Identification of bistable populations of Porphyromonas gingivalis that differ in epithelial cell invasion. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
620801.0000Identification of bistable populations of Porphyromonas gingivalis that differ in epithelial cell invasion. Bistable populations of bacteria give rise to two or more subtypes that exhibit different phenotypes. We have explored whether the periodontal pathogen Porphyromonas gingivalis exhibits bistable invasive phenotypes. Using a modified cell invasion assay, we show for the first time that there are two distinct subtypes within a population of P. gingivalis strains NCTC 11834 and W50 that display differences in their ability to invade oral epithelial cells. The highly invasive subtype invades cells at 10-30-fold higher levels than the poorly invasive subtype and remains highly invasive for approximately 12-16 generations. Analysis of the gingipain activity of these subtypes revealed that the highly invasive type had reduced cell-associated arginine-specific protease activity. The role of Arg-gingipain activity in invasion was verified by enhancement of invasion by rgpAB mutations and by inclusion of an Arg-gingipain inhibitor in invasion assays using wild-type bacteria. In addition, a population of ΔrgpAB bacteria did not contain a hyperinvasive subtype. Screening of the protease activity of wild-type populations of both strains identified high and low protease subtypes which also showed a corresponding reduction or enhancement, respectively, of invasive capabilities. Microarray analysis of these bistable populations revealed a putative signature set of genes that includes oxidative stress resistance and iron transport genes, and which might be critical to invasion of or survival within epithelial cells.201020576685
617110.9995Host response to infection with a temperature-sensitive mutant of Salmonella typhimurium in a susceptible and a resistant strain of mice. The inoculation of a temperature-sensitive mutant of Salmonella typhimurium induced a long-lasting infection in susceptible (C57BL/6) and resistant (A/J) mice. During week 1 of infection, the number of bacteria in the spleens was similar in both mouse strains. Then, the decrease of bacteria was more rapid in the resistant strain. Splenomegaly and granulomatous hepatitis were more severe in the susceptible strain. The immune response induced by this infection was studied. In both mouse strains delayed-type hypersensitivity to Salmonella antigens was present, and resistance to reinfection with a virulent strain of S. typhimurium or with Listeria monocytogenes appeared with the same kinetics. Thus, it does not seem that the gene(s) controlling natural resistance to S. typhimurium act(s) on acquired immunity.19853897053
845620.9994Identification of genes required by Bacillus thuringiensis for survival in soil by transposon-directed insertion site sequencing. Transposon-directed insertion site sequencing was used to identify genes required by Bacillus thuringiensis to survive in non-axenic plant/soil microcosms. A total of 516 genetic loci fulfilled the criteria as conferring survival characteristics. Of these, 127 (24.6 %) were associated with uptake and transport systems; 227 loci (44.0 %) coded for enzymatic properties; 49 (9.5 %) were gene regulation or sensory loci; 40 (7.8 %) were structural proteins found in the cell envelope or had enzymatic activities related to it and 24 (4.7 %) were involved in the production of antibiotics or resistance to them. Eighty-three (16.1 %) encoded hypothetical proteins or those of unknown function. The ability to form spores was a key survival characteristic in the microcosms: bacteria, inoculated in either spore or vegetative form, were able to multiply and colonise the soil, whereas a sporulation-deficient mutant was not. The presence of grass seedlings was critical to colonisation. Bacteria labelled with green fluorescent protein were observed to adhere to plant roots. The sporulation-specific promoter of spo0A, the key regulator of sporulation, was strongly activated in the rhizosphere. In contrast, the vegetative-specific promoters of spo0A and PlcR, a pleiotropic regulator of genes with diverse activities, were only very weakly activated.201424310935
617230.9994Resistance and susceptibility of mice to bacterial infection. IV. Genetic and cellular basis of resistance to chronic infection with Brucella abortus. The number of Brucella abortus strain 19 organisms in the spleens of CBA/H mice peaked two weeks after intravenous injection of 5 X 10(6) organisms. With the onset of specific cell-mediated immunity, 90% of the bacteria were killed, but approximately 10(6) bacteria persisted up to seven weeks after infection. In contrast, in BALB/c, C57BL/10, and B10Br mice, bacterial numbers peaked at two weeks but decreased steadily with the onset of bactericidal activity. In all strains, clearance of bacteria from the liver was relatively efficient. The course of infection in (CBA/H X BALB/c) F1 mice was similar to that in CBA/H mice, indicating that the mechanism(s) leading to slower recovery from infection was dominant. The H-2 haplotype of the mice did not influence the rate of recovery from infection. The use of backcross mice showed that multiple genes were involved. In bone marrow-chimeric mice, resistance was determined by the genome of the bone marrow donor, not that of the host.19826809847
634240.9994Determinants of Extreme β-Lactam Tolerance in the Burkholderia pseudomallei Complex. Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust β-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species.201829439964
898850.9994Experimental evolution of UV resistance in a phage. The dsDNA bacteriophage T7 was subjected to 30 cycles of lethal ultraviolet light (UV) exposure to select increased resistance to UV. The exposure effected a 0.9999 kill of the ancestral population, and survival of the ending population was nearly 50-fold improved. At the end point, a 2.1 kb deletion of early genes and three substitutions in structural-genes were the only changes observed at high frequency throughout the 40 kb genome; no changes were observed in genes affecting DNA metabolism. The deletion accounted for only a two-fold improvement in survival. One possible explanation of its benefit is that it represents an error catastrophe, whereby the genome experiences a reduced mutation rate. The mechanism of benefit provided by the three structural-gene mutations remains unknown. The results offer some hope of artificially evolving greater protection against sunlight damage in applications of phage therapy to plants, but the response of T7 is weak compared to that observed in bacteria selected to resist ionizing radiation. Because of the weak response, mathematical analysis of the selection process was performed to determine how the protocol might have been modified to achieve a greater response, but the greatest protection may well come from evolving phages to bind materials that block the UV.201830013847
617060.9994Resistance and susceptibility of mice to bacterial infection. IV. Functional specificity in natural resistance to facultative intracellular bacteria. The effect of opsonic antibody on resistance of susceptibility of three strains of mice, C57Bl/10, BALB/c, and CBA to the intracellular bacteria Listeria monocytogenes, Salmonella typhimurium, and Brucella abortus was tested. Bacteria were opsonized by serum treatment before their injection into mice, or the mice were preimmunized by injection with alcohol killed bacteria which induces antibody without macrophage activation. Antibody did not increase the rate of clearance of Listeria from the bloodstream, nor did it affect the subsequent growth of that organism in the spleen and liver. Blood clearance of S. typhimurium and of B. abortus was increased by preopsonization with specific antibody, indicating that opsonins were a limiting factor in resistance to these two bacteria. However, neither opsonization before infection nor immunization with alcohol killed vaccines had any effect on the strain distribution of resistance/susceptibility, which differs for each of the three intracellular pathogens. Thus, even in the presence of adequate opsonization the three strains of mice showed different patterns of resistance/susceptibility to Listeria, S. typhimurium, and B. abortus. This implies that each has a unique cellular mechanism of early nonspecific resistance.19836413682
887270.9994Dictyostelium discoideum as a model system for identification of Burkholderia pseudomallei virulence factors. Burkholderia pseudomallei is an emerging bacterial pathogen and category B biothreat. Human infections with B. pseudomallei (called melioidosis) present as a range of manifestations, including acute septicemia and pneumonia. Although melioidosis can be fatal, little is known about the molecular basis of B. pseudomallei pathogenicity, in part because of the lack of simple, genetically tractable eukaryotic models to facilitate en masse identification of virulence determinants or explore host-pathogen interactions. Two assays, one high-throughput and one quantitative, were developed to monitor levels of resistance of B. pseudomallei and the closely related nearly avirulent species Burkholderia thailandensis to predation by the phagocytic amoeba Dictyostelium discoideum. The quantitative assay showed that levels of resistance to, and survival within, amoeba by these bacteria and their known virulence mutants correlate well with their published levels of virulence in animals. Using the high-throughput assay, we screened a 1,500-member B. thailandensis transposon mutant library and identified 13 genes involved in resistance to predation by D. discoideum. Orthologs of these genes were disrupted in B. pseudomallei, and nearly all mutants had similarly decreased resistance to predation by D. discoideum. For some mutants, decreased resistance also correlated with reduced survival in and cytotoxicity toward macrophages, as well as attenuated virulence in mice. These observations suggest that some factors required by B. pseudomallei for resistance to environmental phagocytes also aid in resistance to phagocytic immune cells and contribute to disease in animals. Thus, D. discoideum provides a novel, high-throughput model system for facilitating inquiry into B. pseudomallei virulence.201121402765
68280.9994Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella. Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella.201626691825
629390.9994Gentamicin resistance to Escherichia coli related to fatty acid metabolism based on transcriptome analysis. Antibiotic overuse and misuse have promoted the emergence and spread of antibiotic-resistant bacteria. Increasing bacterial resistance to antibiotics is a major healthcare problem, necessitating elucidation of antibiotic resistance mechanisms. In this study, we explored the mechanism of gentamicin resistance by comparing the transcriptomes of antibiotic-sensitive and -resistant Escherichia coli. A total of 410 differentially expressed genes were identified, of which 233 (56.83%) were up-regulated and 177 (43.17%) were down-regulated in the resistant strain compared with the sensitive strain. Gene Ontology (GO) analysis classifies differential gene expression into three main categories: biological processes, cellular components, and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the up-regulated genes were enriched in eight metabolic pathways, including fatty acid metabolism, which suggests that fatty acid metabolism may be involved in the development of gentamicin resistance in E. coli. This was demonstrated by measuring the acetyl-CoA carboxylase activity, plays a fundamental role in fatty acid metabolism, was increased in gentamicin-resistant E. coli. Treatment of fatty acid synthesis inhibitor, triclosan, promoted gentamicin-mediated killing efficacy to antibiotic-resistant bacteria. We also found that exogenous addition of oleic acid, which involved in fatty acid metabolism, reduced E. coli sensitivity to gentamicin. Overall, our results provide insight into the molecular mechanism of gentamicin resistance development in E. coli.202337224563
6217100.9994Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content gram-positive bacteria. The alternative sigma factor sigma(B) has an important role in the acquisition of stress resistance in many gram-positive bacteria, including the food-borne pathogen Bacillus cereus. Here, we describe the identification of the set of sigma(B)-regulated genes in B. cereus by DNA microarray analysis of the transcriptome upon a mild heat shock. Twenty-four genes could be identified as being sigma(B) dependent as witnessed by (i) significantly lower expression levels of these genes in mutants with a deletion of sigB and rsbY (which encode the alternative sigma factor sigma(B) and a crucial positive regulator of sigma(B) activity, respectively) than in the parental strain B. cereus ATCC 14579 and (ii) increased expression of these genes upon a heat shock. Newly identified sigma(B)-dependent genes in B. cereus include a histidine kinase and two genes that have predicted functions in spore germination. This study shows that the sigma(B) regulon of B. cereus is considerably smaller than that of other gram-positive bacteria. This appears to be in line with phylogenetic analyses where sigma(B) of the B. cereus group was placed close to the ancestral form of sigma(B) in gram-positive bacteria. The data described in this study and previous studies in which the complete sigma(B) regulon of the gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus were determined enabled a comparison of the sets of sigma(B)-regulated genes in the different gram-positive bacteria. This showed that only three genes (rsbV, rsbW, and sigB) are conserved in their sigma(B) dependency in all four bacteria, suggesting that the sigma(B) regulon of the different gram-positive bacteria has evolved to perform niche-specific functions.200717416654
8995110.9994Interaction between mutations and regulation of gene expression during development of de novo antibiotic resistance. Bacteria can become resistant not only by horizontal gene transfer or other forms of exchange of genetic information but also by de novo by adaptation at the gene expression level and through DNA mutations. The interrelationship between changes in gene expression and DNA mutations during acquisition of resistance is not well documented. In addition, it is not known whether the DNA mutations leading to resistance always occur in the same order and whether the final result is always identical. The expression of >4,000 genes in Escherichia coli was compared upon adaptation to amoxicillin, tetracycline, and enrofloxacin. During adaptation, known resistance genes were sequenced for mutations that cause resistance. The order of mutations varied within two sets of strains adapted in parallel to amoxicillin and enrofloxacin, respectively, whereas the buildup of resistance was very similar. No specific mutations were related to the rather modest increase in tetracycline resistance. Ribosome-sensed induction and efflux pump activation initially protected the cell through induction of expression and allowed it to survive low levels of antibiotics. Subsequently, mutations were promoted by the stress-induced SOS response that stimulated modulation of genetic instability, and these mutations resulted in resistance to even higher antibiotic concentrations. The initial adaptation at the expression level enabled a subsequent trial and error search for the optimal mutations. The quantitative adjustment of cellular processes at different levels accelerated the acquisition of antibiotic resistance.201424841263
6327120.9994The Response of Enterococcus faecalis V583 to Chloramphenicol Treatment. Many Enterococcus faecalis strains display tolerance or resistance to many antibiotics, but genes that contribute to the resistance cannot be specified. The multiresistant E. faecalis V583, for which the complete genome sequence is available, survives and grows in media containing relatively high levels of chloramphenicol. No specific genes coding for chloramphenicol resistance has been recognized in V583. We used microarrays to identify genes and mechanisms behind the tolerance to chloramphenicol in V583, by comparison of cells treated with subinhibitory concentrations of chloramphenicol and untreated V583 cells. During a time course experiment, more than 600 genes were significantly differentially transcribed. Since chloramphenicol affects protein synthesis in bacteria, many genes involved in protein synthesis, for example, genes for ribosomal proteins, were induced. Genes involved in amino acid biosynthesis, for example, genes for tRNA synthetases and energy metabolism were downregulated, mainly. Among the upregulated genes were EF1732 and EF1733, which code for potential chloramphenicol transporters. Efflux of drug out of the cells may be one mechanism used by V583 to overcome the effect of chloramphenicol.201020628561
6207130.9994The tellurite resistance gene cluster of pathogenic bacteria and its effect on oxidative stress response. Tellurite resistance gene clusters have been identified in numerous pathogenic bacteria, including clinical isolates of Escherichia coli. The rareness of tellurium in host organisms and the noncontaminated environment raises a question about the true functionality of tellurite resistance gene clusters in pathogenesis and their possible contribution to bacterial fitness. The study aims to point out the beneficial effects of the tellurite resistance gene cluster of pathogenic bacteria to survive in ROS-rich environments. Here, we analysed the bacterial response to oxidative stress conditions with and without tellurite resistance gene clusters, which are composed of terWY1XY2Y3 and terZABCDEF genes. By measuring the levels of protein carbonylation, lipid peroxidation, and expression changes of oxidative stress genes upon oxidative stress, we propose a tellurite resistance gene cluster contribution to the elimination of oxidative damage, potentially increasing fitness and resistance to reactive oxygen species during macrophage attack. We have shown a different beneficial effect of various truncated versions of the tellurite resistance gene cluster on cell survival. The terBCDEF genes increased the survival of E. coli strain MC4100 by 13.21%, terW and terZABCDEF by 10.09%, and terWY1XY2Y3 and terZABCDEF by 25.57%, respectively. The ability to survive tellurite treatment is the most significant at 44.8% in wild clinical strain KL53 compared to laboratory strain E. coli MC4100 due to a complete wild-type plasmid presence.202438261148
6339140.9994Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions.201323145860
8886150.9994Transcriptional analysis reveals the relativity of acid tolerance and antimicrobial peptide resistance of Salmonella. The objective of this study was to comprehensively identify the target genes induced by acid stimulation in Salmonella, and to clarify the relativity of acid tolerance and antimicrobial peptide resistance. A clinical S. Typhimurium strain, S6, was selected and performed a transcriptome analysis under the acid tolerance response. In total, we found 1461 genes to be differentially expressed, including 721 up-regulated and 740 down-regulated genes. Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport, virulence, and motility. Interestingly, KEGG pathway analysis demonstrated that the induced genes by acid were enriched in cationic antimicrobial peptide resistance, sulfur relay system, ABC transporters, and two-component system pathway. Therein, PhoQ belonging to the two-component system PhoP-PhoQ that promotes virulence by detecting the macrophage phagosome and controls the transcript levels of many genes associated with the resistance to AMPs; MarA, a multiple antibiotic resistance factor; SapA, one of the encoding gene of sapABCDF operon that confers resistance to small cationic peptides of Salmonella; YejB, one of the encoding gene of yejABEF operon that confers resistance to antimicrobial peptides and contributes to the virulence of Salmonella, were all induced by acid stimulation, and could potentially explain that there is a correlation between acid tolerance and AMPs resistance, and finally affects the virulence of intracellular pathogenic bacteria.201931472260
6305160.9994Antimicrobial genes from Allium sativum and Pinellia ternata revealed by a Bacillus subtilis expression system. Antimicrobial genes are found in all classes of life. To efficiently isolate these genes, we used Bacillus subtilis and Escherichia coli as target indicator bacteria and transformed them with cDNA libraries. Among thousands of expressed proteins, candidate proteins played antimicrobial roles from the inside of the indicator bacteria (internal effect), contributing to the sensitivity (much more sensitivity than the external effect from antimicrobial proteins working from outside of the cells) and the high throughput ability of screening. We found that B. subtilis is more efficient and reliable than E. coli. Using the B. subtilis expression system, we identified 19 novel, broad-spectrum antimicrobial genes. Proteins expressed by these genes were extracted and tested, exhibiting strong external antibacterial, antifungal and nematicidal activities. Furthermore, these newly isolated proteins could control plant diseases. Application of these proteins secreted by engineered B. subtilis in soil could inhibit the growth of pathogenic bacteria. These proteins are thermally stable and suitable for clinical medicine, as they exhibited no haemolytic activity. Based on our findings, we speculated that plant, animal and human pathogenic bacteria, fungi or even cancer cells might be taken as the indicator target cells for screening specific resistance genes.201830266995
158170.9993Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq. In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry.202133945164
6292180.9993Genome-Wide Screening and Characterization of Genes Involved in Response to High Dose of Ciprofloxacin in Escherichia coli. The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Inevitably, considering its extensive use and misuse, resistance toward ciprofloxacin has increased in almost all clinically relevant bacteria. This study aimed to investigate the transcriptome changes at a high concentration of ciprofloxacin in Escherichia coli. In brief, 1,418 differentially expressed genes (DEGs) were identified, from which 773 genes were upregulated by ciprofloxacin, whereas 651 genes were downregulated. Enriched biological pathways reflected the upregulation of biological processes such as DNA damage and repair system, toxin/antitoxin systems, formaldehyde detoxification system. With kyoto encyclopedia of genes and genomes pathway analysis, higher expressed DEGs were associated with "LPS biosynthesis," "streptomycin biosynthesis," and "polyketide sugar unit biosynthesis." Lower expressed DEGs were associated with "biosynthesis of amino acids" and "flagellar assembly" pathways. After treatment of ciprofloxacin, lipopolysaccharide (LPS) release was increased by two times, and the gene expression level of LPS synthesis was elevated (p < 0.05) in both reference and clinical strains. Our results demonstrated that transient exposure to high-dose ciprofloxacin is a double-edged sword. Cautions should be taken when administering high-dose antibiotic treatment for infectious diseases.202235512736
8388190.9993Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. All bacteria share a set of evolutionarily conserved essential genes that encode products that are required for viability. The great diversity of environments that bacteria inhabit, including environments at extreme temperatures, place adaptive pressure on essential genes. We sought to use this evolutionary diversity of essential genes to engineer bacterial pathogens to be stably temperature-sensitive, and thus useful as live vaccines. We isolated essential genes from bacteria found in the Arctic and substituted them for their counterparts into pathogens of mammals. We found that substitution of nine different essential genes from psychrophilic (cold-loving) bacteria into mammalian pathogenic bacteria resulted in strains that died below their normal-temperature growth limits. Substitution of three different psychrophilic gene orthologs of ligA, which encode NAD-dependent DNA ligase, resulted in bacterial strains that died at 33, 35, and 37 degrees C. One ligA gene was shown to render Francisella tularensis, Salmonella enterica, and Mycobacterium smegmatis temperature-sensitive, demonstrating that this gene functions in both Gram-negative and Gram-positive lineage bacteria. Three temperature-sensitive F. tularensis strains were shown to induce protective immunity after vaccination at a cool body site. About half of the genes that could be tested were unable to mutate to temperature-resistant forms at detectable levels. These results show that psychrophilic essential genes can be used to create a unique class of bacterial temperature-sensitive vaccines for important human pathogens, such as S. enterica and Mycobacterium tuberculosis.201020624965