# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6182 | 0 | 1.0000 | An RND-type multidrug efflux pump SdeXY from Serratia marcescens. OBJECTIVES: Serratia marcescens, an important cause of nosocomial infections, shows intrinsic resistance to a wide variety of antimicrobial agents (multidrug resistance). Multidrug efflux pumps are often involved in the multidrug resistance in many bacteria. A study was undertaken to characterize the multidrug efflux pumps in S. marcescens. METHODS: The genes responsible for the multidrug resistance phenotype in S. marcescens were cloned into Escherichia coli KAM32, a drug-hypersusceptible strain, for further analysis. RESULTS: We cloned sdeXY genes and determined the nucleotide sequence. Clones that carried the sdeXY genes displayed reduced susceptibility to several antimicrobial agents including erythromycin, tetracycline, norfloxacin, benzalkonium chloride, ethidium bromide, acriflavine and rhodamine 6G. A protein similarity search using GenBank revealed that SdeY is a member of the resistance nodulation cell-division (RND) family of multidrug efflux proteins and SdeX is a member of the membrane fusion proteins. Introduction of sdeXY into E. coli cells possessing tolC, but not in cells lacking tolC, resulted in multidrug resistance. We observed energy-dependent ethidium efflux in cells of E. coli KAM32 possessing sdeXY and tolC. CONCLUSIONS: SdeXY is the first RND-type multidrug efflux pump to be characterized in multidrug-resistant S. marcescens. | 2003 | 12837741 |
| 643 | 1 | 0.9994 | Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli. OBJECTIVES: Several putative and proven drug efflux pumps are present in Escherichia coli. Because many such efflux pumps have overlapping substrate spectra, it is intriguing that bacteria, with their economically organized genomes, harbour such large sets of multidrug efflux genes. To understand how bacteria utilize these multiple efflux pumps, it is important to elucidate the process of pump expression regulation. The aim of this study was to determine a regulator of the multidrug efflux pump in this organism. METHODS: We screened a genomic library of E. coli for genes that decreased drug susceptibility in this organism. The library was developed from the chromosomal DNA of the MG1655 strain, and then the recombinant plasmids were transformed into an acrB-deleted strain. Transformants were screened for resistance to various antibiotics including oxacillin. RESULTS: We found that the multidrug susceptibilities of the acrB-deleted strain were decreased by the overexpression of small non-coding DsrA RNA as well as by the overexpression of known regulators of multidrug efflux pumps. Plasmids carrying the dsrA gene conferred resistance to oxacillin, cloxacillin, erythromycin, rhodamine 6G and novobiocin. DsrA decreased the accumulation of ethidium bromide in E. coli cells. Furthermore, expression of mdtE was significantly increased by dsrA overexpression, and the decreased multidrug susceptibilities modulated by DsrA were dependent on the MdtEF efflux pump. CONCLUSIONS: These results indicate that DsrA modulates multidrug efflux through activation of genes encoding the MdtEF pump in E. coli. | 2011 | 21088020 |
| 6183 | 2 | 0.9994 | Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi. Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874 conferred resistance to at least ten of the tested antimicrobials: ciprofloxacin, norfloxacin, levofloxacin, kanamycin, streptomycin, gentamycin, nalidixic acid, chloramphenicol, ethidium bromide, and acriflavine, including fluoroquinolone antibiotics, which were drugs of choice to treat S. Typhi infections. Cell-based functional studies using ethidium bromide and acriflavine showed that STY4874 functions as a H(+)-dependent exporter. These results suggest that STY4874 may be an important drug target, which can now be tested by studying the susceptibility of a STY4874-deficient S. Typhi strain to antimicrobials. | 2015 | 25724589 |
| 6185 | 3 | 0.9994 | Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). The activity of tigecycline, 9-(t-butylglycylamido)-minocycline, against Escherichia coli KAM3 (acrB) strains harboring plasmids encoding various tetracycline-specific efflux transporter genes, tet(B), tet(C), and tet(K), and multidrug transporter genes, acrAB, acrEF, and bcr, was examined. Tigecycline showed potent activity against all three Tet-expressing, tetracycline-resistant strains, with the MICs for the strains being equal to that for the host strain. In the Tet(B)-containing vesicle study, tigecycline did not significantly inhibit tetracycline efflux-coupled proton translocation and at 10 microM did not cause proton translocation. This suggests that tigecycline is not recognized by the Tet efflux transporter at a low concentration; therefore, it exhibits significant antibacterial activity. These properties can explain its potent activity against bacteria with a Tet efflux resistance determinant. Tigecycline induced the Tet(B) protein approximately four times more efficiently than tetracycline, as determined by Western blotting, indicating that it is at least recognized by a TetR repressor. The MICs for multidrug efflux proteins AcrAB and AcrEF were increased fourfold. Tigecycline inhibited active ethidium bromide efflux from intact E. coli cells overproducing AcrAB. Therefore, tigecycline is a possible substrate of AcrAB and its close homolog, AcrEF, which are resistance-modulation-division-type multicomponent efflux transporters. | 2004 | 15155219 |
| 6187 | 4 | 0.9992 | Mechanisms of fluoroquinolone resistance: an update 1994-1998. Fluoroquinolone resistance is mediated by target changes (DNA gyrase and/or topoisomerase IV) and/or decreased intracellular accumulation. The genes (gyrA/gyrB/parC/parE) and proteins of DNA topoisomerase IV show great similarity, both at the nucleotide and amino acid sequence level to those of DNA gyrase. It has been shown that there are hotspots, called the quinolone resistance determining region (QRDR), for mutations within gyrA and parC. Based on the Escherichia coli co-ordinates, the hotspots most favoured for giving rise to decreased susceptibility and/or full resistance to quinolones are at serine 83 and aspartate 87 of gyrA, and at serine 79 and aspartate 83 for parC. Few mutations in gyrB or parE/grlB of any bacteria have been described. Efflux of fluoroquinolones is the major cause of decreased accumulation of these agents; for Staphylococcus aureus, the efflux pump involved in norfloxacin resistance is NorA, and for Streptococcus pneumoniae, PmrA. By analysis of minimum inhibitory concentration (MIC) data derived in the presence and absence of the efflux inhibitor reserpine, it has been shown that up to 50% of ciprofloxacin-resistant clinical isolates of S. pneumoniae may possess enhanced efflux. This suggests that efflux may be an important mechanism of clinical resistance in this species. In Pseudomonas aeruginosa, several efflux operons have been demonstrated genetically and biochemically. These operons are encoded by mex (Multiple EffluX) genes: mexAmexB-oprM, mexCD-OprJ system and mexEF-oprN system. The E. coli efflux pump is the acrAB-tolC system. Both the mar operon and the sox operon can give rise to multiple antibiotic resistance. It has been shown that mutations giving rise to increased expression of the transcriptional activators marA and soxS affect the expression of a variety of different genes, including ompF and acrAB. The net result is that expression of OmpF is reduced and much less drug is able to enter the cell; expression of acrAB is increased, enhancing efflux from the cell. | 1999 | 10553699 |
| 9036 | 5 | 0.9992 | Resistance-nodulation-division efflux pump acrAB is modulated by florfenicol and contributes to drug resistance in the fish pathogen Piscirickettsia salmonis. Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis, but routine use could contribute to drug resistance. This study identified differentiated florfenicol susceptibilities in two P. salmonis strains, LF-89 and AUSTRAL-005. The less susceptible isolate, AUSTRAL-005, also showed a high ethidium bromide efflux rate, indicating a higher activity of general efflux pump genes than LF-89. The P. salmonis genome presented resistance nodulation division (RND) family members, a family containing typical multidrug resistance-related efflux pumps in Gram-negative bacteria. Additionally, efflux pump acrAB genes were overexpressed in AUSTRAL-005 following exposure to the tolerated maximal concentration of florfenicol, in contrast to LF-89. These results indicate that tolerated maximum concentrations of florfenicol can modulate RND gene expression and increase efflux pump activity. We propose that the acrAB efflux pump is essential for P. salmonis survival at critical florfenicol concentrations and for the generation of antibiotic-resistant bacterial strains. | 2016 | 27190287 |
| 6260 | 6 | 0.9992 | Mechanisms of resistance to fluoroquinolones: state-of-the-art 1992-1994. This paper gives an update on the mechanisms of bacterial resistance to fluoroquinolones. The laboratory techniques currently used to determine the mechanism(s) of resistance are outlined, including the use of restriction fragment length polymorphism and single-stranded conformational polymorphism analysis of mutations in gyrA. Alterations in gyrA have continued to be the most reported cause of resistance, with high level resistance due to 2 or more mutations in this gene. Recently, mutations in gyrA of Mycobacterium tuberculosis and Campylobacter jejuni have been described. Complementation studies with plasmid encoded cloned gyrB from Escherichia coli suggest that high fluoroquinolone resistance (minimum inhibitory concentration = 32 mg/L) in Salmonella typhimurium can be due to mutation in both gyrA and gyrB. Decreased fluoroquinolone accumulation into E. coli has been shown to be due to mutations in a number of genes at different loci. Current interest has focused upon the marRAB and soxRS loci, with mutations in genes of either loci giving rise to decreased susceptibility to several unrelated drugs, including fluoroquinolones, tetracycline, chloramphenicol and some beta-lactams, and decreased expression of OmpF. The genetic characterisation of fluoroquinolone efflux from Staphylococcus aureus has shown that efflux occurs in both fluoroquinolone-susceptible and -resistant bacteria. The most likely cause of resistance is overexpression of NorA, giving rise to increased efflux. Recently, 2 efflux systems in Pseudomonas aeruginosa have been proposed, MexA-MexB-OprK and MexC-MexD-OprM, conferring decreased susceptibility to fluoroquinolones, tetracycline, chloramphenicol and some beta-lactams.(ABSTRACT TRUNCATED AT 250 WORDS) | 1995 | 8549336 |
| 6253 | 7 | 0.9991 | The Contribution of Efflux Pumps in Mycobacterium abscessus Complex Resistance to Clarithromycin. The basis of drug resistance in Mycobacterium abscessus is still poorly understood. Nevertheless, as seen in other microorganisms, the efflux of antimicrobials may also play a role in M. abscessus drug resistance. Here, we investigated the role of efflux pumps in clarithromycin resistance using nine clinical isolates of M. abscessus complex belonging to the T28 erm(41) sequevar responsible for the inducible resistance to clarithromycin. The strains were characterized by drug susceptibility testing in the presence/absence of the efflux inhibitor verapamil and by genetic analysis of drug-resistance-associated genes. Efflux activity was quantified by real-time fluorometry. Efflux pump gene expression was studied by RT-qPCR upon exposure to clarithromycin. Verapamil increased the susceptibility to clarithromycin from 4- to ≥64-fold. The efflux pump genes MAB_3142 and MAB_1409 were found consistently overexpressed. The results obtained demonstrate that the T28 erm(41) polymorphism is not the sole cause of the inducible clarithromycin resistance in M. abscessus subsp. abscessus or bolletii with efflux activity providing a strong contribution to clarithromycin resistance. These data highlight the need for further studies on M. abscessus efflux response to antimicrobial stress in order to implement more effective therapeutic regimens and guidance in the development of new drugs against these bacteria. | 2019 | 31540480 |
| 6259 | 8 | 0.9991 | Evidence of an efflux pump in Serratia marcescens. Spontaneous mutants resistant to fluoroquinolones were obtained by exposing Serratia marcescens NIMA (wild-type strain) to increasing concentrations of ciprofloxacin both in liquid and on solid media. Frequencies of mutation ranged from 10(-7) to 10(-9). Active expulsion of antibiotic was explored as a possible mechanism of resistance in mutants as well as changes in topoisomerase target genes. The role of extrusion mechanisms in determining the emergence of multidrug-resistant bacteria was also examined. Mutants resistant to high concentrations of fluoroquinolones had a single mutation in their gyrA QRDR sequences, whereas the moderate resistance in the rest of mutants was due to extrusion of the drug. | 2000 | 10990265 |
| 6300 | 9 | 0.9991 | Assessing the role of the RND efflux pump in metronidazole resistance of Helicobacter pylori by RT-PCR assay. INTRODUCTION: Metronidazole is a significant antibiotic used for eradication of Helicobacter pylori infections and it is of notice that metronidazole-resistant clinical isolates have been found in high rates worldwide. While the RND family of efflux pumps plays a central role in drug resistance among Gram-negative bacteria, this is questionable for H. pylori. METHODOLOGY: To understand whether TolC homologues of RND pumps contribute to metronidazole resistance in H. pylori isolates, expression of four TolC homologous genes of five resistant clinical isolates exposed to varying concentrations of metronidazole were evaluated by RT-PCR and transcriptional analysis. RESULTS: The results indicate that excess amounts of metronidazole are able to increase the expression level of these genes at the transcriptional stage. CONCLUSIONS: Therefore, it may be hypothesized that use of metronidazole in H. pyori infection can induce metronidazole resistance. Furthermore, the RND family of efflux pumps may contribute to metronidazole resistance in clinical isolates of H. pylori. | 2011 | 21389587 |
| 6188 | 10 | 0.9991 | Quinolone mode of action. Physical studies have further defined interactions of quinolones with their principal target, DNA gyrase. The binding of quinolones to the DNA gyrase-DNA complex suggests 2 possible binding sites of differing affinities. Mutations in either the gyrase A gene (gyrA) or the gyrase B gene (gyrB) that affect quinolone susceptibility also affect drug binding, with resistance mutations causing decreased binding and hypersusceptibility mutations causing increased binding. Combinations of mutations in both GyrA and GyrB have further demonstrated the contribution of both subunits to the quinolone sensitivity of intact bacteria and purified DNA gyrase. A working model postulates initial binding of quinolones to proximate sites on GyrA and GyrB. This initial binding then produces conformational changes that expose additional binding sites, possibly involving DNA. Quinolones also inhibit the activities of Escherichia coli topoisomerase IV (encoded by the parC and parE genes), but at concentrations higher than those inhibiting DNA gyrase. The patterns of resistance mutations in gryA and parC suggest that topoisomerase IV may be a secondary drug target in E. coli and Neisseria gonorrhoeae. In contrast, in Staphylococcus aureus these patterns suggest that topoisomerase IV may be a primary target of quinolone action. Regulation of expression of membrane efflux transporters may contribute to quinolone susceptibility in both Gram-positive and Gram-negative bacteria. The substrate profile of the NorA efflux transporter of S. aureus correlates with the extent to which the activity of quinolone substrates is affected by overexpression of NorA. In addition, the Emr transporter of E. coli affects susceptibility to nalidixic acid, and the MexAB OprK transport system of Pseudomonas aeruginosa affects susceptibility to ciprofloxacin.(ABSTRACT TRUNCATED AT 250 WORDS) | 1995 | 8549276 |
| 6186 | 11 | 0.9991 | A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes. Triclosan is an antimicrobial agent found in many consumer products. Triclosan inhibits the bacterial fatty acid biosynthetic enzyme, enoyl-ACP reductase (FabI). Decreased susceptibility to triclosan correlates with ciprofloxacin resistance in several bacteria. In these bacteria, resistance to both drugs maps to genes encoding multi-drug efflux pumps. The focus of this study was to determine whether triclosan resistance contributes to ciprofloxacin resistance in Staphylococcus aureus. In S. aureus, triclosan resistance maps to a fabI homolog and ciprofloxacin resistance maps to genes encoding DNA gyrase, topoisomerase IV and to the multi-drug efflux pump, NorA. Using a norA overexpressing mutant, we demonstrated that upregulation of NorA does not lead to triclosan resistance. To further investigate triclosan/ciprofloxacin resistance in S. aureus, we isolated triclosan/ciprofloxacin-resistant mutants. The mutants were screened for mutations in the genes encoding the targets of triclosan and ciprofloxacin. One mutant, JJ5, was wild-type for all sequences analyzed. We next monitored the efflux of triclosan from JJ5 and determined that triclosan resistance in the mutant was not due to active efflux of the drug. Finally, gene expression profiling demonstrated that an alteration in cell membrane structural and functional gene expression is likely responsible for triclosan and ciprofloxacin resistance in JJ5. | 2007 | 17997080 |
| 6175 | 12 | 0.9990 | Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium. A large number of drug efflux transporters have been identified in Salmonella enterica serovar Typhimurium, and increased expression of these transporters confers drug resistance in this organism. Here we compared the respiration activities of the wild-type strain and a mutant with nine deleted transporters by phenotype microarray analysis. The mutant was susceptible to 66 structurally unrelated compounds including many antibiotics, dyes, detergents, antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. To investigate the effect of each transporter on the susceptibilities to these drugs, we used the single transporter mutants, several multiple deletion mutants, and the transporter overexpressor strains to determine minimum inhibitory concentrations of ampicillin, erythromycin, minocycline, ciprofloxacin, orphenadrine, amitriptyline, thioridazine, and chlorpromazine. The data indicate that the increased susceptibilities of the mutant lacking nine transporter genes are mainly dependent on the absence of the acrAB efflux genes as well as the tolC gene. In addition to the AcrAB-TolC efflux system, the results from the overexpressor strains show that AcrEF confers resistance to these compounds as well as AcrAB of Escherichia coli, MexAB-OprM and MexXY-OprM of Pseudomonas aeruginosa. The results highlight the importance of the efflux systems not only for resistance to antibiotics but also for resistance to antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. | 2016 | 27210311 |
| 6255 | 13 | 0.9990 | Effects of a Mutation in the gyrA Gene on the Virulence of Uropathogenic Escherichia coli. Fluoroquinolones are among the drugs most extensively used for the treatment of bacterial infections in human and veterinary medicine. Resistance to quinolones can be chromosome or plasmid mediated. The chromosomal mechanism of resistance is associated with mutations in the DNA gyrase- and topoisomerase IV-encoding genes and mutations in regulatory genes affecting different efflux systems, among others. We studied the role of the acquisition of a mutation in the gyrA gene in the virulence and protein expression of uropathogenic Escherichia coli (UPEC). The HC14366M strain carrying a mutation in the gyrA gene (S83L) was found to lose the capacity to cause cystitis and pyelonephritis mainly due to a decrease in the expression of the fimA, papA, papB, and ompA genes. The levels of expression of the fimA, papB, and ompA genes were recovered on complementing the strain with a plasmid containing the gyrA wild-type gene. However, only a slight recovery was observed in the colonization of the bladder in the GyrA complement strain compared to the mutant strain in a murine model of ascending urinary tract infection. In conclusion, a mutation in the gyrA gene of uropathogenic E. coli reduced the virulence of the bacteria, likely in association with the effect of DNA supercoiling on the expression of several virulence factors and proteins, thereby decreasing their capacity to cause cystitis and pyelonephritis. | 2015 | 26014933 |
| 6264 | 14 | 0.9990 | Multi-drug resistance pattern and genome-wide SNP detection in levofloxacin-resistant uropathogenic Escherichia coli strains. OBJECTIVES: Antibiotic treatment is extremely stressful for bacteria and has profound effects on their viability. Such administration induces physiological changes in bacterial cells, with considerable impact on their genome structure that induces mutations throughout the entire genome. This study investigated drug resistance profiles and structural changes in the entire genome of uropathogenic Escherichia coli (UPEC) strains isolated from six adapted clones that had evolved under laboratory conditions. METHODS: Eight UPEC strains, including two parental strains and six adapted clones, with different fluoroquinolone resistance levels originally isolated from two patients were used. The minimum inhibitory concentration (MIC) of 28 different antibiotics including levofloxacin was determined for each of the eight strains. In addition, the effects of mutations acquired with increased drug resistance in the levofloxacin-resistant strains on expression of genes implicated to be involved in drug resistance were examined. RESULTS: Of the eight UPEC strains used to test the MIC of 28 different antibiotics, two highly fluoroquinolone-resistant strains showed increased MIC in association with many of the antibiotics. As drug resistance increased, some genes acquired mutations, including the transcriptional regulator acrR and DNA-binding transcriptional repressor marR. Two strain groups with genetically different backgrounds (GUC9 and GFCS1) commonly acquired mutations in acrR and marR. Notably, acquired mutations related to efflux pump upregulation also contributed to increases in MIC for various antibiotics other than fluoroquinolone. CONCLUSIONS: The present results obtained using strains with artificially acquired drug resistance clarify the underlying mechanism of resistance to fluoroquinolones and other types of antibiotics. | 2024 | 38041251 |
| 5755 | 15 | 0.9990 | Effects of Efflux Pump Inhibitors on Colistin Resistance in Multidrug-Resistant Gram-Negative Bacteria. We tested the effects of various putative efflux pump inhibitors on colistin resistance in multidrug-resistant Gram-negative bacteria. Addition of 10 mg/liter cyanide 3-chlorophenylhydrazone (CCCP) to the test medium could significantly decrease the MICs of colistin-resistant strains. Time-kill assays showed CCCP could reverse colistin resistance and inhibit the regrowth of the resistant subpopulation, especially in Acinetobacter baumannii and Stenotrophomonas maltophilia These results suggest colistin resistance in Gram-negative bacteria can be suppressed and reversed by CCCP. | 2016 | 26953203 |
| 6258 | 16 | 0.9990 | Alterations in GyrA and ParC associated with fluoroquinolone resistance in Enterococcus faecium. High-level quinolone resistance in Enterococcus faecium was associated with mutations in both gyrA and parC genes in 10 of 11 resistant strains. On low-level resistant strain without such mutations may instead possess an efflux mechanism or alterations in the other subunits of the gyrase or topoisomerase IV genes. These findings are similar to those for other gram-positive bacteria, such as Enterococcus faecalis. | 1999 | 10103206 |
| 4705 | 17 | 0.9990 | Upregulation of outer membrane porin gene ompC contributed to enhancement of azithromycin susceptibility in multidrug-resistant Escherichia coli. The outer membrane (OM) in gram-negative bacteria contains proteins that regulate the passive or active uptake of small molecules for growth and cell function, as well as mediate the emergence of antibiotic resistance. This study aims to explore the potential mechanisms for restoring bacteria to azithromycin susceptibility based on transcriptome analysis of bacterial membrane-related genes. Transcriptome sequencing was performed by treating multidrug-resistant Escherichia coli T28R with azithromycin or in combination with colistin and confirmed by reverse transcription-quantitative PCR (RT-qPCR). Azithromycin enzyme-linked immunosorbent assay (ELISA) test, ompC gene overexpression, and molecular docking were utilized to conduct the confirmatory research of the potential mechanisms. We found that colistin combined with azithromycin led to 48 differentially expressed genes, compared to azithromycin alone, such as downregulation of tolA, eptB, lpxP, and opgE and upregulation of ompC gene. Interestingly, the addition of colistin to azithromycin differentially downregulated the mph(A) gene mediating azithromycin resistance, facilitating the intracellular accumulation of azithromycin. Also, overexpression of the ompC elevated azithromycin susceptibility, and colistin contributed to further suppression of the Mph(A) activity in the presence of azithromycin. These findings suggested that colistin firstly enhanced the permeability of bacterial OM, causing intracellular drug accumulation, and then had a repressive effect on the Mph(A) activity along with azithromycin. Our study provides a novel perspective that the improvement of azithromycin susceptibility is related not only to the downregulation of the mph(A) gene and conformational remodeling of the Mph(A) protein but also the upregulation of the membrane porin gene ompC.IMPORTANCEUsually, active efflux via efflux pumps is an important mechanism of antimicrobial resistance, such as the AcrAB-TolC complex and MdtEF. Also, bacterial porins exhibited a substantial fraction of the total number of outer membrane proteins in Enterobacteriaceae, which are involved in mediating the development of the resistance. We found that the upregulation or overexpression of the ompC gene contributed to the enhancement of resistant bacteria to azithromycin susceptibility, probably due to the augment of drug uptakes caused and the opportunity of Mph(A) function suppressed by azithromycin with colistin. Under the combination of colistin and azithromycin treatment, OmpC exhibited an increased selectivity for cationic molecules and played a key role in the restoral of the antibiotic susceptibility. Investigations on the regulation of porin expression that mediated drug resistance would be important in clinical isolates treated with antibiotics. | 2024 | 38441474 |
| 6257 | 18 | 0.9990 | Mechanism of action of and resistance to quinolones. Fluoroquinolones are an important class of wide-spectrum antibacterial agents. The first quinolone described was nalidixic acid, which showed a narrow spectrum of activity. The evolution of quinolones to more potent molecules was based on changes at positions 1, 6, 7 and 8 of the chemical structure of nalidixic acid. Quinolones inhibit DNA gyrase and topoisomerase IV activities, two enzymes essential for bacteria viability. The acquisition of quinolone resistance is frequently related to (i) chromosomal mutations such as those in the genes encoding the A and B subunits of the protein targets (gyrA, gyrB, parC and parE), or mutations causing reduced drug accumulation, either by a decreased uptake or by an increased efflux, and (ii) quinolone resistance genes associated with plasmids have been also described, i.e. the qnr gene that encodes a pentapeptide, which blocks the action of quinolones on the DNA gyrase and topoisomerase IV; the aac(6')-Ib-cr gene that encodes an acetylase that modifies the amino group of the piperazin ring of the fluoroquinolones and efflux pump encoded by the qepA gene that decreases intracellular drug levels. These plasmid-mediated mechanisms of resistance confer low levels of resistance but provide a favourable background in which selection of additional chromosomally encoded quinolone resistance mechanisms can occur. | 2009 | 21261881 |
| 6256 | 19 | 0.9990 | Conjugation between quinolone-susceptible bacteria can generate mutations in the quinolone resistance-determining region, inducing quinolone resistance. Quinolones are an important group of antibacterial agents that can inhibit DNA gyrase and topoisomerase IV activity. DNA gyrase is responsible for maintaining bacteria in a negatively supercoiled state, being composed of subunits A and B. Topoisomerase IV is a homologue of DNA gyrase and consists of two subunits codified by the parC and parE genes. Mutations in gyrA and gyrB of DNA gyrase may confer resistance to quinolones, and the majority of resistant strains show mutations between positions 67 and 106 of gyrA, a region denoted the quinolone resistance-determining region (QRDR). The most frequent substitutions occur at positions 83 and 87, but little is known about the mechanisms promoting appearance of mutations in the QRDR. The present study proposes that some mutations in the QRDR could be generated as a result of the natural mechanism of conjugation between bacteria in their natural habitat. This event was observed following conjugation in vitro of two different isolates of quinolone-susceptible Pseudomonas aeruginosa, which transferred plasmids of different molecular weights to a recipient strain of Escherichia coli (HB101), also quinolone-susceptible, generating two different transconjugants that presented mutations in DNA gyrase and acquisition of resistance to all quinolones tested. | 2015 | 25262036 |