acquired infections. A. baumannii can remain viable and hence virulent in the environment for a long period of time due primarily to its ability to form biofilms. A total of 459 cases of MDR A. baumannii our hospital collected from March 2014 to March 2015 were examined in this study, and a representative isolate selected for high-throughput mRNA sequencing and comparison of gene expression profiles under the biofilm and exponential growth conditions. Our study found that the same bacteria indeed exhibited differential mRNA expression under different conditions. Compared to the rapidly growing bacteria, biofilm bacteria had 106 genes upregulated and 92 genes downregulated. Bioinformatics analyses suggested that many of these genes are involved in the formation and maintenance of biofilms, whose expression also depends on the environment and specific signaling pathways and transcription factors that are absent in the log phase bacteria. These differentially expressed mRNAs might contribute to A. baumannii's unique pathogenicity and ability to inflict chronic and recurrent infections. | 2017 | 27916419 |
| 6278 | 3 | 0.9998 | Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lungs of patients with cystic fibrosis (CF). During infection the bacteria evolve and adapt to the lung environment. Here we use genomic, transcriptomic and phenotypic approaches to compare multiple isolates of P. aeruginosa collected more than 20 years apart during a chronic infection in a CF patient. Complete genome sequencing of the isolates, using short- and long-read technologies, showed that a genetic bottleneck occurred during infection and was followed by diversification of the bacteria. A 125 kb deletion, an 0.9 Mb inversion and hundreds of smaller mutations occurred during evolution of the bacteria in the lung, with an average rate of 17 mutations per year. Many of the mutated genes are associated with infection or antibiotic resistance. RNA sequencing was used to compare the transcriptomes of an earlier and a later isolate. Substantial reprogramming of the transcriptional network had occurred, affecting multiple genes that contribute to continuing infection. Changes included greatly reduced expression of flagellar machinery and increased expression of genes for nutrient acquisition and biofilm formation, as well as altered expression of a large number of genes of unknown function. Phenotypic studies showed that most later isolates had increased cell adherence and antibiotic resistance, reduced motility, and reduced production of pyoverdine (an iron-scavenging siderophore), consistent with genomic and transcriptomic data. The approach of integrating genomic, transcriptomic and phenotypic analyses reveals, and helps to explain, the plethora of changes that P. aeruginosa undergoes to enable it to adapt to the environment of the CF lung during a chronic infection. | 2021 | 34826267 |
| 8842 | 4 | 0.9997 | Transcriptomic study of Salmonella enterica subspecies enterica serovar Typhi biofilm. BACKGROUND: Typhoid fever is an acute systemic infection of humans caused by Salmonella enterica subspecies enterica serovar Typhi (S. Typhi). In chronic carriers, the bacteria survive the harsh environment of the gallbladder by producing biofilm. The phenotype of S. Typhi biofilm cells is significantly different from the free-swimming planktonic cells, and studies have shown that they are associated with antibiotic resistance, immune system evasion, and bacterial persistence. However, the mechanism of this transition and the events leading to biofilm formation are unknown. High throughput sequencing was performed to identify the genes involved in biofilm formation and to postulate the mechanism of action. RESULTS: Planktonic S. Typhi cells were cultured using standard nutrient broth whereas biofilm cells were cultured in a stressful environment using high shearing-force and bile to mimic the gallbladder. Sequencing libraries were prepared from S. Typhi planktonic cells and mature biofilm cells using the Illumina HiSeq 2500 platform, and the transcriptome data obtained were processed using Cufflinks bioinformatics suite of programs to investigate differential gene expression between the two phenotypes. A total of 35 up-regulated and 29 down-regulated genes were identified. The identities of the differentially expressed genes were confirmed using NCBI BLAST and their functions were analyzed. The results showed that the genes associated with metabolic processes and biofilm regulations were down-regulated while those associated with the membrane matrix and antibiotic resistance were highly up-regulated. CONCLUSIONS: It is proposed that the biofilm phenotype of S. Typhi allows the bacteria to increase production of the membrane matrix in order to serve as a physical shield and to adhere to surfaces, and enter an energy conservation state in response to the stressful environment. Conversely, the planktonic phenotype allows the bacteria to produce flagella and increase metabolic activity to enable the bacteria to migrate and form new colonies of infection. This data provide a basis for further studies to uncover the mechanism of biofilm formation in S. Typhi and to discover novel genes or pathways associated with the development of the typhoid carrier state. | 2017 | 29089020 |
| 8957 | 5 | 0.9997 | Transcriptome Profiling Reveals Interplay of Multifaceted Stress Response in Escherichia coli on Exposure to Glutathione and Ciprofloxacin. We have previously reported that supplementation of exogenous glutathione (GSH) promotes ciprofloxacin resistance in Escherichia coli by neutralizing antibiotic-induced oxidative stress and by enhancing the efflux of antibiotic. In the present study, we used a whole-genome microarray as a tool to analyze the system-level transcriptomic changes of E. coli on exposure to GSH and/or ciprofloxacin. The microarray data revealed that GSH supplementation affects redox function, transport, acid shock, and virulence genes of E. coli. The data further highlighted the interplay of multiple underlying stress response pathways (including those associated with the genes mentioned above and DNA damage repair genes) at the core of GSH, offsetting the effect of ciprofloxacin in E. coli. The results of a large-scale validation of the transcriptomic data using reverse transcription-quantitative PCR (RT-qPCR) analysis for 40 different genes were mostly in agreement with the microarray results. The altered growth profiles of 12 different E. coli strains carrying deletions in the specific genes mentioned above with GSH and/or ciprofloxacin supplementation implicate these genes in the GSH-mediated phenotype not only at the molecular level but also at the functional level. We further associated GSH supplementation with increased acid shock survival of E. coli on the basis of our transcriptomic data. Taking the data together, it can be concluded that GSH supplementation influences the expression of genes of multiple stress response pathways apart from its effect(s) at the physiological level to counter the action of ciprofloxacin in E. coli. IMPORTANCE The emergence and spread of multidrug-resistant bacterial strains have serious medical and clinical consequences. In addition, the rate of discovery of new therapeutic antibiotics has been inadequate in last few decades. Fluoroquinolone antibiotics such as ciprofloxacin represent a precious therapeutic resource in the fight against bacterial pathogens. However, these antibiotics have been gradually losing their appeal due to the emergence and buildup of resistance to them. In this report, we shed light on the genome-level expression changes in bacteria with respect to glutathione (GSH) exposure which act as a trigger for fluoroquinolone antibiotic resistance. The knowledge about different bacterial stress response pathways under conditions of exposure to the conditions described above and potential points of cross talk between them could help us in understanding and formulating the conditions under which buildup and spread of antibiotic resistance could be minimized. Our findings are also relevant because GSH-induced genome-level expression changes have not been reported previously for E. coli. | 2018 | 29468195 |
| 4703 | 6 | 0.9997 | Positive adaptive state: microarray evaluation of gene expression in Salmonella enterica Typhimurium exposed to nalidixic acid. The emergence of antimicrobial resistance among foodborne bacteria associated with food animal production is an important global issue. We hypothesised that antibiotics generate a positive adaptive state in Salmonella that actively contributes to the development of antimicrobial resistance. This is opposed to common views that antimicrobials only act as a passive selective pressure. Microarray analysis was used to evaluate changes in gene expression that occur upon exposure of Salmonella enterica Typhimurium ATCC 14028 to 1.6 microg/mL of nalidixic acid. The results showed a significant (P < 0.02) difference (fold expression differences >2.0) in the expression of 226 genes. Comparatively repressed transcripts included Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2). Induced genes included efflux pumps representing all five families of multidrug-resistance efflux pumps, outer membrane lipoproteins, and genes involved in regulating lipopolysaccharide chain length. This profile suggests both enhanced antimicrobial export from the cell and membrane permeability adaptations to limit diffusion of nalidixic acid into the cell. Finally, increased expression of the error-prone DNA repair mechanisms were also observed. From these data we show a highly integrated genetic response to nalidixic acid that places Salmonella into a positive adaptive state that elicits mutations. Evaluation of gene expression profile changes that occur during exposure to antibiotics will continue to improve our understanding of the development of antibiotic resistance. | 2007 | 17600486 |
| 4708 | 7 | 0.9997 | Proteomic analysis of nalidixic acid resistance in Escherichia coli: identification and functional characterization of OM proteins. The worldwide emergence of antibiotic-resistant bacteria poses a serious threat to human health. To understand the mechanisms of the resistance is extremely important to the control of these bacteria. In the current study, proteomic methodologies were utilized to characterize OM proteome of Escherichia coli with nalidixic acid (NA) resistance. The OM proteins TolC, OmpT, OmpC and OmpW were found to be up-regulated, and FadL was down-regulated in the NA-resistant E. coli strains. The changes at the level of protein expression were validated using Western blotting. Furthermore, the possible roles these altered proteins played in regulation of NA resistance were investigated using genetically modified strains with the deletion of these genes. The results obtained from functional characterization of these genetically modified strains suggest that TolC and OmpC may play more important roles in the control of NA resistance than other OM proteins identified. To gain better understanding of the mechanisms of NA resistance, we also characterized the role of the two-component system EnvZ/OmpR which is responsible for the regulation of OmpC and OmpF expression in response to NA resistance using their genetically modified strains. Our results suggest that OmpF and the EnvZ/OmpR are also important participants of the pathways regulating the NA resistance of E. coli. | 2008 | 18438992 |
| 6291 | 8 | 0.9997 | Adaptive Resistance of Staphylococcus aureus to Cefquinome Sulfate in an In Vitro Pharmacokinetic Model with Transcriptomic Insights. Cefquinome sulfate has a strong killing effect against Staphylococcus aureus (S. aureus), but bacterial resistance has become increasingly widespread. Experiments were conducted to investigate the pattern of adaptive resistance of S. aureus to cefquinome sulfate under different dosage regimens by using pharmacokinetic-pharmacodynamics (PK-PD) modeling, and the adaptive-resistant bacteria in different states were screened and subjected to transcriptomic sequencing. The results showed that the minimum inhibitory concentration of Staphylococcus aureus under the action of cefquinome sulfate was 0.5 μg/mL, the anti-mutation concentration was 1.6 μg/mL, and the mutation selection window range was 0.5~1.6 μg/mL. In the in vitro pharmacokinetic model to simulate different dosing regimens in the animal body, there are certain rules for the emergence of adaptive drug-resistant bacteria: the intensity of bacterial resistance gradually increased with culture time, and the order of emergence was tolerant bacteria (TO) followed by persistent bacteria (PE) and finally resistant bacteria (RE). The sequence reflected the evolution of adaptive drug resistance. Transcriptome Gene Ontology (GO) analysis revealed that differentially expressed genes were involved in cellular respiration, energy derivation by oxidation of organic compounds, and oxidation-reduction processes. The differentially expressed genes identified functioned in the synthesis of cell membranes, cytoplasm, and intracellular parts. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that 65 genes were differentially expressed after cefquinome sulfate treatment, of which 35 genes were significantly upregulated and 30 genes were significantly downregulated. Five genes, sdhB, sdhA, pdhA, lpdA, and sucC, may be involved in network regulation. This study revealed the cross-regulation of multiple metabolic pathway networks and the targets of network regulation of S. aureus to produce adaptive drug resistance. The results will provide guidance for clinical drug use in animals infected with S. aureus. | 2025 | 40005696 |
| 8954 | 9 | 0.9997 | Effect of biofilm formation by antimicrobial-resistant gram-negative bacteria in cold storage on survival in dairy processing lines. Antimicrobial-resistant gram-negative bacteria in dairy products can transfer antimicrobial resistance to gut microbiota in humans and can adversely impact the product quality. In this study, we aimed to investigate their distribution in dairy processing lines and evaluate biofilm formation and heat tolerance under dairy processing line-like conditions. Additionally, we compared the relative expression of general and heat stress-related genes as well as spoilage-related gene between biofilm and planktonic cells under consecutive stresses, similar to those in dairy processing lines. Most species of gram-negative bacteria isolated from five different dairy processing plants were resistant to one or more antimicrobials. Biofilm formation by the bacteria at 5 °C increased with the increase in exposure time. Moreover, cells in biofilms remained viable under heat treatment, whereas all planktonic cells of the selected strains died. The expression of heat-shock-related genes significantly increased with heat treatment in the biofilms but mostly decreased in the planktonic cells. Thus, biofilm formation under raw milk storage conditions may improve the tolerance of antimicrobial-resistant gram-negative bacteria to pasteurization, thereby increasing their persistence in dairy processing lines and products. Furthermore, the difference in response to heat stress between biofilm and planktonic cells may be attributed to the differential expression of heat stress-related genes. Therefore, this study contributes to the understanding of how gram-negative bacteria persist under consecutive stresses in dairy processing procedures and the potential mechanism underlying heat tolerance in biofilms. | 2023 | 36436412 |
| 6293 | 10 | 0.9997 | Gentamicin resistance to Escherichia coli related to fatty acid metabolism based on transcriptome analysis. Antibiotic overuse and misuse have promoted the emergence and spread of antibiotic-resistant bacteria. Increasing bacterial resistance to antibiotics is a major healthcare problem, necessitating elucidation of antibiotic resistance mechanisms. In this study, we explored the mechanism of gentamicin resistance by comparing the transcriptomes of antibiotic-sensitive and -resistant Escherichia coli. A total of 410 differentially expressed genes were identified, of which 233 (56.83%) were up-regulated and 177 (43.17%) were down-regulated in the resistant strain compared with the sensitive strain. Gene Ontology (GO) analysis classifies differential gene expression into three main categories: biological processes, cellular components, and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the up-regulated genes were enriched in eight metabolic pathways, including fatty acid metabolism, which suggests that fatty acid metabolism may be involved in the development of gentamicin resistance in E. coli. This was demonstrated by measuring the acetyl-CoA carboxylase activity, plays a fundamental role in fatty acid metabolism, was increased in gentamicin-resistant E. coli. Treatment of fatty acid synthesis inhibitor, triclosan, promoted gentamicin-mediated killing efficacy to antibiotic-resistant bacteria. We also found that exogenous addition of oleic acid, which involved in fatty acid metabolism, reduced E. coli sensitivity to gentamicin. Overall, our results provide insight into the molecular mechanism of gentamicin resistance development in E. coli. | 2023 | 37224563 |
| 8843 | 11 | 0.9997 | Dual RNA-seq in Streptococcus pneumoniae Infection Reveals Compartmentalized Neutrophil Responses in Lung and Pleural Space. Streptococcus pneumoniae is the dominant cause of community-acquired pneumonia worldwide. Invasion of the pleural space is common and results in increased mortality. We set out to determine the bacterial and host factors that influence invasion of the pleural space. In a murine model of pneumococcal infection, we isolated neutrophil-dominated samples of bronchoalveolar and pleural fluid containing bacteria 48 hours after infection. Using dual RNA sequencing (RNA-seq), we characterized bacterial and host transcripts that were differentially regulated between these compartments and bacteria in broth and resting neutrophils, respectively. Pleural and lung samples showed upregulation of genes involved in the positive regulation of neutrophil extravasation but downregulation of genes mediating bacterial killing. Compared to the lung samples, cells within the pleural space showed marked upregulation of many genes induced by type I interferons, which are cytokines implicated in preventing bacterial transmigration across epithelial barriers. Differences in the bacterial transcripts between the infected samples and bacteria grown in broth showed the upregulation of genes in the bacteriocin locus, the pneumococcal surface adhesin PsaA, and the glycopeptide resistance gene vanZ; the gene encoding the ClpP protease was downregulated in infection. One hundred sixty-nine intergenic putative small bacterial RNAs were also identified, of which 43 (25.4%) small RNAs had been previously described. Forty-two of the small RNAs were upregulated in pleura compared to broth, including many previously identified as being important in virulence. Our results have identified key host and bacterial responses to invasion of the pleural space that can be potentially exploited to develop alternative antimicrobial strategies for the prevention and treatment of pneumococcal pleural disease.IMPORTANCE The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space. | 2019 | 31409659 |
| 6246 | 12 | 0.9997 | The CRISPR System and MepA Multidrug Efflux Pump Linked to Antibiotic Resistance in Staphylococcus aureus. Staphylococcus aureus (S. aureus) is a major zoonotic pathogen. To investigate CRISPR carriage in S. aureus isolates from cows with mastitis and the role of the CRISPR system and efflux pumps in antibiotic resistance. We analyzed antibiotic resistance genes and CRISPR loci, sequenced spacers, and assessed correlations between CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) presence and antibiotic resistance in 234 S. aureus isolates. The changes in CRISPR sequences were examined by continuous passage of 360 generations without antibiotic pressure. Subsequently, variations in CRISPR loci and transcript levels were measured under ciprofloxacin (CIP) exposure. In addition, an S. aureus-25-mepA was constructed to evaluate changes in antimicrobial sensitivity and mepA transcript levels in both planktonic and biofilm states. Our results revealed a CRISPR loci detection rate of 7.69% among the 234 S. aureus isolates, with significantly lower rates of the antibiotic resistance genes gyrA, grlA, norA, and tet(M) in CRISPR-positive isolates compared to those in CRISPR-negative isolates (p < 0.05). CIP-resistant strains exhibited loss of repeat and spacer sequence in CRISPR loci, and the transcript abundance of these loci gradually decreased under CIP pressures, indicating that CRISPR loci deletion or transcript level downregulation under antibiotic stress may be a potential regulatory mechanism of antibiotic resistance. Correlation analysis linked CIP resistance in both planktonic and biofilm S. aureus to mepA transcript levels and biofilm integrity. Our study provides insight into the mechanism by which S. aureus develops antibiotic resistance via the CRISPR system and the MepA efflux pump, offering a theoretical foundation for monitoring the prevalence and resistance of pathogenic bacteria. | 2025 | 39977007 |
| 6277 | 13 | 0.9997 | A large-scale whole-genome comparison shows that experimental evolution in response to antibiotics predicts changes in naturally evolved clinical Pseudomonas aeruginosa. Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations. | 2019 | 31570397 |
| 4615 | 14 | 0.9997 | Effect of conditioned media from Aeromonas caviae on the transcriptomic changes of the porcine isolates of Pasteurella multocida. BACKGROUND: Pasteurella multocida is an opportunistic pathogen causing porcine respiratory diseases by co-infections with other bacterial and viral pathogens. Various bacterial genera isolated from porcine respiratory tracts were shown to inhibit the growth of the porcine isolates of P. multocida. However, molecular mechanisms during the interaction between P. multocida and these commensal bacteria had not been examined. METHODS: This study aimed to investigate the interaction between two porcine isolates of P. multocida (PM2 for type D and PM7 for type A) with Aeromonas caviae selected from the previously published work by co-culturing P. multocida in the conditioned media prepared from A. caviae growth and examining transcriptomic changes using RNA sequencing and bioinformatics analysis. RESULTS: In total, 629 differentially expressed genes were observed in the isolate with capsular type D, while 110 genes were significantly shown in type A. High expression of genes required for energy metabolisms, nutrient uptakes, and quorum sensing were keys to the growth and adaptation to the conditioned media, together with the decreased expression of those in the unurgent pathways, including translation and antibacterial resistance. CONCLUSION: This transcriptomic analysis also displayed the distinct capability of the two isolates of P. multocida and the preference of the capsular type A isolate in response to the tough environment of the A. caviae conditioned media. Therefore, controlling the environmental sensing and nutrient acquisition mechanisms of P. multocida would possibly prevent the overpopulation of these bacteria and reduce the chance of becoming opportunistic pathogens. | 2022 | 36368971 |
| 8955 | 15 | 0.9997 | Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. The change in resistance of Burkholderia cepacia to ceftazidime and to ciprofloxacin during the exponential phase and up to the onset of stationary phase was assessed along the growth curve in batch culture. B. cepacia was grown in planktonic culture and in a biofilm on a membrane support. Resistance increased progressively during the exponential phase, being increased by ten-fold about every four generations. Bacteria grown in a biofilm were about 15 times more resistant than equivalent planktonic-grown bacteria. The growth rate was not the key factor for the development of resistance. The growth phase and the mode of growth have a fundamental impact on the susceptibility of B. cepacia towards antimicrobial agents. Bacteria growing at the same rate may differ greatly in their resistance to antimicrobial agents. | 1998 | 9738832 |
| 6244 | 16 | 0.9997 | Whole-genome sequencing reveals a link between β-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. The overwhelming majority of methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates exhibit a peculiar heterogeneous resistance to β-lactam antibiotics: in cultures of such strains, the majority of cells display only a low level of methicillin resistance--often close to the MIC breakpoint of susceptible strains. Yet, in the same cultures, subpopulations of bacteria exhibiting very high levels of resistance are also present with variable frequencies, which are characteristic of the particular MRSA lineage. The mechanism of heterogeneous resistance is not understood. We describe here an experimental system for exploring the mechanism of heterogeneous resistance. Copies of the resistance gene mecA cloned into a temperature-sensitive plasmid were introduced into the fully sequenced methicillin-susceptible clinical isolate S. aureus strain 476. Transductants of strain 476 expressed methicillin resistance in a heterogeneous fashion: the great majority of cells showed only low MIC (0.75 μg/ml) for the antibiotic, but a minority population of highly resistant bacteria (MIC >300 μg/ml) was also present with a frequency of ∼10(-4). The genetic backgrounds of the majority and minority cells were compared by whole-genome sequencing: the only differences detectable were two point mutations in relA of the highly resistant minority population of bacteria. The relA gene codes for the synthesis of (p)ppGpp, an effector of the stringent stress response. Titration of (p)ppGpp showed increased amounts of this effector in the highly resistant cells. Involvement of (p)ppGpp synthesis genes may explain some of the perplexing aspects of β-lactam resistance in MRSA, since many environmental and genetic changes can modulate cellular levels of (p)ppGpp. | 2013 | 23659600 |
| 4700 | 17 | 0.9997 | Mechanisms of Salmonella typhimurium Resistance to Cannabidiol. The emergence of multi-drug resistance (MDR) poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate with resistance rates significantly outpacing the speed of antibiotic development. This therefore presents related health issues such as untreatable nosocomial infections arising from organ transplants and surgeries, as well as community-acquired infections that are related to people with compromised immunity, e.g., diabetic and HIV patients, etc. There is a global effort to fight MRD pathogens spearheaded by the World Health Organization, thus calling for research into novel antimicrobial agents to fight multiple drug resistance. Previously, our laboratory demonstrated that Cannabidiol (CBD) is an effective antimicrobial against Salmonella typhimurium (S. typhimurium). However, we observed resistance development over time. To understand the mechanisms S. typhimurium uses to develop resistance to CBD, we studied the abundance of bacteria lipopolysaccharide (LPS) and membrane sterols of both CBD-susceptible and CBD-resistant S. typhimurium strains. Using real-time quantitative polymerase chain reaction (rt qPCR), we also analyzed the expression of selected genes known for aiding resistance development in S. typhimurium. We found a significantly higher expression of blaTEM (over 150 mRNA expression) representing over 55% of all the genes considered in the study, fimA (over 12 mRNA expression), fimZ (over 55 mRNA expression), and integron 2 (over 1.5 mRNA expression) in the CBD-resistant bacteria, and these were also accompanied by a shift in abundance in cell surface molecules such as LPS at 1.76 nm, ergosterols at 1.03 nm, oleic acid at 0.10 nm and MPPSE at 2.25nm. For the first time, we demonstrated that CBD-resistance development in S. typhimurium might be caused by several structural and genetic factors. These structural factors demonstrated here include LPS and cell membrane sterols, which showed significant differences in abundances on the bacterial cell surfaces between the CBD-resistant and CBD-susceptible strains of S. typhimurium. Specific key genetic elements implicated for the resistance development investigated included fimA, fimZ, int2, ompC, blaTEM, DNA recombinase (STM0716), leucine-responsive transcriptional regulator (lrp/STM0959), and the spy gene of S. typhimurium. In this study, we revealed that blaTEM might be the highest contributor to CBD-resistance, indicating the potential gene to target in developing agents against CBD-resistant S. typhimurium strains. | 2025 | 40142444 |
| 6345 | 18 | 0.9997 | Transfer RNA gene numbers may not be completely responsible for the codon usage bias in asparagine, isoleucine, phenylalanine, and tyrosine in the high expression genes in bacteria. It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β', respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes. | 2012 | 23053196 |
| 6294 | 19 | 0.9996 | Comparison of Gene Expression Profiles of Uropathogenic Escherichia Coli CFT073 after Prolonged Exposure to Subinhibitory Concentrations of Different Biocides. Biocides are chemical compounds widely used for sterilization and disinfection. The aim of this study was to examine whether exposure to subinhibitory biocide concentrations influenced transcriptional expression of genes that could improve a pathogen's drug resistance or fitness. We used DNA microarrays to investigate the transcriptome of the uropathogenic Escherichia coli strain CFT073 in response to prolonged exposure to subinhibitory concentrations of four biocides: benzalkonium chloride, chlorhexidine, hydrogen peroxide and triclosan. Transcription of a gene involved in polymyxin resistance, arnT, was increased after treatment with benzalkonium chloride. However, pretreatment of the bacteria with this biocide did not result in cross-resistance to polymyxin in vitro. Genes encoding products related to transport formed the functional group that was most affected by biocides, as 110 out of 884 genes in this category displayed altered transcription. Transcripts of genes involved in cysteine uptake, sulfate assimilation, dipeptide transport, as well as cryptic phage genes were also more abundant in response to several biocides. Additionally, we identified groups of genes with transcription changes unique to single biocides that might include potential targets for the biocides. The biocides did not increase the resistance potential of the pathogen to other antimicrobials. | 2019 | 31569631 |