# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6202 | 0 | 1.0000 | Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. The SOS response is a conserved response to DNA damage that is found in Gram-negative and Gram-positive bacteria. When DNA damage is sustained and severe, activation of error-prone DNA polymerases can induce a higher mutation rate than is normally observed, which is called the SOS mutator phenotype or hypermutation. We previously showed that zinc blocked the hypermutation response induced by quinolone antibiotics and mitomycin C in Escherichia coli and Klebsiella pneumoniae. In this study, we demonstrate that zinc blocks the SOS-induced development of chloramphenicol resistance in Enterobacter cloacae. Zinc also blocked the transfer of an extended spectrum beta-lactamase (ESBL) gene from Enterobacter to a susceptible E. coli strain. A zinc ionophore, zinc pyrithione, was ~100-fold more potent than zinc salts in inhibition of ciprofloxacin-induced hypermutation in E. cloacae. Other divalent metals, such as iron and manganese, failed to inhibit these responses. Electrophoretic mobility shift assays (EMSAs) revealed that zinc, but not iron or manganese, blocked the ability of the E. coli RecA protein to bind to single-stranded DNA, an important early step in the recognition of DNA damage in enteric bacteria. This suggests a mechanism for zinc's inhibitory effects on bacterial SOS responses, including hypermutation. | 2018 | 30519543 |
| 6322 | 1 | 0.9997 | A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). The soxRS regulon is activated by redox-cycling drugs such as paraquat and by nitric oxide. The >15 genes of this system provide resistance to both oxidants and multiple antibiotics. An association between clinical quinolone resistance and elevated expression of the soxRS regulon has been observed in Escherichia coli, but this association has not been explored for other enteropathogenic bacteria. Here we describe a soxRS-constitutive mutation in a clinical strain of Salmonella enterica (serovar Typhimurium) that arose with the development of resistance to quinolones during treatment. The elevated quinolone resistance in this strain derived from a point mutation in the soxR gene and could be suppressed in trans by multicopy wild-type soxRS. Multiple-antibiotic resistance was also transferred to a laboratory strain of S. enterica by introducing the cloned mutant soxR gene from the clinical strain. The results show that constitutive expression of soxRS can contribute to antibiotic resistance in clinically relevant S. enterica. | 2001 | 11120941 |
| 6318 | 2 | 0.9997 | Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Phenotypic differences among closely related bacteria have been largely ascribed to species-specific genes, such as those residing in pathogenicity islands. However, we now report that the differential regulation of homologous genes is the mechanism responsible for the divergence of the enteric bacteria Salmonella enterica and Escherichia coli in their ability to make LPS modifications mediating resistance to the antibiotic polymyxin B. In S. enterica serovar Typhimurium, the PmrA/PmrB two-component system governing polymyxin B resistance is induced in low Mg(2+) in a process that requires the PmrD protein and by Fe(3+) in a PmrD-independent fashion. We establish that E. coli K-12 induces PmrA-activated gene transcription and polymyxin B resistance in response to Fe(3+), but that it is blind to the low Mg(2+) signal. The highly divergent PmrD protein is responsible for this phenotype as replacement of the E. coli pmrD gene by its Salmonella counterpart resulted in an E. coli strain that transcribed PmrA-activated genes and displayed polymyxin B resistance under the same conditions as Salmonella. Molecular analysis of natural isolates of E. coli and Salmonella revealed that the PmrD proteins are conserved within each genus and that selection might have driven the divergence between the Salmonella and E. coli PmrD proteins. Investigation of PmrD function demonstrated statistically different distributions for the Salmonella and E. coli isolates in PmrD-dependent transcription occurring in low Mg(2+). Our results suggest that the differential regulation of conserved genes may have ecological consequences, determining the range of niches a microorganism can occupy. | 2004 | 15569938 |
| 8903 | 3 | 0.9996 | Role of the SOS Response in the Generation of Antibiotic Resistance In Vivo. The SOS response to DNA damage is a conserved stress response in Gram-negative and Gram-positive bacteria. Although this pathway has been studied for years, its relevance is still not familiar to many working in the fields of clinical antibiotic resistance and stewardship. Under some conditions, the SOS response favors DNA repair and preserves the genetic integrity of the organism. On the other hand, the SOS response also includes induction of error-prone DNA polymerases, which can increase the rate of mutation, called the mutator phenotype or "hypermutation." As a result, mutations can occur in genes conferring antibiotic resistance, increasing the acquisition of resistance to antibiotics. Almost all of the work on the SOS response has been on bacteria exposed to stressors in vitro. In this study, we sought to quantitate the effects of SOS-inducing drugs in vivo, in comparison with the same drugs in vitro. We used a rabbit model of intestinal infection with enteropathogenic Escherichia coli strain E22. SOS-inducing drugs triggered the mutator phenotype response in vivo as well as in vitro. Exposure of E. coli strain E22 to ciprofloxacin or zidovudine, both of which induce the SOS response in vitro, resulted in increased antibiotic resistance to 3 antibiotics: rifampin, minocycline, and fosfomycin. Zinc was able to inhibit the SOS-induced emergence of antibiotic resistance in vivo, as previously observed in vitro. Our findings may have relevance in reducing the emergence of resistance to new antimicrobial drugs. | 2021 | 33875437 |
| 8968 | 4 | 0.9996 | Antibiotic stress, genetic response and altered permeability of E. coli. BACKGROUND: Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The number and activity of efflux pumps and outer membrane proteins that constitute porins play major roles in the definition of intrinsic resistance in Gram-negative bacteria that is altered under antibiotic exposure. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the genetic regulation of porins and efflux pumps of Escherichia coli during prolonged exposure to increasing concentrations of tetracycline and demonstrate, with the aid of quantitative real-time reverse transcriptase-polymerase chain reaction methodology and western blot detection, the sequence order of genetic expression of regulatory genes, their relationship to each other, and the ensuing increased activity of genes that code for transporter proteins of efflux pumps and down-regulation of porin expression. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that, in addition to the transcriptional regulation of genes coding for membrane proteins, the post-translational regulation of proteins involved in the permeability of Gram-negative bacteria also plays a major role in the physiological adaptation to antibiotic exposure. A model is presented that summarizes events during the physiological adaptation of E. coli to tetracycline exposure. | 2007 | 17426813 |
| 6328 | 5 | 0.9996 | Inactivation of MarR gene homologs increases susceptibility to antimicrobials in Bacteroides fragilis. Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis. | 2018 | 28847541 |
| 6324 | 6 | 0.9996 | Genetic and biochemical basis of tetracycline resistance. Properties of several, well characterized, tetracycline resistance determinants were compared. The determinants in Tn1721 and Tn10 (both from Gram-negative bacteria) each contain two genes; one encodes a repressor that regulates both its own transcription and that of a membrane protein that confers resistance by promoting efflux of the drug. Determinants from Gram-positive bacteria also encode efflux proteins, but expression of resistance is probably regulated by translational attenuation. The likely tetracycline binding site (a common dipeptide) in each efflux protein was predicted. The presence of the common binding site is consistent with the ability of an efflux protein originating in Bacillus species to be expressed in Escherichia coli. | 1986 | 3542941 |
| 8929 | 7 | 0.9996 | Interplay in the selection of fluoroquinolone resistance and bacterial fitness. Fluoroquinolones are antibacterial drugs that inhibit DNA Gyrase and Topoisomerase IV. These essential enzymes facilitate chromosome replication and RNA transcription by regulating chromosome supercoiling. High-level resistance to fluoroquinolones in E. coli requires the accumulation of multiple mutations, including those that alter target genes and genes regulating drug efflux. Previous studies have shown some drug-resistance mutations reduce bacterial fitness, leading to the selection of fitness-compensatory mutations. The impact of fluoroquinolone-resistance on bacterial fitness was analyzed in constructed isogenic strains carrying up to 5 resistance mutations. Some mutations significantly decreased bacterial fitness both in vitro and in vivo. We identified low-fitness triple-mutants where the acquisition of a fourth resistance mutation significantly increased fitness in vitro and in vivo while at the same time dramatically decreasing drug susceptibility. The largest effect occurred with the addition of a parC mutation (Topoisomerase IV) to a low-fitness strain carrying resistance mutations in gyrA (DNA Gyrase) and marR (drug efflux regulation). Increased fitness was accompanied by a significant change in the level of gyrA promoter activity as measured in an assay of DNA supercoiling. In selection and competition experiments made in the absence of drug, parC mutants that improved fitness and reduced susceptibility were selected. These data suggest that natural selection for improved growth in bacteria with low-level resistance to fluoroquinolones could in some cases select for further reductions in drug susceptibility. Thus, increased resistance to fluoroquinolones could be selected even in the absence of further exposure to the drug. | 2009 | 19662169 |
| 6319 | 8 | 0.9996 | Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Heteroresistance, a phenomenon where subpopulations of a bacterial isolate exhibit different susceptibilities to an antibiotic, is a growing clinical problem where the underlying genetic mechanisms in most cases remain unknown. We isolated colistin resistant mutants in Escherichia coli and Salmonella enterica serovar Typhimurium at different concentrations of colistin. Genetic analysis showed that genetically stable pmrAB point mutations were responsible for colistin resistance during selection at high drug concentrations for both species and at low concentrations for E. coli. In contrast, for S. Typhimurium mutants selected at low colistin concentrations, amplification of different large chromosomal regions conferred a heteroresistant phenotype. All amplifications included the pmrD gene, which encodes a positive regulator that up-regulates proteins that modify lipid A, and as a result increase colistin resistance. Inactivation and over-expression of the pmrD gene prevented and conferred resistance, respectively, demonstrating that the PmrD protein is required and sufficient to confer resistance. The heteroresistance phenotype is explained by the variable gene dosage of pmrD in a population, where sub-populations with different copy number of the pmrD gene show different levels of colistin resistance. We propose that variability in gene copy number of resistance genes can explain the heteroresistance observed in clinically isolated pathogenic bacteria. | 2016 | 27381382 |
| 6296 | 9 | 0.9996 | Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants. INTRODUCTION: Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. OBJECTIVE: The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. METHODS: Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. RESULTS: Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. CONCLUSION: It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. | 2016 | 26432001 |
| 6314 | 10 | 0.9996 | Identification of genes involved in the resistance of mycobacteria to killing by macrophages. The survival of M. leprae and M. tuberculosis in the human host is dependent upon their ability to produce gene products that counteract the bactericidal activities of macrophages. To identify such mycobacterial genes and gene products, recombinant DNA libraries of mycobacterial DNA in E. coli were passed through macrophages to enrich for clones carrying genes that endow the normally susceptible E. coli bacteria with an enhanced ability to survive within macrophages. Following three cycles of enrichment, 15 independent clones were isolated. Three recombinants were characterized in detail, and each confers significantly enhanced survival on E. coli cells carrying them. Two of the cloned genetic elements also confer enhanced survival onto M. smegmatis cells. Further characterization of these genes and gene products should provide insights into the survival of mycobacteria within macrophages and may identify new approaches of targets for combatting these important pathogens. | 1994 | 8080180 |
| 9780 | 11 | 0.9996 | Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr -1, -1.5, -2, -3, -3.2 or -5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance. | 2021 | 34723787 |
| 6203 | 12 | 0.9996 | Effect of induction of SOS response on expression of pBR322 genes and on plasmid copy number. Several lines of evidence are presented that indicate that the level of tetracycline resistance of Esherichia coli strains harboring plasmid pBR322 varies according to whether the SOS system of the host bacteria has been induced. These include use of strains in which the SOS system is expressed constitutively (lexA def.), is thermoinducible (recA441) or noninducible (lexA ind-), or is highly repressed (multiple copies of lexA+). Similar induction was observed with the product of another plasmid gene, beta-lactamase. The amounts of extractable plasmid DNA were also increased by SOS induction, and we propose that the SOS-induced increases in levels of tetracycline resistance and beta-lactamase activity are due to an increased plasmid copy number. | 1989 | 2695953 |
| 445 | 13 | 0.9996 | Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol. | 2002 | 12390353 |
| 8895 | 14 | 0.9996 | Loss of DNA mismatch repair genes leads to acquisition of antibiotic resistance independent of secondary mutations. Antibiotic resistant bacteria have been a rising clinical concern for decades. Beyond acquisition of alleles conferring resistance, bacteria under stress (e.g., from changing environmental conditions or mutations) can have higher intrinsic resistance to antibiotics than unstressed cells. This concern is expanded for gram-negative bacteria which have a protective outer membrane serving as an additional barrier against harmful molecules such as antibiotics. Here, we report a pathway which increases antibiotic resistance (i.e., minimum inhibitory concentration) in response to inactivation of the DNA Mismatch Repair pathway (MMR). This pathway led to increased intrinsic resistance and was independent of secondary mutations. Specifically, deletion of the DNA mismatch repair genes mutL or mutS caused resistance to various antibiotics spanning different classes, molecular sizes, and mechanisms of action in several different E. coli K-12 MG1655 strains, and in Salmonella enterica serovar Typhimurium LT2. This pathway was independent of the SOS response (severe DNA damage response). However, the patterns of resistance correlated with previously reported increases in MMR mutants in rates of homoeologous recombination, homologous recombination between non-identical DNA strands. Mutations expected to lower rates of recombination in MMR mutants also decreased the resistance to most antibiotics. Finally, we found lysis occurs in MMR mutants and may contribute to resistance to other antibiotics. Our results have demonstrated a novel mechanism that increases antibiotic resistance in direct response to loss of MMR genes, and we propose this resistance involves increased rates of homoeologous recombination and cell lysis. The increased antibiotic resistance of MMR mutants provides a path for these cells to survive in antibiotics long enough to develop more specific resistance mutations and so may contribute to the development of new clinical resistance alleles. | 2025 | 40667202 |
| 8218 | 15 | 0.9996 | Mechanism of plasmic-mediated resistance to cadmium in Staphylococcus aureus. The mechanism of plasmid-mediated resistance to cadmium in Staphylococcus aureus was investigated. Protein synthesis in cell-free extracts from resistant or susceptible bacteria was equally susceptible to inhibition by Cd(2+), but spheroplasts from resistant bacteria retained their resistance. Resistant bacteria did not have a decreased affinity for cations in general, nor was active metabolism required for exclusion of Cd(2+). The kinetics of Cd(2+) uptake into susceptible and resistant bacteria suggested that the conformation of membrane proteins in resistant bacteria may be important in the exclusion of Cd(2+). | 1975 | 1137361 |
| 6313 | 16 | 0.9996 | A Novel Nonantibiotic, lgt-Based Selection System for Stable Maintenance of Expression Vectors in Escherichia coli and Vibrio cholerae. Antibiotic selection for the maintenance of expression plasmids is discouraged in the production of recombinant proteins for pharmaceutical or other human uses due to the risks of antibiotic residue contamination of the final products and the release of DNA encoding antibiotic resistance into the environment. We describe the construction of expression plasmids that are instead maintained by complementation of the lgt gene encoding a (pro)lipoprotein glyceryl transferase essential for the biosynthesis of bacterial lipoprotein. Mutations in lgt are lethal in Escherichia coli and other Gram-negative organisms. The lgt gene was deleted from E. coli and complemented by the Vibrio cholerae-derived gene provided in trans on a temperature-sensitive plasmid, allowing cells to grow at 30°C but not at 37°C. A temperature-insensitive expression vector carrying the V. cholerae-derived lgt gene was constructed, whereby transformants were selected by growth at 39°C. The vector was successfully used to express two recombinant proteins, one soluble and one forming insoluble inclusion bodies. Reciprocal construction was done by deleting the lgt gene from V. cholerae and complementing the lesion with the corresponding gene from E. coli The resulting strain was used to produce the secreted recombinant cholera toxin B subunit (CTB) protein, a component of licensed as well as newly developed oral cholera vaccines. Overall, the lgt system described here confers extreme stability on expression plasmids, and this strategy can be easily transferred to other Gram-negative species using the E. coli-derived lgt gene for complementation.IMPORTANCE Many recombinant proteins are produced in bacteria from genes carried on autonomously replicating DNA elements called plasmids. These plasmids are usually inherently unstable and rapidly lost. This can be prevented by using genes encoding antibiotic resistance. Plasmids are thus maintained by allowing only plasmid-containing cells to survive when the bacteria are grown in medium supplemented with antibiotics. In the described antibiotic-free system for the production of recombinant proteins, an essential gene is deleted from the bacterial chromosome and instead provided on a plasmid. The loss of the plasmid becomes lethal for the bacteria. Such plasmids can be used for the expression of recombinant proteins. This broadly applicable system removes the need for antibiotics in recombinant protein production, thereby contributing to reducing the spread of genes encoding antibiotic resistance, reducing the release of antibiotics into the environment, and freeing the final products (often used in pharmaceuticals) from contamination with potentially harmful antibiotic residues. | 2018 | 29222103 |
| 8928 | 17 | 0.9996 | Increased survival of antibiotic-resistant Escherichia coli inside macrophages. Mutations causing antibiotic resistance usually incur a fitness cost in the absence of antibiotics. The magnitude of such costs is known to vary with the environment. Little is known about the fitness effects of antibiotic resistance mutations when bacteria confront the host's immune system. Here, we study the fitness effects of mutations in the rpoB, rpsL, and gyrA genes, which confer resistance to rifampin, streptomycin, and nalidixic acid, respectively. These antibiotics are frequently used in the treatment of bacterial infections. We measured two important fitness traits-growth rate and survival ability-of 12 Escherichia coli K-12 strains, each carrying a single resistance mutation, in the presence of macrophages. Strikingly, we found that 67% of the mutants survived better than the susceptible bacteria in the intracellular niche of the phagocytic cells. In particular, all E. coli streptomycin-resistant mutants exhibited an intracellular advantage. On the other hand, 42% of the mutants incurred a high fitness cost when the bacteria were allowed to divide outside of macrophages. This study shows that single nonsynonymous changes affecting fundamental processes in the cell can contribute to prolonged survival of E. coli in the context of an infection. | 2013 | 23089747 |
| 8905 | 18 | 0.9996 | Inhibition of mutation and combating the evolution of antibiotic resistance. The emergence of drug-resistant bacteria poses a serious threat to human health. In the case of several antibiotics, including those of the quinolone and rifamycin classes, bacteria rapidly acquire resistance through mutation of chromosomal genes during therapy. In this work, we show that preventing induction of the SOS response by interfering with the activity of the protease LexA renders pathogenic Escherichia coli unable to evolve resistance in vivo to ciprofloxacin or rifampicin, important quinolone and rifamycin antibiotics. We show in vitro that LexA cleavage is induced during RecBC-mediated repair of ciprofloxacin-mediated DNA damage and that this results in the derepression of the SOS-regulated polymerases Pol II, Pol IV and Pol V, which collaborate to induce resistance-conferring mutations. Our findings indicate that the inhibition of mutation could serve as a novel therapeutic strategy to combat the evolution of antibiotic resistance. | 2005 | 15869329 |
| 6334 | 19 | 0.9996 | Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BACKGROUND: The evolution of antibiotic resistance in bacteria is a topic of major medical importance. Evolution is the result of natural selection acting on variant phenotypes. Both the rigid base sequence of DNA and the more plastic expression patterns of the genes present define phenotype. RESULTS: We investigated the evolution of resistant E. coli when exposed to low concentrations of antibiotic. We show that within an isogenic population there are heritable variations in gene expression patterns, providing phenotypic diversity for antibiotic selection to act on. We studied resistance to three different antibiotics, ampicillin, tetracycline and nalidixic acid, which act by inhibiting cell wall synthesis, protein synthesis and DNA synthesis, respectively. In each case survival rates were too high to be accounted for by spontaneous DNA mutation. In addition, resistance levels could be ramped higher by successive exposures to increasing antibiotic concentrations. Furthermore, reversion rates to antibiotic sensitivity were extremely high, generally over 50%, consistent with an epigenetic inheritance mode of resistance. The gene expression patterns of the antibiotic resistant E. coli were characterized with microarrays. Candidate genes, whose altered expression might confer survival, were tested by driving constitutive overexpression and determining antibiotic resistance. Three categories of resistance genes were identified. The endogenous beta-lactamase gene represented a cryptic gene, normally inactive, but when by chance expressed capable of providing potent ampicillin resistance. The glutamate decarboxylase gene, in contrast, is normally expressed, but when overexpressed has the incidental capacity to give an increase in ampicillin resistance. And the DAM methylase gene is capable of regulating the expression of other genes, including multidrug efflux pumps. CONCLUSION: In this report we describe the evolution of antibiotic resistance in bacteria mediated by the epigenetic inheritance of variant gene expression patterns. This provides proof in principle that epigenetic inheritance, as well as DNA mutation, can drive evolution. | 2008 | 18282299 |