# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6199 | 0 | 1.0000 | A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. The wine lactic acid bacteria Oenococcus oeni has to cope with harsh environmental conditions including an acidic pH, a high alcoholic content, non-optimal growth temperatures, and growth inhibitory compounds such as fatty acids, phenolic acids and tannins. We here describe characterisation and cloning of the O. oeni omrA gene encoding a protein belonging to the ATP-binding cassette superfamily of transporters. The OmrA protein displays the highest sequence similarity with the subfamily of ATP-dependent multidrug resistance (MDR) proteins, most notably the bacterial Lactococcus lactis LmrA homologue of the human MDR1 P-glycoprotein. The omrA gene proved to be a stress-responsive gene since its expression was increased at high temperature or under osmotic shock. The OmrA protein function was tested in Escherichia coli, and consistent with the omrA gene expression pattern, OmrA conferred protection to bacteria grown on a high salt medium. OmrA also triggered bacterial resistance to sodium laurate, wine and ethanol toxicity. The homologous LmrA protein featured the same stress-protective pattern than OmrA when expressed in E. coli, and the contribution to resistance of both OmrA and LmrA transporters was decreased by verapamil, a well-known inhibitor of the human MDR1 protein. Genes homologous to omrA were detected in other wine lactic acid bacteria, suggesting that this type of genes might constitute a well-conserved stress-protective molecular device. | 2004 | 15033264 |
| 6200 | 1 | 0.9996 | Heterologous expression of bacterial and human multidrug resistance proteins protect Escherichia coli against mercury and zinc contamination. In order to determine the role of multidrug resistance proteins in mercury and zinc resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA genes were expressed in an Escherichia coli tolC mutant which is hypersensitive to metals. The three transporters conferred an increased mercury and zinc resistance to E. coli as compared to the control bacteria. This improved resistance correlated with a decreased zinc and mercury bioaccumulation. Indeed, quantification of intracellular metal concentrations by atomic absorption spectrometry (AAS) showed a 2.1-, 3-, and 5.1-fold decrease in zinc in cells expressing hMDR1, omrA, and lmrA, respectively, and a 2.7-, 7.5-, and 7.7-fold decrease in mercury in cells expressing omrA, lmrA, and hMDR1, respectively, as compared to the control bacteria. This means that hMDR1, LmrA, and OmrA proteins which are specialised in xenobiotic scavenging, their main known function, are nevertheless able to confer some resistance against metals. Our results show that the tolC mutated strain is well adapted to the study of MDR transporter activity and could be used to screen substrates and competitive hMDR1 inhibitors. | 2006 | 16703280 |
| 153 | 2 | 0.9993 | Both arginine and fructose stimulate pH-independent resistance in the wine bacteria Oenococcus oeni. The wine bacteria Oenococcus oeni has to cope with harsh environmental conditions including an acidic pH, a high alcoholic content, and growth inhibitory compounds such as fatty acids, phenolic acids and tannins. So how can O. oeni bacteria naturally present on the surface of grape berries acquire a natural resistance that will alleviate the effect of wine stresses? One mechanism displayed by O. oeni and many other bacteria against the damaging effects of acid environments is arginine consumption through the arginine deiminase pathway. Various studies have shown that the bacterial protection conferred by arginine depends on the rise in pH associated with ammonia production. However, many experimental results disagree with this point of view. The aim of this study was to clarify the protective effect of arginine on O. oeni stress adaptation. Is it only by increasing the pH through ammonia production that this effect is triggered, or does stimulation of appropriate cellular responses play an additional role? This study shows that: (a) arginine in combination with fructose triggers the expression of a subset of genes which are also stress-responsive; (b) cultivation of O. oeni in a fructose- and arginine-supplemented medium prior to wine exposure protects bacteria against subsequent wine shock, and (c) this acquired stress resistance is independent of pH. | 2006 | 16380184 |
| 446 | 3 | 0.9992 | Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Lactobacilli are common inhabitants of the gastrointestinal tracts of mammals and have received considerable attention due to their putative health-promoting properties. Little is known about the traits that enhance the ability of these bacteria to inhabit the gastrointestinal tract. In this paper we describe the development and application of a strategy based on in vivo expression technology (IVET) that enables detection of Lactobacillus reuteri genes specifically induced in the murine gut. A plasmid-based system was constructed containing 'ermGT (which confers lincomycin resistance) as the primary reporter gene for selection of promoters active in the gastrointestinal tract of mice treated with lincomycin. A second reporter gene, 'bglM (beta-glucanase), allowed differentiation between constitutive and in vivo inducible promoters. The system was successfully tested in vitro and in vivo by using a constitutive promoter. Application of the IVET system with chromosomal DNA of L. reuteri 100-23 and reconstituted lactobacillus-free mice revealed three genes induced specifically during colonization. Two of the sequences showed homology to genes encoding xylose isomerase (xylA) and peptide methionine sulfoxide reductase (msrB), which are involved in nutrient acquisition and stress responses, respectively. The third locus showed homology to the gene encoding a protein whose function is not known. Our IVET system has the potential to identify genes of lactobacilli that have not previously been functionally characterized but which may be essential for growth of these bacteria in the gastrointestinal ecosystem. | 2003 | 12676681 |
| 157 | 4 | 0.9992 | Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation. | 2008 | 17920150 |
| 689 | 5 | 0.9992 | Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Sinorhizobium meliloti can form a nitrogen-fixing symbiotic relationship with alfalfa after bacteria in the soil infect emerging root hairs of the growing plant. To be successful at this, the bacteria must be able to survive in the soil between periods of active plant growth, including when conditions are dry. The ability of S. meliloti to withstand desiccation has been known for years, but genes that contribute to this phenotype have not been identified. Transposon mutagenesis was used in combination with novel screening techniques to identify four desiccation-sensitive mutants of S. meliloti Rm1021. DNA sequencing of the transposon insertion sites identified three genes with regulatory functions (relA, rpoE2, and hpr) and a DNA repair gene (uvrC). Various phenotypes of the mutants were determined, including their behavior on several indicator media and in symbiosis. All of the mutants formed an effective symbiosis with alfalfa. To test the hypothesis that UvrC-related excision repair was important in desiccation resistance, uvrA, uvrB, and uvrC deletion mutants were also constructed. These strains were sensitive to DNA damage induced by UV light and 4-NQO and were also desiccation sensitive. These data indicate that uvr gene-mediated DNA repair and the regulation of stress-induced pathways are important for desiccation resistance. | 2009 | 19028909 |
| 645 | 6 | 0.9991 | Activation of cryptic aminoglycoside resistance in Salmonella enterica. Aminoglycoside resistance in bacteria can be acquired by several mechanisms, including drug modification, target alteration, reduced uptake and increased efflux. Here we demonstrate that increased resistance to the aminoglycosides streptomycin and spectinomycin in Salmonella enterica can be conferred by increased expression of an aminoglycoside adenyl transferase encoded by the cryptic, chromosomally located aadA gene. During growth in rich medium the wild-type strain was susceptible but mutations that impaired electron transport and conferred a small colony variant (SCV) phenotype or growth in glucose/glycerol minimal media resulted in activation of the aadA gene and aminoglycoside resistance. Expression of the aadA gene was positively regulated by the stringent response regulator guanosine penta/tetraphosphate ((p)ppGpp). SCV mutants carrying stop codon mutations in the hemA and ubiA genes showed a streptomycin pseudo-dependent phenotype, where growth was stimulated by streptomycin. Our data suggest that this phenotype is due to streptomycin-induced readthrough of the stop codons, a resulting increase in HemA/UbiA levels and improved electron transport and growth. Our results demonstrate that environmental and mutational activation of a cryptic resistance gene can confer clinically significant resistance and that a streptomycin-pseudo-dependent phenotype can be generated via a novel mechanism that does not involve the classical rpsL mutations. | 2011 | 21507083 |
| 181 | 7 | 0.9991 | Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270. Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. | 2016 | 26637599 |
| 688 | 8 | 0.9991 | The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. High levels of copper are toxic and therefore bacteria must limit free intracellular levels to prevent cellular damage. In this study, we show that a number of pneumococcal genes are differentially regulated by copper, including an operon encoding a CopY regulator, a protein of unknown function (CupA) and a P1-type ATPase, CopA, which is conserved in all sequenced Streptococcus pneumoniae strains. Transcriptional analysis demonstrated that the cop operon is induced by copper in vitro, repressed by the addition of zinc and is autoregulated by the copper-responsive CopY repressor protein. We also demonstrate that the CopA ATPase is a major pneumococcal copper resistance mechanism and provide the first evidence that the CupA protein plays a role in copper resistance. Our results also show that copper homeostasis is important for pneumococcal virulence as the expression of the cop operon is induced in the lungs and nasopharynx of intranasally infected mice, and a copA(-) mutant strain, which had decreased growth in high levels of copper in vitro, showed reduced virulence in a mouse model of pneumococcal pneumonia. Furthermore, using the copA(-) mutant we observed for the first time in any bacteria that copper homeostasis also appears to be required for survival in the nasopharynx. | 2011 | 21736642 |
| 6324 | 9 | 0.9991 | Genetic and biochemical basis of tetracycline resistance. Properties of several, well characterized, tetracycline resistance determinants were compared. The determinants in Tn1721 and Tn10 (both from Gram-negative bacteria) each contain two genes; one encodes a repressor that regulates both its own transcription and that of a membrane protein that confers resistance by promoting efflux of the drug. Determinants from Gram-positive bacteria also encode efflux proteins, but expression of resistance is probably regulated by translational attenuation. The likely tetracycline binding site (a common dipeptide) in each efflux protein was predicted. The presence of the common binding site is consistent with the ability of an efflux protein originating in Bacillus species to be expressed in Escherichia coli. | 1986 | 3542941 |
| 692 | 10 | 0.9991 | The ArcA regulon and oxidative stress resistance in Haemophilus influenzae. Haemophilus influenzae transits between niches within the human host that are predicted to differ in oxygen levels. The ArcAB two-component signal transduction system controls gene expression in response to respiratory conditions of growth and has been implicated in bacterial pathogenesis, yet the mechanism is not understood. We undertook a genome-scale study to identify genes of the H. influenzae ArcA regulon. Deletion of arcA resulted in increased anaerobic expression of genes of the respiratory chain and of H. influenzae's partial tricarboxylic acid cycle, and decreased anaerobic expression levels of genes of polyamine metabolism, and iron sequestration. Deletion of arcA also conferred a susceptibility to transient exposure to hydrogen peroxide that was greater following anaerobic growth than after aerobic growth. Array data revealed that the dps gene, not previously assigned to the ArcA modulon in bacteria, exhibited decreased expression in the arcA mutant. Deletion of dps resulted in hydrogen peroxide sensitivity and complementation restored resistance, providing insight into the previously uncharacterized mechanism of arcA-mediated H(2)O(2) resistance. The results indicate a role for H. influenzae arcA and dps in pre-emptive defence against transitions from growth in low oxygen environments to aerobic exposure to hydrogen peroxide, an antibacterial oxidant produced by phagocytes during infection. | 2007 | 17542927 |
| 6322 | 11 | 0.9991 | A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). The soxRS regulon is activated by redox-cycling drugs such as paraquat and by nitric oxide. The >15 genes of this system provide resistance to both oxidants and multiple antibiotics. An association between clinical quinolone resistance and elevated expression of the soxRS regulon has been observed in Escherichia coli, but this association has not been explored for other enteropathogenic bacteria. Here we describe a soxRS-constitutive mutation in a clinical strain of Salmonella enterica (serovar Typhimurium) that arose with the development of resistance to quinolones during treatment. The elevated quinolone resistance in this strain derived from a point mutation in the soxR gene and could be suppressed in trans by multicopy wild-type soxRS. Multiple-antibiotic resistance was also transferred to a laboratory strain of S. enterica by introducing the cloned mutant soxR gene from the clinical strain. The results show that constitutive expression of soxRS can contribute to antibiotic resistance in clinically relevant S. enterica. | 2001 | 11120941 |
| 8946 | 12 | 0.9991 | Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. Although fosfomycin is an old antibiotic, it has resurfaced with particular interest. The antibiotic is still effective against many pathogens that are resistant to other commonly used antibiotics. We have found that fosfomycin resistance of enterohemorrhagic Escherichia coli (EHEC) O157:H7 is controlled by the bacterial two-component signal transduction system CpxAR. A cpxA mutant lacking its phosphatase activity results in constitutive activation of its cognate response regulator, CpxR, and fosfomycin resistance. We have shown that fosfomycin resistance requires CpxR because deletion of the cpxR gene in the cpxA mutant restores fosfomycin sensitivity. We have also shown that CpxR directly represses the expression of two genes, glpT and uhpT, which encode transporters that cotransport fosfomycin with their native substrates glycerol-3-phosphate and glucose-6-phosphate, and repression of these genes leads to a decrease in fosfomycin transport into the cpxA mutant. However, the cpxA mutant had an impaired growth phenotype when cultured with glycerol-3-phosphate or glucose-6-phosphate as a sole carbon substrate and was outcompeted by the parent strain, even in nutrient-rich medium. This suggests a trade-off between fosfomycin resistance and the biological fitness associated with carbon substrate uptake. We propose a role for the CpxAR system in the reversible control of fosfomycin resistance. This may be a beneficial strategy for bacteria to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. | 2014 | 24163343 |
| 8218 | 13 | 0.9991 | Mechanism of plasmic-mediated resistance to cadmium in Staphylococcus aureus. The mechanism of plasmid-mediated resistance to cadmium in Staphylococcus aureus was investigated. Protein synthesis in cell-free extracts from resistant or susceptible bacteria was equally susceptible to inhibition by Cd(2+), but spheroplasts from resistant bacteria retained their resistance. Resistant bacteria did not have a decreased affinity for cations in general, nor was active metabolism required for exclusion of Cd(2+). The kinetics of Cd(2+) uptake into susceptible and resistant bacteria suggested that the conformation of membrane proteins in resistant bacteria may be important in the exclusion of Cd(2+). | 1975 | 1137361 |
| 690 | 14 | 0.9991 | Characterization of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368. During industrial processes, the dairy organism Streptococcus thermophilus is exposed to stress conditions. Its ability to survive and grow in an aerobic environment indicates that it must possess defensive mechanisms against reactive oxygen species. To identify the genes involved in oxidative stress defence, a collection of mutants was generated by random insertional mutagenesis and screened for menadione sensitivity and resistance. Results obtained for resistant clones allowed the identification of eight loci. The insertions affected genes whose homologues in other bacteria were previously identified as being involved in stress response(deoB, gst) or transcription regulation (rggC) and five ORFs of unknown function. The tolerance of the eight mutants to air-exposure, methyl viologen and H2O2 was studied. Real-time quantitative PCR was used to analyse the transcript level of mutated genes and revealed that most were down-regulated during oxidative stress. | 2004 | 15378231 |
| 6327 | 15 | 0.9991 | The Response of Enterococcus faecalis V583 to Chloramphenicol Treatment. Many Enterococcus faecalis strains display tolerance or resistance to many antibiotics, but genes that contribute to the resistance cannot be specified. The multiresistant E. faecalis V583, for which the complete genome sequence is available, survives and grows in media containing relatively high levels of chloramphenicol. No specific genes coding for chloramphenicol resistance has been recognized in V583. We used microarrays to identify genes and mechanisms behind the tolerance to chloramphenicol in V583, by comparison of cells treated with subinhibitory concentrations of chloramphenicol and untreated V583 cells. During a time course experiment, more than 600 genes were significantly differentially transcribed. Since chloramphenicol affects protein synthesis in bacteria, many genes involved in protein synthesis, for example, genes for ribosomal proteins, were induced. Genes involved in amino acid biosynthesis, for example, genes for tRNA synthetases and energy metabolism were downregulated, mainly. Among the upregulated genes were EF1732 and EF1733, which code for potential chloramphenicol transporters. Efflux of drug out of the cells may be one mechanism used by V583 to overcome the effect of chloramphenicol. | 2010 | 20628561 |
| 6339 | 16 | 0.9991 | Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions. | 2013 | 23145860 |
| 6326 | 17 | 0.9990 | Identification of novel metronidazole-inducible genes in Mycobacterium smegmatis using a customized amplification library. The incidence of antibiotic resistance in pathogenic bacteria is rising. Bacterial resistance may be a natural defense of organisms, or it may result from spontaneous mutations or the acquisition of exogenous resistance genes. We grew spontaneous metronidazole-resistant Mycobacterium smegmatis mutants on solid medium cultures and employed differential expression using a customized amplification library to analyze the global gene profiles of metronidazole-resistant mutants under hypoxic conditions. In total, 66 genes involved in metronidazole resistance were identified and functionally characterized using the gene role category of M. smegmatis. Overall, genes associated with cell wall synthesis, such as methyltransferase and glycosyltransferase, and genes encoding drug transporters were highly expressed. The genes may be involved in the natural drug resistance of mycobacteria by increasing mycobacterial cell wall permeability and the efflux pumps of active drugs. In addition, the genes may play a role in dormancy. The genes identified in this study may lead to a better understanding of the mechanisms of metronidazole resistance during dormancy. | 2008 | 18373646 |
| 644 | 18 | 0.9990 | The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. BACKGROUND: The marR gene of Escherichia coli encodes a repressor of the marRAB operon, a regulatory locus controlling multiple antibiotic resistance in this organism. Inactivation of marR results in increased expression of marA, which acts at several target genes in the cell leading to reduced antibiotic accumulation. Exposure of E. coli to sodium salicylate (SAL) induces marRAB operon transcription and antibiotic resistance. The mechanism by which SAL antagonizes MarR repressor activity is unclear. MATERIALS AND METHODS: Recombinant plasmid libraries were introduced into a reporter strain designed to identify cloned genes encoding MarR repressor activity. Computer analysis of sequence databases was also used to search for proteins related to MarR. RESULTS: A second E. coli gene, MprA, that exhibits MarR repressor activity was identified. Subsequent database searching revealed a family of 10 proteins from a variety of bacteria that share significant amino acid sequence similarity to MarR and MprA. At least four of these proteins are transcriptional repressors whose activity is antagonized by SAL or by phenolic agents structurally related to SAL. CONCLUSIONS: The MarR family is identified as a group of regulatory factors whose activity is modulated in response to environmental signals in the form of phenolic compounds. Many of these agents are plant derived. Some of the MarR homologs appear more likely to control systems expressed in animal hosts, suggesting that phenolic sensing by bacteria is important in a variety of environments and in the regulation of numerous processes. | 1995 | 8521301 |
| 269 | 19 | 0.9990 | TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. The tetracycline antibiotics block microbial translation and constitute an important group of antimicrobial agents that find broad clinical utility. Resistance to this class of antibiotics is primarily the result of active efflux or ribosomal protection; however, a novel mechanism of resistance has been reported to be oxygen-dependent destruction of the drugs catalyzed by the enzyme TetX. Paradoxically, the tetX genes have been identified on transposable elements found in anaerobic bacteria of the genus Bacteroides. Overexpression of recombinant TetX in Escherichia coli followed by protein purification revealed a stoichiometric complex with flavin adenine dinucleotide. Reconstitution of in vitro enzyme activity demonstrated a broad tetracycline antibiotic spectrum and a requirement for molecular oxygen and NADPH in antibiotic degradation. The tetracycline products of TetX activity were unstable at neutral pH, but mass spectral and NMR characterization under acidic conditions supported initial monohydroxylation at position 11a followed by intramolecular cyclization and non-enzymatic breakdown to other undefined products. TetX is therefore a FAD-dependent monooxygenase. The enzyme not only catalyzed efficient degradation of a broad range of tetracycline analogues but also conferred resistance to these antibiotics in vivo. This is the first molecular characterization of an antibiotic-inactivating monooxygenase, the origins of which may lie in environmental bacteria. | 2004 | 15452119 |