# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6258 | 0 | 1.0000 | Alterations in GyrA and ParC associated with fluoroquinolone resistance in Enterococcus faecium. High-level quinolone resistance in Enterococcus faecium was associated with mutations in both gyrA and parC genes in 10 of 11 resistant strains. On low-level resistant strain without such mutations may instead possess an efflux mechanism or alterations in the other subunits of the gyrase or topoisomerase IV genes. These findings are similar to those for other gram-positive bacteria, such as Enterococcus faecalis. | 1999 | 10103206 |
| 6260 | 1 | 0.9998 | Mechanisms of resistance to fluoroquinolones: state-of-the-art 1992-1994. This paper gives an update on the mechanisms of bacterial resistance to fluoroquinolones. The laboratory techniques currently used to determine the mechanism(s) of resistance are outlined, including the use of restriction fragment length polymorphism and single-stranded conformational polymorphism analysis of mutations in gyrA. Alterations in gyrA have continued to be the most reported cause of resistance, with high level resistance due to 2 or more mutations in this gene. Recently, mutations in gyrA of Mycobacterium tuberculosis and Campylobacter jejuni have been described. Complementation studies with plasmid encoded cloned gyrB from Escherichia coli suggest that high fluoroquinolone resistance (minimum inhibitory concentration = 32 mg/L) in Salmonella typhimurium can be due to mutation in both gyrA and gyrB. Decreased fluoroquinolone accumulation into E. coli has been shown to be due to mutations in a number of genes at different loci. Current interest has focused upon the marRAB and soxRS loci, with mutations in genes of either loci giving rise to decreased susceptibility to several unrelated drugs, including fluoroquinolones, tetracycline, chloramphenicol and some beta-lactams, and decreased expression of OmpF. The genetic characterisation of fluoroquinolone efflux from Staphylococcus aureus has shown that efflux occurs in both fluoroquinolone-susceptible and -resistant bacteria. The most likely cause of resistance is overexpression of NorA, giving rise to increased efflux. Recently, 2 efflux systems in Pseudomonas aeruginosa have been proposed, MexA-MexB-OprK and MexC-MexD-OprM, conferring decreased susceptibility to fluoroquinolones, tetracycline, chloramphenicol and some beta-lactams.(ABSTRACT TRUNCATED AT 250 WORDS) | 1995 | 8549336 |
| 6256 | 2 | 0.9998 | Conjugation between quinolone-susceptible bacteria can generate mutations in the quinolone resistance-determining region, inducing quinolone resistance. Quinolones are an important group of antibacterial agents that can inhibit DNA gyrase and topoisomerase IV activity. DNA gyrase is responsible for maintaining bacteria in a negatively supercoiled state, being composed of subunits A and B. Topoisomerase IV is a homologue of DNA gyrase and consists of two subunits codified by the parC and parE genes. Mutations in gyrA and gyrB of DNA gyrase may confer resistance to quinolones, and the majority of resistant strains show mutations between positions 67 and 106 of gyrA, a region denoted the quinolone resistance-determining region (QRDR). The most frequent substitutions occur at positions 83 and 87, but little is known about the mechanisms promoting appearance of mutations in the QRDR. The present study proposes that some mutations in the QRDR could be generated as a result of the natural mechanism of conjugation between bacteria in their natural habitat. This event was observed following conjugation in vitro of two different isolates of quinolone-susceptible Pseudomonas aeruginosa, which transferred plasmids of different molecular weights to a recipient strain of Escherichia coli (HB101), also quinolone-susceptible, generating two different transconjugants that presented mutations in DNA gyrase and acquisition of resistance to all quinolones tested. | 2015 | 25262036 |
| 6259 | 3 | 0.9998 | Evidence of an efflux pump in Serratia marcescens. Spontaneous mutants resistant to fluoroquinolones were obtained by exposing Serratia marcescens NIMA (wild-type strain) to increasing concentrations of ciprofloxacin both in liquid and on solid media. Frequencies of mutation ranged from 10(-7) to 10(-9). Active expulsion of antibiotic was explored as a possible mechanism of resistance in mutants as well as changes in topoisomerase target genes. The role of extrusion mechanisms in determining the emergence of multidrug-resistant bacteria was also examined. Mutants resistant to high concentrations of fluoroquinolones had a single mutation in their gyrA QRDR sequences, whereas the moderate resistance in the rest of mutants was due to extrusion of the drug. | 2000 | 10990265 |
| 5981 | 4 | 0.9998 | Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. A 4.2-kb DNA fragment conferring quinolone resistance was cloned from a quinolone-resistant clinical isolate of Staphylococcus aureus and was shown to possess a part of the grlB gene and a mutated grlA gene. S-80-->F and E-84-->K mutations in the grlA gene product were responsible for the quinolone resistance. The mutated grlA genes responsible for quinolone resistance were dominant over the wild-type allele, irrespective of gene dosage in a transformation experiment with the grlA gene alone. However, dominance by mutated grlA genes depended on gene dosage when bacteria were transformed with the grlA and grlB genes in combination. Quinolone-resistant gyrA mutants were easily isolated from a strain, S. aureus RN4220, carrying a plasmid with the mutated grlA gene, though this was not the case for other S. aureus strains lacking the plasmid. The elimination of this plasmid from such quinolone-resistant gyrA mutants resulted in marked increases in quinolone susceptibility. These results suggest that both DNA gyrase and DNA topoisomerase IV may be targets of quinolones and that the quinolone susceptibility of organisms may be determined by which of these enzymes is most quinolone sensitive. | 1996 | 8723458 |
| 5987 | 5 | 0.9998 | Mutations in gyrA and parC QRDRs are not relevant for quinolone resistance in epidemiological unrelated Stenotrophomonas maltophilia clinical isolates. Clinical strains of Stenotrophomonas maltophilia are often highly resistant to multiple antibiotics and this resistance is steadily rising. Quinolones are included in the group of antimicrobial agents to which this microorganism is developing resistance. Therefore, the aim of this study was to analyze the epidemiological relationship among 22 clinical isolates of S. maltophilia as well as the molecular mechanisms responsible for the acquisition of quinolone-resistance in these strains. The results of the pulsed-field gel electrophoresis (PFGE) showed an heterogenicity of 82% among the strains used in the study. On the other hand, no amino acid changes were found in the quinolone resistance-determining region (QRDR) of either gyrA and parC genes among quinolone-susceptible and -resistant S. maltophilia strains. Besides, the amino acid of the GyrA found in the position equivalent to Ser-83 of E. coli was Gln instead of a Ser or Thr, the amino acids usually encountered in this position among Gram-negative bacteria. The results suggest that there is not a relationship between the presence of this Gln and the resistance to quinolones in S. maltophilia. We can conclude that, contrary to what has been described in other microorganisms, in these S. maltophilia isolates, the development of resistance to quinolones was not related to mutations in the QRDR of gyrA and parC genes. Thus, to our knowledge, this is the first report describing this phenomenon. | 2002 | 12523620 |
| 5983 | 6 | 0.9998 | Analysis of mutational patterns in quinolone resistance-determining regions of GyrA and ParC of clinical isolates. Fluoroquinolone (FQ)-resistant bacteria pose a major global health threat. Unanalysed genomic data from thousands of sequenced microbes likely contain important hints regarding the evolution of FQ resistance, yet this information lies fallow. Here we analysed the co-occurrence patterns of quinolone resistance mutations in genes encoding the FQ drug targets DNA gyrase (gyrase) and topoisomerase IV (topo-IV) from 36,402 bacterial genomes, representing 10 Gram-positive and 10 Gram-negative species. For 19 species, the likeliest routes toward resistance mutations in both targets were determined, and for 5 species those mutations necessary and sufficient to predict FQ resistance were also determined. Target mutation hierarchy was fixed in all examined Gram-negative species, with gyrase being the primary and topo-IV the secondary quinolone target, as well as in six of nine Gram-positive species, with topo-IV being the primary and gyrase the secondary target. By contrast, in three Gram-positive species (Staphylococcus haemolyticus, Streptococcus pneumoniae and Streptococcus suis), under some conditions gyrase became the primary and topo-IV the secondary target. The path through individual resistance mutations varied by species. Both linear and branched paths were identified in Gram-positive and Gram-negative organisms alike. Finally, FQ resistance could be predicted based solely on target gene quinolone resistance mutations for Acinetobacter baumannii, Escherichia coli and Staphylococcus aureus, but not Klebsiella pneumoniae or Pseudomonas aeruginosa. These findings have important implications both for sequence-based diagnostics and for understanding the emergence of FQ resistance. | 2019 | 30582984 |
| 5979 | 7 | 0.9998 | Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. Mutations in the genes for the subunits GyrA and ParC of the target enzymes DNA gyrase and topoisomerase IV are important mechanisms of resistance in quinolone-resistant bacteria, including Neisseria gonorrhoeae. The target enzymes also consist of the subunits GyrB and ParE, respectively, though their role in quinolone-resistance has not been fully investigated. We sequenced the quinolone-resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE in 25 ciprofloxacin-resistant strains from Bangladesh (MIC 4-->32 mg/l) and 5 susceptible strains of N. gonorrhoeae. All the resistant strains had three or four mutations. Two of these were at positions 91 and 95 of gyrA. Fourteen strains had an additional mutation in parC at position 91, and 17 strains had an additional mutation in parE in position 439. No alterations were found in gyrB. The five susceptible strains had identical DNA sequences. Data indicate that the mutations detected in the QRDR of gyrA and parC may be important in the development of quinolone resistance. According to transformation experiments we assume that the alteration in parE is not related to a high degree of quinolone resistance. There was no correlation between ciprofloxacin MICs and pattern or number of mutations in the target genes. | 2002 | 12529019 |
| 5984 | 8 | 0.9998 | First characterization of fluoroquinolone resistance in Streptococcus suis. We have identified and sequenced the genes encoding the quinolone-resistance determining region (QRDR) of ParC and GyrA in fluoroquinolone-susceptible and -resistant Streptococcus suis clinical isolates. Resistance is the consequence of single point mutations in the QRDRs of ParC and GyrA and is not due to clonal spread of resistant strains or horizontal gene transfer with other bacteria. | 2007 | 17116660 |
| 6257 | 9 | 0.9998 | Mechanism of action of and resistance to quinolones. Fluoroquinolones are an important class of wide-spectrum antibacterial agents. The first quinolone described was nalidixic acid, which showed a narrow spectrum of activity. The evolution of quinolones to more potent molecules was based on changes at positions 1, 6, 7 and 8 of the chemical structure of nalidixic acid. Quinolones inhibit DNA gyrase and topoisomerase IV activities, two enzymes essential for bacteria viability. The acquisition of quinolone resistance is frequently related to (i) chromosomal mutations such as those in the genes encoding the A and B subunits of the protein targets (gyrA, gyrB, parC and parE), or mutations causing reduced drug accumulation, either by a decreased uptake or by an increased efflux, and (ii) quinolone resistance genes associated with plasmids have been also described, i.e. the qnr gene that encodes a pentapeptide, which blocks the action of quinolones on the DNA gyrase and topoisomerase IV; the aac(6')-Ib-cr gene that encodes an acetylase that modifies the amino group of the piperazin ring of the fluoroquinolones and efflux pump encoded by the qepA gene that decreases intracellular drug levels. These plasmid-mediated mechanisms of resistance confer low levels of resistance but provide a favourable background in which selection of additional chromosomally encoded quinolone resistance mechanisms can occur. | 2009 | 21261881 |
| 4497 | 10 | 0.9998 | Detection and expression analysis of tet(B) in Streptococcus oralis. Tetracycline resistance can be achieved through tet genes, which code for efflux pumps, ribosomal protection proteins and inactivation enzymes. Some of these genes have only been described in either Gram-positive or Gram-negative bacteria. This is the case of tet(B), which codes for an efflux pump and, so far, had only been found in Gram-negative bacteria. In this study, tet(B) was detected in two clinical Streptococcus oralis strains isolated from the gingival sulci of two subjects. In both cases, the gene was completely sequenced, yielding 100% shared identity and coverage with other previously published sequences of tet(B). Moreover, we studied the expression of tet(B) using RT-qPCR in the isolates grown with and without tetracycline, detecting constitutive expression in only one of the isolates, with no signs of expression in the other one. This is the first time that the presence and expression of the tet(B) gene has been confirmed in Gram-positive bacteria, which highlights the potential of the genus Streptococcus to become a reservoir and a disseminator of antibiotic resistance genes in an environment so prone to horizontal gene transfer as is the oral biofilm. | 2019 | 31448060 |
| 4484 | 11 | 0.9997 | A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health. Streptococcus pneumoniae, Streptococcus pyogenes (GAS), and Streptococcus agalactiae (GBS) are bacteria that can cause a range of infections, some of them life-threatening. This review examines the spread of antibiotic resistance and its mechanisms against antibiotics for streptococcal infections. Data on high-level penicillin-resistant invasive pneumococci have been found in Brazil (42.8%) and Japan (77%). The resistance is caused by mutations in genes that encode penicillin-binding proteins. Similarly, GAS and GBS strains reported from Asia, the USA, and Africa have undergone similar transformations in PBPs. Resistance to major alternatives of penicillins, macrolides, and lincosamides has become widespread among pneumococci and streptococci, especially in Asia (70-95%). The combination of several emm types with erm(B) is associated with the development of high-level macrolide resistance in GAS. Major mechanisms are ribosomal target modifications encoded by erm genes, ribosomal alterations, and active efflux pumps that regulate antibiotic entry due to mefA/E and msrD genes. Tetracycline resistance for streptococci in different countries varied from 22.4% in the USA to 83.7/100% in China, due to tet genes. Combined tetracycline/macrolide resistance is usually linked with the insertion of ermB into the transposon carrying tetM. New quinolone resistance is increasing by between 11.5 and 47.9% in Asia and Europe. The mechanism of quinolone resistance is based on mutations in gyrA/B, determinants for DNA gyrase, or parC/E encoding topoisomerase IV. The results for antibiotic resistance are alarming, and urgently call for increased monitoring of this problem and precautionary measures for control to prevent the spread of resistant mutant strains. | 2024 | 38667036 |
| 6264 | 12 | 0.9997 | Multi-drug resistance pattern and genome-wide SNP detection in levofloxacin-resistant uropathogenic Escherichia coli strains. OBJECTIVES: Antibiotic treatment is extremely stressful for bacteria and has profound effects on their viability. Such administration induces physiological changes in bacterial cells, with considerable impact on their genome structure that induces mutations throughout the entire genome. This study investigated drug resistance profiles and structural changes in the entire genome of uropathogenic Escherichia coli (UPEC) strains isolated from six adapted clones that had evolved under laboratory conditions. METHODS: Eight UPEC strains, including two parental strains and six adapted clones, with different fluoroquinolone resistance levels originally isolated from two patients were used. The minimum inhibitory concentration (MIC) of 28 different antibiotics including levofloxacin was determined for each of the eight strains. In addition, the effects of mutations acquired with increased drug resistance in the levofloxacin-resistant strains on expression of genes implicated to be involved in drug resistance were examined. RESULTS: Of the eight UPEC strains used to test the MIC of 28 different antibiotics, two highly fluoroquinolone-resistant strains showed increased MIC in association with many of the antibiotics. As drug resistance increased, some genes acquired mutations, including the transcriptional regulator acrR and DNA-binding transcriptional repressor marR. Two strain groups with genetically different backgrounds (GUC9 and GFCS1) commonly acquired mutations in acrR and marR. Notably, acquired mutations related to efflux pump upregulation also contributed to increases in MIC for various antibiotics other than fluoroquinolone. CONCLUSIONS: The present results obtained using strains with artificially acquired drug resistance clarify the underlying mechanism of resistance to fluoroquinolones and other types of antibiotics. | 2024 | 38041251 |
| 5985 | 13 | 0.9997 | Alternative quinolone-resistance pathway caused by simultaneous horizontal gene transfer in Haemophilus influenzae. BACKGROUND: Quinolone-resistant bacteria are known to emerge via the accumulation of mutations in a stepwise manner. Recent studies reported the emergence of quinolone low-susceptible Haemophilus influenzae ST422 isolates harbouring two relevant mutations, although ST422 isolates harbouring one mutation were never identified. OBJECTIVES: To investigate if GyrA and ParC from quinolone low-susceptible isolates can be transferred horizontally and simultaneously to susceptible isolates. METHODS: Genomic DNA was extracted from an H. influenzae isolate harbouring amino acid substitutions in both gyrA and parC and mixed with clinical isolates. The emergence of resistant isolates was compared, and WGS analysis was performed. RESULTS: By adding the genomic DNA harbouring both mutated gyrA and parC, resistant bacteria exhibiting recombination at gyrA only or both gyrA and parC loci were obtained on nalidixic acid and pipemidic acid plates, and the frequency was found to increase with the amount of DNA. Recombination events in gyrA only and in both gyrA and parC occurred with at least 1 and 1-100 ng of DNA, respectively. The genome sequence of a representative strain showed recombination events throughout the genome. The MIC of quinolone for the resulting strains was found to be similar to that of the donor. Although the recombination efficacy was different among the various strains, all strains used in this study obtained multiple genes simultaneously. CONCLUSIONS: These findings indicate that H. influenzae can simultaneously obtain more than two mutated genes. This mechanism of horizontal transfer could be an alternative pathway for attaining quinolone resistance. | 2022 | 36124853 |
| 6247 | 14 | 0.9997 | Molecular basis and evolutionary cost of a novel macrolides/lincosamides resistance phenotype in Staphylococcus haemolyticus. Staphylococcus haemolyticus (S. haemolyticus) is a coagulase-negative Staphylococcus that has become one of the primary causes of nosocomial infection. After a long period of antibiotic use, S. haemolyticus has developed multiple resistance phenotypes for macrolides and lincosamides. Herein, we evaluated four S. haemolyticus clinical isolates, of which three had antibiotic resistance patterns reported previously. The fourth isolate was resistant to both erythromycin and clindamycin in the absence of erythromycin induction. This novel phenotype, known as constitutive macrolides-lincosamides-streptogramins resistance, has been reported in other bacteria but has not been previously reported in S. haemolyticus. Investigation of the isolate demonstrated a deletion in the methyltransferase gene ermC, upstream leader peptide. This deletion resulted in constitutive MLS resistance based on whole-genome sequencing and experimental verification. Continuous expression of ermC was shown to inhibit the growth of S. haemolyticus, which turned out to be the fitness cost with no MLS pressure. In summary, this study is the first to report constitutive MLS resistance in S. haemolyticus, which provides a better understanding of MLS resistance in clinical medicine. IMPORTANCE This study identified a novel phenotype of macrolides/lincosamides resistance in Staphylococcus haemolyticus which improved a better guidance for clinical treatment. It also clarified the mechanistic basis for this form of antibiotic resistance that supplemented the drug resistance mechanism of Staphylococcus. In addition, this study elaborated on a possibility that continuous expression of some resistance genes was shown to inhibit the growth of bacteria themselves, which turned out to be the fitness cost in the absence of antibiotic pressure. | 2023 | 37724875 |
| 6255 | 15 | 0.9997 | Effects of a Mutation in the gyrA Gene on the Virulence of Uropathogenic Escherichia coli. Fluoroquinolones are among the drugs most extensively used for the treatment of bacterial infections in human and veterinary medicine. Resistance to quinolones can be chromosome or plasmid mediated. The chromosomal mechanism of resistance is associated with mutations in the DNA gyrase- and topoisomerase IV-encoding genes and mutations in regulatory genes affecting different efflux systems, among others. We studied the role of the acquisition of a mutation in the gyrA gene in the virulence and protein expression of uropathogenic Escherichia coli (UPEC). The HC14366M strain carrying a mutation in the gyrA gene (S83L) was found to lose the capacity to cause cystitis and pyelonephritis mainly due to a decrease in the expression of the fimA, papA, papB, and ompA genes. The levels of expression of the fimA, papB, and ompA genes were recovered on complementing the strain with a plasmid containing the gyrA wild-type gene. However, only a slight recovery was observed in the colonization of the bladder in the GyrA complement strain compared to the mutant strain in a murine model of ascending urinary tract infection. In conclusion, a mutation in the gyrA gene of uropathogenic E. coli reduced the virulence of the bacteria, likely in association with the effect of DNA supercoiling on the expression of several virulence factors and proteins, thereby decreasing their capacity to cause cystitis and pyelonephritis. | 2015 | 26014933 |
| 4490 | 16 | 0.9997 | Mutation analysis of mycobacterial rpoB genes and rifampin resistance using recombinant Mycobacterium smegmatis. Rifampin is a major drug used to treat leprosy and tuberculosis. The rifampin resistance of Mycobacterium leprae and Mycobacterium tuberculosis results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. A method for the molecular determination of rifampin resistance in these two mycobacteria would be clinically valuable, but the relationship between the mutations and susceptibility to rifampin must be clarified before its use. Analyses of mutations responsible for rifampin resistance using clinical isolates present some limitations. Each clinical isolate has its own genetic variations in some loci other than rpoB, which might affect rifampin susceptibility. For this study, we constructed recombinant strains of Mycobacterium smegmatis carrying the M. leprae or M. tuberculosis rpoB gene with or without mutation and disrupted their own rpoB genes on the chromosome. The rifampin and rifabutin susceptibilities of the recombinant bacteria were measured to examine the influence of the mutations. The results confirmed that several mutations detected in clinical isolates of these two pathogenic mycobacteria can confer rifampin resistance, but they also suggested that some mutations detected in M. leprae isolates or rifampin-resistant M. tuberculosis isolates are not involved in rifampin resistance. | 2012 | 22252831 |
| 4487 | 17 | 0.9997 | Detecting mutations that confer oxazolidinone resistance in gram-positive bacteria. Resistance to oxazolidinone antibiotics, including linezolid, in Gram-positive bacteria is mediated by single-nucleotide polymorphisms (SNPs) in the 23S ribosomal RNA. A G2576U change (encoded by a G2576T mutation in the rRNA genes) is found in most resistant clinical isolates of enterococci and staphylococci; a variety of changes have been found in resistant mutants selected in vitro. Pyrosequencing can be used to detect SNPs known to confer oxazolidinone resistance, including the G2576T change. Most bacteria have more than one rRNA gene copy and Pyrosequencing can also be used for allele quantification, i.e., to estimate the proportions of mutant vs wild-type alleles. The number of mutated rRNA gene copies correlates roughly with the level of oxazolidinone resistance displayed by resistant isolates. This chapter summarizes the Pyrosequencing assays that have been developed in our laboratory for analyzing oxazolidinone-resistant enterococci and staphylococci. | 2007 | 17185761 |
| 4505 | 18 | 0.9997 | Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses. Resistance to macrolide, lincosamide and streptogramin antibiotics is due to alteration of the target site or detoxification of the antibiotic. Postranscriptional methylation of 23S ribosomal rRNA confers resistance to macrolide (M), lincosamide (L) and streptogramin (S) B-type antibiotics, the so-called MLSB phenotype. Several classes of rRNA methylases conferring resistance to MLSB antibiotics have been characterized in Gram-positive cocci, in Bacillus spp, and in strains of actinomycetes producing erythromycin. The enzymes catalyze N6-dimethylation of an adenine residue situated in a highly conserved region of prokaryotic 23S rRNA. In this review, we compare the amino acid sequences of the rRNA methylases and analyze the codon usage in the corresponding erm (erythromycin resistance methylase) genes. The homology detected at the protein level is consistent with the notion that an ancestor of the erm genes was implicated in erythromycin resistance in a producing strain. However, the rRNA methylases of producers and non-producers present substantial sequence diversity. In Gram-positive bacteria the preferential codon usage in the erm genes reflects the guanosine plus cytosine content of the chromosome of the host. These observations suggest that the presence of erm genes in these micro-organisms is ancient. By contrast, it would appear that enterobacteria have acquired only recently an rRNA methylase gene of the ermB class from a Gram-positive coccus since the genes isolated in Escherichia coli and in Gram-positive cocci are highly homologous (homology greater than 98%) and present a codon usage typical of the latter micro-organisms. As opposed to the MLSB phenotype which results from a single biochemical mechanism, inactivation of structurally related antibiotics of the MLS group involves synthesis of various other enzymes. In enterobacteria, resistance to erythromycin and oleandomycin is due to production of erythromycin esterases which hydrolyze the lactone ring of the 14-membered macrolides. We recently reported the nucleotide sequence of ereA and ereB (erythromycin resistance esterase) genes which encode erythromycin esterases type I and II, respectively. The amino acid sequences of the two isozymes do not exhibit statistically significant homology. Analysis of codon usage in both genes suggests that esterase type I is indigenous to E. coli, whereas the type II enzyme was acquired by E. coli from a phylogenetically remote micro-organism. Inactivation of lincosamides, first reported in staphylococci and lactobacilli of animal origin, was also recently detected in Gram-positive cocci isolated from humans.(ABSTRACT TRUNCATED AT 400 WORDS) | 1987 | 3326871 |
| 4460 | 19 | 0.9997 | Study of Plasmid-Mediated Quinolone Resistance in Bacteria. Plasmid-mediated quinolone resistance (PMQR) involves genes for proteins that protect the quinolone targets, an enzyme that inactivates certain quinolones as well as aminoglycosides, and pumps that efflux quinolones. Quinolone susceptibility is reduced by these mechanisms but not to the level of clinical resistance unless chromosomal mutations are also present. PCR primers and conditions for PMQR gene detection are described as well as how to establish a plasmid location. | 2018 | 29177751 |