Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
617501.0000Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium. A large number of drug efflux transporters have been identified in Salmonella enterica serovar Typhimurium, and increased expression of these transporters confers drug resistance in this organism. Here we compared the respiration activities of the wild-type strain and a mutant with nine deleted transporters by phenotype microarray analysis. The mutant was susceptible to 66 structurally unrelated compounds including many antibiotics, dyes, detergents, antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. To investigate the effect of each transporter on the susceptibilities to these drugs, we used the single transporter mutants, several multiple deletion mutants, and the transporter overexpressor strains to determine minimum inhibitory concentrations of ampicillin, erythromycin, minocycline, ciprofloxacin, orphenadrine, amitriptyline, thioridazine, and chlorpromazine. The data indicate that the increased susceptibilities of the mutant lacking nine transporter genes are mainly dependent on the absence of the acrAB efflux genes as well as the tolC gene. In addition to the AcrAB-TolC efflux system, the results from the overexpressor strains show that AcrEF confers resistance to these compounds as well as AcrAB of Escherichia coli, MexAB-OprM and MexXY-OprM of Pseudomonas aeruginosa. The results highlight the importance of the efflux systems not only for resistance to antibiotics but also for resistance to antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs.201627210311
64310.9995Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli. OBJECTIVES: Several putative and proven drug efflux pumps are present in Escherichia coli. Because many such efflux pumps have overlapping substrate spectra, it is intriguing that bacteria, with their economically organized genomes, harbour such large sets of multidrug efflux genes. To understand how bacteria utilize these multiple efflux pumps, it is important to elucidate the process of pump expression regulation. The aim of this study was to determine a regulator of the multidrug efflux pump in this organism. METHODS: We screened a genomic library of E. coli for genes that decreased drug susceptibility in this organism. The library was developed from the chromosomal DNA of the MG1655 strain, and then the recombinant plasmids were transformed into an acrB-deleted strain. Transformants were screened for resistance to various antibiotics including oxacillin. RESULTS: We found that the multidrug susceptibilities of the acrB-deleted strain were decreased by the overexpression of small non-coding DsrA RNA as well as by the overexpression of known regulators of multidrug efflux pumps. Plasmids carrying the dsrA gene conferred resistance to oxacillin, cloxacillin, erythromycin, rhodamine 6G and novobiocin. DsrA decreased the accumulation of ethidium bromide in E. coli cells. Furthermore, expression of mdtE was significantly increased by dsrA overexpression, and the decreased multidrug susceptibilities modulated by DsrA were dependent on the MdtEF efflux pump. CONCLUSIONS: These results indicate that DsrA modulates multidrug efflux through activation of genes encoding the MdtEF pump in E. coli.201121088020
618620.9994A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes. Triclosan is an antimicrobial agent found in many consumer products. Triclosan inhibits the bacterial fatty acid biosynthetic enzyme, enoyl-ACP reductase (FabI). Decreased susceptibility to triclosan correlates with ciprofloxacin resistance in several bacteria. In these bacteria, resistance to both drugs maps to genes encoding multi-drug efflux pumps. The focus of this study was to determine whether triclosan resistance contributes to ciprofloxacin resistance in Staphylococcus aureus. In S. aureus, triclosan resistance maps to a fabI homolog and ciprofloxacin resistance maps to genes encoding DNA gyrase, topoisomerase IV and to the multi-drug efflux pump, NorA. Using a norA overexpressing mutant, we demonstrated that upregulation of NorA does not lead to triclosan resistance. To further investigate triclosan/ciprofloxacin resistance in S. aureus, we isolated triclosan/ciprofloxacin-resistant mutants. The mutants were screened for mutations in the genes encoding the targets of triclosan and ciprofloxacin. One mutant, JJ5, was wild-type for all sequences analyzed. We next monitored the efflux of triclosan from JJ5 and determined that triclosan resistance in the mutant was not due to active efflux of the drug. Finally, gene expression profiling demonstrated that an alteration in cell membrane structural and functional gene expression is likely responsible for triclosan and ciprofloxacin resistance in JJ5.200717997080
77630.9994Exploring functional interplay amongst Escherichia coli efflux pumps. Bacterial efflux pumps exhibit functional interplay that can translate to additive or multiplicative effects on resistance to antimicrobial compounds. In diderm bacteria, two different efflux pump structural types - single-component inner membrane efflux pumps and cell envelope-spanning multicomponent systems - cooperatively export antimicrobials with cytoplasmic targets from the cell. Harnessing our recently developed efflux platform, which is built upon an extensively efflux-deficient strain of Escherichia coli, here we explore interplay amongst a panel of diverse E. coli efflux pumps. Specifically, we assessed the effect of simultaneously expressing two efflux pump-encoding genes on drug resistance, including single-component inner membrane efflux pumps (MdfA, MdtK and EmrE), tripartite complexes (AcrAB, AcrAD, MdtEF and AcrEF), and the acquired TetA(C) tetracycline resistance pump. Overall, the expression of two efflux pump-encoding genes from the same structural type did not enhance resistance levels regardless of the antimicrobial compound or efflux pump under investigation. In contrast, a combination of the tripartite efflux systems with single-component pumps sharing common substrates provided multiplicative increases to antimicrobial resistance levels. In some instances, resistance was increased beyond the product of resistance provided by the two pumps individually. In summary, the developed efflux platform enables the isolation of efflux pump function, facilitating the identification of interactions between efflux pumps.202236318669
893840.9993Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus. The antipsychotic drug thioridazine is a candidate drug for an alternative treatment of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) in combination with the β-lactam antibiotic oxacillin. The drug has been shown to have the capability to resensitize MRSA to oxacillin. We have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis in response to thioridazine in combination with oxacillin. We observed that the oxacillin-induced expression of genes belonging to the VraSR regulon is reduced by the addition of thioridazine. The exclusion of such key factors involved in cell wall biosynthesis will most likely lead to a weakened cell wall and affect the ability of the bacteria to sustain oxacillin treatment. Furthermore, we found that thioridazine itself reduces the expression level of selected virulence genes and that selected toxin genes are not induced by thioridazine. In the present study, we find indications that the mechanism underlying reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis.201121375577
64250.9993Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. The histone-like protein H-NS is a major component of the bacterial nucleoid and plays a crucial role in global gene regulation of enteric bacteria. It is known that the expression of a variety of genes is repressed by H-NS, and mutations in hns result in various phenotypes, but the role of H-NS in the drug resistance of Escherichia coli has not been known. Here we present data showing that H-NS contributes to multidrug resistance by regulating the expression of multidrug exporter genes. Deletion of the hns gene from the DeltaacrAB mutant increased levels of resistance against antibiotics, antiseptics, dyes, and detergents. Decreased accumulation of ethidium bromide and rhodamine 6G in the hns mutant compared to that in the parental strain was observed, suggesting the increased expression of some drug exporter(s) in this mutant. The increased drug resistance and decreased drug accumulation caused by the hns deletion were completely suppressed by deletion of the multifunctional outer membrane channel gene tolC. At least eight drug exporter systems require TolC for their functions. Among these, increased expression of acrEF, mdtEF, and emrKY was observed in the Deltahns strain by quantitative real-time reverse transcription-PCR analysis. The Deltahns-mediated multidrug resistance pattern is quite similar to that caused by overproduction of the AcrEF exporter. Deletion of the acrEF gene greatly suppressed the level of Deltahns-mediated multidrug resistance. However, this strain still retained resistance to some compounds. The remainder of the multidrug resistance pattern was similar to that conferred by overproduction of the MdtEF exporter. Double deletion of the mdtEF and acrEF genes completely suppressed Deltahns-mediated multidrug resistance, indicating that Deltahns-mediated multidrug resistance is due to derepression of the acrEF and mdtEF drug exporter genes.200414973023
77460.9993The 2019 Garrod Lecture: MDR efflux in Gram-negative bacteria-how understanding resistance led to a new tool for drug discovery. The AcrAB-TolC MDR efflux system confers intrinsic MDR and overproduction confers clinically relevant resistance to some antibiotics active against Gram-negative bacteria. The system is made up of three components, namely AcrA, AcrB and TolC, otherwise known as the AcrAB-TolC tripartite system. Inactivation or deletion of a gene encoding one of the constituent proteins, or substitution of a single amino acid in the efflux pump component AcrB that results in loss of efflux function, confers increased antibiotic susceptibility. Clinically relevant resistance can be mediated by a mutation in acrB that changes the way AcrB substrates are transported. However, it is more common that resistant clinical and veterinary isolates overproduce the AcrAB-TolC MDR efflux system. This is due to mutations in genes such as marR and ramR that encode repressors of transcription factors (MarA and RamA, respectively) that when produced activate expression of the acrAB and tolC genes thereby increasing efflux. The Lon protease degrades MarA and RamA to return the level of efflux to that of the WT. Furthermore, the levels of AcrAB-TolC are regulated by CsrA. Studies with fluorescent reporters that report levels of acrAB and regulatory factors allowed the development of a new tool for discovering efflux inhibitors. Screens of the Prestwick Chemical Library and a large library from a collaborating pharmaceutical company have generated a number of candidate compounds for further research.201931626705
618770.9993Mechanisms of fluoroquinolone resistance: an update 1994-1998. Fluoroquinolone resistance is mediated by target changes (DNA gyrase and/or topoisomerase IV) and/or decreased intracellular accumulation. The genes (gyrA/gyrB/parC/parE) and proteins of DNA topoisomerase IV show great similarity, both at the nucleotide and amino acid sequence level to those of DNA gyrase. It has been shown that there are hotspots, called the quinolone resistance determining region (QRDR), for mutations within gyrA and parC. Based on the Escherichia coli co-ordinates, the hotspots most favoured for giving rise to decreased susceptibility and/or full resistance to quinolones are at serine 83 and aspartate 87 of gyrA, and at serine 79 and aspartate 83 for parC. Few mutations in gyrB or parE/grlB of any bacteria have been described. Efflux of fluoroquinolones is the major cause of decreased accumulation of these agents; for Staphylococcus aureus, the efflux pump involved in norfloxacin resistance is NorA, and for Streptococcus pneumoniae, PmrA. By analysis of minimum inhibitory concentration (MIC) data derived in the presence and absence of the efflux inhibitor reserpine, it has been shown that up to 50% of ciprofloxacin-resistant clinical isolates of S. pneumoniae may possess enhanced efflux. This suggests that efflux may be an important mechanism of clinical resistance in this species. In Pseudomonas aeruginosa, several efflux operons have been demonstrated genetically and biochemically. These operons are encoded by mex (Multiple EffluX) genes: mexAmexB-oprM, mexCD-OprJ system and mexEF-oprN system. The E. coli efflux pump is the acrAB-tolC system. Both the mar operon and the sox operon can give rise to multiple antibiotic resistance. It has been shown that mutations giving rise to increased expression of the transcriptional activators marA and soxS affect the expression of a variety of different genes, including ompF and acrAB. The net result is that expression of OmpF is reduced and much less drug is able to enter the cell; expression of acrAB is increased, enhancing efflux from the cell.199910553699
78480.9993Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.201829128373
78390.9993Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.202337319001
781100.9993Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Pseudomonas aeruginosa is an opportunistic human pathogen exhibiting innate resistance to multiple antimicrobial agents. This intrinsic multidrug resistance is caused by synergy between a low-permeability outer membrane and expression of a number of broadly-specific multidrug efflux (Mex) systems, including MexAB-OprM and MexXY-OprM. In addition to this intrinsic resistance, these and three additional systems, MexCD-OprJ, MexEF-OprN and MexJK-OprM promote acquired multidrug resistance as a consequence of hyper-expression of the efflux genes by mutational events. In addition to antibiotics, these pumps export biocides, dyes, detergents, metabolic inhibitors, organic solvents and molecules involved in bacterial cell-cell communication. Homologues of the resistance-nodulation-division systems of P. aeruginosa have been found in Burkholderia cepacia, B. pseudomallei, Stenotrophomonas maltophilia, and the nonpathogen P. putida, where they play roles in resistance to antimicrobials and/or organic solvents. Despite intensive studies of these multidrug efflux systems over the past several years, their precise molecular architectures, their modes of regulation of expression and their natural functions remain largely unknown.200312917802
6188110.9992Quinolone mode of action. Physical studies have further defined interactions of quinolones with their principal target, DNA gyrase. The binding of quinolones to the DNA gyrase-DNA complex suggests 2 possible binding sites of differing affinities. Mutations in either the gyrase A gene (gyrA) or the gyrase B gene (gyrB) that affect quinolone susceptibility also affect drug binding, with resistance mutations causing decreased binding and hypersusceptibility mutations causing increased binding. Combinations of mutations in both GyrA and GyrB have further demonstrated the contribution of both subunits to the quinolone sensitivity of intact bacteria and purified DNA gyrase. A working model postulates initial binding of quinolones to proximate sites on GyrA and GyrB. This initial binding then produces conformational changes that expose additional binding sites, possibly involving DNA. Quinolones also inhibit the activities of Escherichia coli topoisomerase IV (encoded by the parC and parE genes), but at concentrations higher than those inhibiting DNA gyrase. The patterns of resistance mutations in gryA and parC suggest that topoisomerase IV may be a secondary drug target in E. coli and Neisseria gonorrhoeae. In contrast, in Staphylococcus aureus these patterns suggest that topoisomerase IV may be a primary target of quinolone action. Regulation of expression of membrane efflux transporters may contribute to quinolone susceptibility in both Gram-positive and Gram-negative bacteria. The substrate profile of the NorA efflux transporter of S. aureus correlates with the extent to which the activity of quinolone substrates is affected by overexpression of NorA. In addition, the Emr transporter of E. coli affects susceptibility to nalidixic acid, and the MexAB OprK transport system of Pseudomonas aeruginosa affects susceptibility to ciprofloxacin.(ABSTRACT TRUNCATED AT 250 WORDS)19958549276
9037120.9992Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BACKGROUND: Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. RESULTS: To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. CONCLUSION: Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic bacterium.200919761586
775130.9992Time dependent asymptotic analysis of the gene regulatory network of the AcrAB-TolC efflux pump system in gram-negative bacteria. Efflux pumps are a mechanism of intrinsic and evolved resistance in bacteria. If an efflux pump can expel an antibiotic so that its concentration within the cell is below a killing threshold the bacteria are resistant to the antibiotic. Efflux pumps may be specific or they may pump various different substances. This is why many efflux pumps confer multi drug resistance (MDR). In particular over expression of the AcrAB-TolC efflux pump system confers MDR in both Salmonella and Escherichia coli. We consider the complex gene regulation network that controls expression of genes central to controlling the efflux associated genes acrAB and acrEF in Salmonella. We present the first mathematical model of this gene regulatory network in the form of a system of ordinary differential equations. Using a time dependent asymptotic analysis, we examine in detail the behaviour of the efflux system on various different timescales. Asymptotic approximations of the steady states provide an analytical comparison of targets for efflux inhibition.202133694073
8942140.9992Indole-Induced Activities of β-Lactamase and Efflux Pump Confer Ampicillin Resistance in Pseudomonas putida KT2440. Indole, which is widespread in microbial communities, has received attention because of its effects on bacterial physiology. Pseudomonas putida and Pseudomonas aeruginosa can acquire ampicillin (Amp) resistance during growth on indole-Amp agar. Transcriptome, mutant, and inhibitor studies have suggested that Amp resistance induced by indole can be attributed to increased gene expression of ttgAB encoding two genes of RND-type multidrug efflux operons and an ampC encoding β-lactamase. Expression, enzyme activities, and mutational analyses indicated that AmpC β-lactamase is important for acquiring Amp resistance of P. putida in the presence of indole. Here, we show, for the first time, that volatile indole increased Amp-resistant cells. Consistent with results of the volatile indole assay, a low concentration of indole in liquid culture promoted growth initially, but led to mutagenesis after indole was depleted, which could not be observed at high indole concentrations. Interestingly, ttgAB and ampC gene expression levels correlate with the concentration of indole, which might explain the low number of Amp-mutated cells in high indole concentrations. The expression levels of genes involved in mutagenesis, namely rpoS, recA, and mutS, were also modulated by indole. Our data indicates that indole reduces Amp-induced heterogeneity by promoting expression of TtgABC or MexAB-OprM efflux pumps and the indole-induced β-lactamase in P. putida and P. aeruginosa.201728352264
773150.9992Mutational Activation of Antibiotic-Resistant Mechanisms in the Absence of Major Drug Efflux Systems of Escherichia coli. Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, baeS, crp, hns, and rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in crp and hns caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCD-baeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. IMPORTANCE Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.202133972351
9036160.9992Resistance-nodulation-division efflux pump acrAB is modulated by florfenicol and contributes to drug resistance in the fish pathogen Piscirickettsia salmonis. Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis, but routine use could contribute to drug resistance. This study identified differentiated florfenicol susceptibilities in two P. salmonis strains, LF-89 and AUSTRAL-005. The less susceptible isolate, AUSTRAL-005, also showed a high ethidium bromide efflux rate, indicating a higher activity of general efflux pump genes than LF-89. The P. salmonis genome presented resistance nodulation division (RND) family members, a family containing typical multidrug resistance-related efflux pumps in Gram-negative bacteria. Additionally, efflux pump acrAB genes were overexpressed in AUSTRAL-005 following exposure to the tolerated maximal concentration of florfenicol, in contrast to LF-89. These results indicate that tolerated maximum concentrations of florfenicol can modulate RND gene expression and increase efflux pump activity. We propose that the acrAB efflux pump is essential for P. salmonis survival at critical florfenicol concentrations and for the generation of antibiotic-resistant bacterial strains.201627190287
6322170.9992A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). The soxRS regulon is activated by redox-cycling drugs such as paraquat and by nitric oxide. The >15 genes of this system provide resistance to both oxidants and multiple antibiotics. An association between clinical quinolone resistance and elevated expression of the soxRS regulon has been observed in Escherichia coli, but this association has not been explored for other enteropathogenic bacteria. Here we describe a soxRS-constitutive mutation in a clinical strain of Salmonella enterica (serovar Typhimurium) that arose with the development of resistance to quinolones during treatment. The elevated quinolone resistance in this strain derived from a point mutation in the soxR gene and could be suppressed in trans by multicopy wild-type soxRS. Multiple-antibiotic resistance was also transferred to a laboratory strain of S. enterica by introducing the cloned mutant soxR gene from the clinical strain. The results show that constitutive expression of soxRS can contribute to antibiotic resistance in clinically relevant S. enterica.200111120941
6326180.9992Identification of novel metronidazole-inducible genes in Mycobacterium smegmatis using a customized amplification library. The incidence of antibiotic resistance in pathogenic bacteria is rising. Bacterial resistance may be a natural defense of organisms, or it may result from spontaneous mutations or the acquisition of exogenous resistance genes. We grew spontaneous metronidazole-resistant Mycobacterium smegmatis mutants on solid medium cultures and employed differential expression using a customized amplification library to analyze the global gene profiles of metronidazole-resistant mutants under hypoxic conditions. In total, 66 genes involved in metronidazole resistance were identified and functionally characterized using the gene role category of M. smegmatis. Overall, genes associated with cell wall synthesis, such as methyltransferase and glycosyltransferase, and genes encoding drug transporters were highly expressed. The genes may be involved in the natural drug resistance of mycobacteria by increasing mycobacterial cell wall permeability and the efflux pumps of active drugs. In addition, the genes may play a role in dormancy. The genes identified in this study may lead to a better understanding of the mechanisms of metronidazole resistance during dormancy.200818373646
782190.9992Discovery of inhibitors of Pseudomonas aeruginosa virulence through the search for natural-like compounds with a dual role as inducers and substrates of efflux pumps. Multidrug efflux pumps are ancient elements encoded in every genome, from bacteria to humans. In bacteria, in addition to antibiotics, efflux pumps extrude a wide range of substrates, including quorum sensing signals, bacterial metabolites, or plant-produced compounds. This indicates that their original functions may differ from their recently acquired role in the extrusion of antibiotics during human infection. Concerning plant-produced compounds, some of them are substrates and inducers of the same efflux pump, suggesting a coordinated plant/bacteria coevolution. Herein we analyse the ability of 1243 compounds from a Natural Product-Like library to induce the expression of P. aeruginosa mexCD-oprJ or mexAB-oprM efflux pumps' encoding genes. We further characterized natural-like compounds that do not trigger antibiotic resistance in P. aeruginosa and that act as virulence inhibitors, choosing those that were not only inducers but substrates of the same efflux pump. Four compounds impair swarming motility, exotoxin secretion through the Type 3 Secretion System (T3SS) and the ability to kill Caenorhabditis elegans, which might be explained by the downregulation of genes encoding flagellum and T3SS. Our results emphasize the possibility of discovering new anti-virulence drugs by screening natural or natural-like libraries for compounds that behave as both, inducers and substrates of efflux pumps.202133818002