Effect of induction of SOS response on expression of pBR322 genes and on plasmid copy number. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
620301.0000Effect of induction of SOS response on expression of pBR322 genes and on plasmid copy number. Several lines of evidence are presented that indicate that the level of tetracycline resistance of Esherichia coli strains harboring plasmid pBR322 varies according to whether the SOS system of the host bacteria has been induced. These include use of strains in which the SOS system is expressed constitutively (lexA def.), is thermoinducible (recA441) or noninducible (lexA ind-), or is highly repressed (multiple copies of lexA+). Similar induction was observed with the product of another plasmid gene, beta-lactamase. The amounts of extractable plasmid DNA were also increased by SOS induction, and we propose that the SOS-induced increases in levels of tetracycline resistance and beta-lactamase activity are due to an increased plasmid copy number.19892695953
38710.9996Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Plasmid pBR322 and its numerous derivatives are used extensively for research and in biotechnology. The tetracycline-resistance (TcR) genes in these plasmids are expressed constitutively and cells carrying these plasmids are resistant to tetracycline. We have shown that expression of the TcR gene has an adverse effect on the reproductive fitness of plasmid-containing bacteria in both glucose-limited batch and chemostat cultures. If the TcR genes are inactivated at any one of three different restriction sites, mixed cultures of plasmid-free and plasmid-containing bacteria grow at the same rate.19853005111
620220.9996Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. The SOS response is a conserved response to DNA damage that is found in Gram-negative and Gram-positive bacteria. When DNA damage is sustained and severe, activation of error-prone DNA polymerases can induce a higher mutation rate than is normally observed, which is called the SOS mutator phenotype or hypermutation. We previously showed that zinc blocked the hypermutation response induced by quinolone antibiotics and mitomycin C in Escherichia coli and Klebsiella pneumoniae. In this study, we demonstrate that zinc blocks the SOS-induced development of chloramphenicol resistance in Enterobacter cloacae. Zinc also blocked the transfer of an extended spectrum beta-lactamase (ESBL) gene from Enterobacter to a susceptible E. coli strain. A zinc ionophore, zinc pyrithione, was ~100-fold more potent than zinc salts in inhibition of ciprofloxacin-induced hypermutation in E. cloacae. Other divalent metals, such as iron and manganese, failed to inhibit these responses. Electrophoretic mobility shift assays (EMSAs) revealed that zinc, but not iron or manganese, blocked the ability of the E. coli RecA protein to bind to single-stranded DNA, an important early step in the recognition of DNA damage in enteric bacteria. This suggests a mechanism for zinc's inhibitory effects on bacterial SOS responses, including hypermutation.201830519543
632230.9995A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). The soxRS regulon is activated by redox-cycling drugs such as paraquat and by nitric oxide. The >15 genes of this system provide resistance to both oxidants and multiple antibiotics. An association between clinical quinolone resistance and elevated expression of the soxRS regulon has been observed in Escherichia coli, but this association has not been explored for other enteropathogenic bacteria. Here we describe a soxRS-constitutive mutation in a clinical strain of Salmonella enterica (serovar Typhimurium) that arose with the development of resistance to quinolones during treatment. The elevated quinolone resistance in this strain derived from a point mutation in the soxR gene and could be suppressed in trans by multicopy wild-type soxRS. Multiple-antibiotic resistance was also transferred to a laboratory strain of S. enterica by introducing the cloned mutant soxR gene from the clinical strain. The results show that constitutive expression of soxRS can contribute to antibiotic resistance in clinically relevant S. enterica.200111120941
38840.9995Improved bacterial hosts for regulated expression of genes from lambda pL plasmid vectors. The construction and use of a set of Escherichia coli strains with defective lambda prophages that facilitate expression of genes cloned in lambda pL-plasmid vectors is described. These bacteria allow high and regulated expression of such genes, whereas a kanamycin-resistance marker (KmR) on the prophage allows easy identification and genetic transfer from strain to strain. Optimal conditions for examining gene expression with the pL-vector systems using these strains are discussed.19938406046
632450.9994Genetic and biochemical basis of tetracycline resistance. Properties of several, well characterized, tetracycline resistance determinants were compared. The determinants in Tn1721 and Tn10 (both from Gram-negative bacteria) each contain two genes; one encodes a repressor that regulates both its own transcription and that of a membrane protein that confers resistance by promoting efflux of the drug. Determinants from Gram-positive bacteria also encode efflux proteins, but expression of resistance is probably regulated by translational attenuation. The likely tetracycline binding site (a common dipeptide) in each efflux protein was predicted. The presence of the common binding site is consistent with the ability of an efflux protein originating in Bacillus species to be expressed in Escherichia coli.19863542941
38660.9994A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. The neo (neomycin-resistance) gene of transposon Tn5 encodes the enzyme neomycin phosphotransferase II (EC 2.7.1.95), which confers resistance to various aminoglycoside antibiotics, including kanamycin and G418. The gene is widely used as a selectable marker in the transformation of organisms as diverse as bacteria, yeast, plants, and animals. We found a mutation that involves a glutamic to aspartic acid conversion at residue 182 in the protein encoded by the chimeric neomycin phosphotransferase II genes of several commonly used transformation vectors. The mutation substantially reduces phosphotransferase activity but does not appear to affect the stability of the neomycin phosphotransferase II mRNA or protein. Plants and bacteria transformed with the mutant gene are less resistant to antibiotics than those transformed with the normal gene. A simple restriction endonuclease digestion distinguishes between the mutant and the normal gene.19902159150
29270.9994Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Tetracycline-resistance determinants encoding active efflux of the drug are widely distributed in gram-negative bacteria and unique with respect to genetic organization and regulation of expression. Each determinant consists of two genes called tetA and tetR, which are oriented with divergent polarity, and between them is a central regulatory region with overlapping promoters and operators. The amino acid sequences of the encoded proteins are 43-78% identical. The resistance protein TetA is a tetracycline/metal-proton antiporter located in the cytoplasmic membrane, while the regulatory protein TetR is a tetracycline inducible repressor. TetR binds via a helix-turn-helix motif to the two tet operators, resulting in repression of both genes. A detailed model of the repressor-operator complex has been proposed on the basis of biochemical and genetic data. The tet genes are differentially regulated so that repressor synthesis can occur before the resistance protein is expressed. This has been demonstrated for the Tn10-encoded tet genes and may be a common property of all tet determinants, as suggested by the similar locations of operators with respect to promoters. Induction is mediated by a tetracycline-metal complex and requires only nanomolar concentrations of the drug. This is the most sensitive effector-inducible system of transcriptional regulation known to date. The crystal structure of the TetR-tetracycline/metal complex shows the Tet repressor in the induced, non-DNA binding conformation. The structural interpretation of many noninducible TetR mutants has offered insight into the conformational changes associated with the switch between inducing and repressing structures of TetR. Tc is buried in the core of TetR, where it is held in place by multiple contacts to the protein.19947826010
26480.9994The Tn5 bleomycin resistance gene confers improved survival and growth advantage on Escherichia coli. The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS 50 R. We were not able to reproduce this result with IS 50 R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS 50 R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance.19947510018
892990.9994Interplay in the selection of fluoroquinolone resistance and bacterial fitness. Fluoroquinolones are antibacterial drugs that inhibit DNA Gyrase and Topoisomerase IV. These essential enzymes facilitate chromosome replication and RNA transcription by regulating chromosome supercoiling. High-level resistance to fluoroquinolones in E. coli requires the accumulation of multiple mutations, including those that alter target genes and genes regulating drug efflux. Previous studies have shown some drug-resistance mutations reduce bacterial fitness, leading to the selection of fitness-compensatory mutations. The impact of fluoroquinolone-resistance on bacterial fitness was analyzed in constructed isogenic strains carrying up to 5 resistance mutations. Some mutations significantly decreased bacterial fitness both in vitro and in vivo. We identified low-fitness triple-mutants where the acquisition of a fourth resistance mutation significantly increased fitness in vitro and in vivo while at the same time dramatically decreasing drug susceptibility. The largest effect occurred with the addition of a parC mutation (Topoisomerase IV) to a low-fitness strain carrying resistance mutations in gyrA (DNA Gyrase) and marR (drug efflux regulation). Increased fitness was accompanied by a significant change in the level of gyrA promoter activity as measured in an assay of DNA supercoiling. In selection and competition experiments made in the absence of drug, parC mutants that improved fitness and reduced susceptibility were selected. These data suggest that natural selection for improved growth in bacteria with low-level resistance to fluoroquinolones could in some cases select for further reductions in drug susceptibility. Thus, increased resistance to fluoroquinolones could be selected even in the absence of further exposure to the drug.200919662169
445100.9994Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol.200212390353
8903110.9994Role of the SOS Response in the Generation of Antibiotic Resistance In Vivo. The SOS response to DNA damage is a conserved stress response in Gram-negative and Gram-positive bacteria. Although this pathway has been studied for years, its relevance is still not familiar to many working in the fields of clinical antibiotic resistance and stewardship. Under some conditions, the SOS response favors DNA repair and preserves the genetic integrity of the organism. On the other hand, the SOS response also includes induction of error-prone DNA polymerases, which can increase the rate of mutation, called the mutator phenotype or "hypermutation." As a result, mutations can occur in genes conferring antibiotic resistance, increasing the acquisition of resistance to antibiotics. Almost all of the work on the SOS response has been on bacteria exposed to stressors in vitro. In this study, we sought to quantitate the effects of SOS-inducing drugs in vivo, in comparison with the same drugs in vitro. We used a rabbit model of intestinal infection with enteropathogenic Escherichia coli strain E22. SOS-inducing drugs triggered the mutator phenotype response in vivo as well as in vitro. Exposure of E. coli strain E22 to ciprofloxacin or zidovudine, both of which induce the SOS response in vitro, resulted in increased antibiotic resistance to 3 antibiotics: rifampin, minocycline, and fosfomycin. Zinc was able to inhibit the SOS-induced emergence of antibiotic resistance in vivo, as previously observed in vitro. Our findings may have relevance in reducing the emergence of resistance to new antimicrobial drugs.202133875437
8905120.9994Inhibition of mutation and combating the evolution of antibiotic resistance. The emergence of drug-resistant bacteria poses a serious threat to human health. In the case of several antibiotics, including those of the quinolone and rifamycin classes, bacteria rapidly acquire resistance through mutation of chromosomal genes during therapy. In this work, we show that preventing induction of the SOS response by interfering with the activity of the protease LexA renders pathogenic Escherichia coli unable to evolve resistance in vivo to ciprofloxacin or rifampicin, important quinolone and rifamycin antibiotics. We show in vitro that LexA cleavage is induced during RecBC-mediated repair of ciprofloxacin-mediated DNA damage and that this results in the derepression of the SOS-regulated polymerases Pol II, Pol IV and Pol V, which collaborate to induce resistance-conferring mutations. Our findings indicate that the inhibition of mutation could serve as a novel therapeutic strategy to combat the evolution of antibiotic resistance.200515869329
8904130.9994Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria. The emergence of drug-resistant bacteria poses a serious threat to human health. Bacteria often acquire resistance from a mutation of chromosomal genes during therapy. We have recently shown that the evolution of resistance to ciprofloxacin in vivo and in vitro requires the induction of a mutation that is mediated by the cleavage of the SOS repressor LexA and the associated derepression of three specialized DNA polymerases (polymerase II [Pol II], Pol IV, and Pol V). These results led us to suggest that it may be possible to design drugs to inhibit these proteins and that such drugs might be coadministered with antibiotics to prevent mutation and the evolution of resistance. For the approach to be feasible, there must not be any mechanisms through which bacteria can induce mutations and acquire antibiotic resistance that are independent of LexA and its repressed polymerases. Perhaps the most commonly cited mechanism to elevate bacterial mutation rates is the inactivation of methyl-directed mismatch repair (MMR). However, it is unclear whether this represents a LexA-independent mechanism or if the mutations that arise in MMR-deficient hypermutator strains are also dependent on LexA cleavage and polymerase derepression. In this work, we show that LexA cleavage and polymerase derepression are required for the evolution of clinically significant resistance in MMR-defective Escherichia coli. Thus, drugs that inhibit the proteins responsible for induced mutations are expected to efficiently prevent the evolution of resistance, even in MMR-deficient hypermutator strains.200616377689
6296140.9994Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants. INTRODUCTION: Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. OBJECTIVE: The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. METHODS: Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. RESULTS: Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. CONCLUSION: It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria.201626432001
6201150.9993Overexpression of mfpA Gene Increases Ciprofloxacin Resistance in Mycobacterium smegmatis. Fluoroquinolones (FQs) are antibiotics useful in the treatment of drug-resistant tuberculosis, but FQ-resistant mutants can be selected rapidly. Although mutations in the DNA gyrase are the principal cause of this resistance, pentapeptide proteins have been found to confer low-level FQ resistance in Gram-negative bacteria. MfpA is a pentapeptide repeat protein conserved in mycobacterial chromosomes, where it is adjacent to a group of four highly conserved genes termed a conservon. We wished to characterize the transcriptional regulation of the mfpA gene and relate its expression to ciprofloxacin resistance in M. smegmatis. Reverse transcription PCR showed that mfpA gene is part of an operon containing the conservon genes. Using a transcriptional fusion, we showed that a promoter was located 5' to the mfpEA operon. We determined the promoter activity under different growth conditions and found that the expression of the operon increases slightly in late growth phases in basic pH and in subinhibitory concentrations of ciprofloxacin. Finally, by cloning the mfpA gene in an inducible vector, we showed that induced expression of mfpA increases the ciprofloxacin Minimal Inhibitory Concentration. These results confirm that increased expression of the mfpA gene, which is part of the mfpEA operon, increases ciprofloxacin resistance in M. smegmatis.202133824663
385160.9993Introduction of a mini-gene encoding a five-amino acid peptide confers erythromycin resistance on Bacillus subtilis and provides temporary erythromycin protection in Proteus mirabilis. A 15-bp mini-gene was introduced into Bacillus subtilis and into stable protoplast-like L-forms of Proteus mirabilis. This mini-gene encoded the peptide MVLFV and modeled a fragment of Escherichia coli 23S rRNA responsible for E. coli erythromycin (Ery) resistance. Expression of the introduced mini-gene conferred permanent Ery resistance on B. subtilis. In L-forms of P. mirabilis, the Ery-protective effect was maintained in the course of several generations. Herewith, the mechanism of Ery resistance mediated by expression of specific short peptides was shown to exist in evolutionary distant bacteria. Three new plasmids were constructed containing the gene under study transcriptionally fused with the genes encoding glutamylendopeptidase of Bacillus licheniformis or delta-endotoxin of Bacillus thuringiensis. The Ery resistance pentapeptide (E-peptide) mini-gene served as an efficient direct transcriptional reporter and allowed to select bacillar glutamylendopeptidase with improved productivity. The mini-genes encoding E-peptides may be applied as selective markers to transform both Gram-positive and Gram-negative bacteria. The small size of the E-peptide mini-genes makes them attractive selective markers for vector construction.200010620668
6314170.9993Identification of genes involved in the resistance of mycobacteria to killing by macrophages. The survival of M. leprae and M. tuberculosis in the human host is dependent upon their ability to produce gene products that counteract the bactericidal activities of macrophages. To identify such mycobacterial genes and gene products, recombinant DNA libraries of mycobacterial DNA in E. coli were passed through macrophages to enrich for clones carrying genes that endow the normally susceptible E. coli bacteria with an enhanced ability to survive within macrophages. Following three cycles of enrichment, 15 independent clones were isolated. Three recombinants were characterized in detail, and each confers significantly enhanced survival on E. coli cells carrying them. Two of the cloned genetic elements also confer enhanced survival onto M. smegmatis cells. Further characterization of these genes and gene products should provide insights into the survival of mycobacteria within macrophages and may identify new approaches of targets for combatting these important pathogens.19948080180
6312180.9993D-serine deaminase is a stringent selective marker in genetic crosses. The presence of the locus for D-serine deaminase (dsd) renders bacteria resistant to growth inhibition by D-serine and enables them to grow with D-serine as the sole nitrogen source. The two properties permit stringent selection in genetic crosses and make the D-serine deaminase gene an excellent marker, especially in the construction of strains for which the use of antibiotic resistance genes as selective markers is not allowed.19957814336
287190.9993Reversion of mutations in the thymidine kinase gene in herpes simplex viruses resistant to phosphonoacetate. Mutations in the DNA polymerase locus of phage, bacteria, and eukaryotic may change the mutation rates at other loci of the genome. We used resistance to phosphonoacetate to select mutants of herpes simplex virus with mutated DNA polymerase and then determined the reversion frequency of viral thymidine kinase mutation in mutants and recombinants. The results obtained indicate that mutations causing resistance to phosphonoacetate do not affect the mutation rate of the viral genes. This finding is consistent with the existence of two functional regions in the DNA polymerase molecule, one involving the pyrophosphate acceptor site and responsible for resistance to phosphonoacetate and another involved in the editing ability and recognition specificity of the enzyme.19846331620