SdiA aids enterohemorrhagic Escherichia coli carriage by cattle fed a forage or grain diet. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
616801.0000SdiA aids enterohemorrhagic Escherichia coli carriage by cattle fed a forage or grain diet. Enterohemorrhagic Escherichia coli (EHEC) causes hemorrhagic colitis and life-threatening complications. The main reservoirs for EHEC are healthy ruminants. We reported that SdiA senses acyl homoserine lactones (AHLs) in the bovine rumen to activate expression of the glutamate acid resistance (gad) genes priming EHEC's acid resistance before they pass into the acidic abomasum. Conversely, SdiA represses expression of the locus of enterocyte effacement (LEE) genes, whose expression is not required for bacterial survival in the rumen but is necessary for efficient colonization at the rectoanal junction (RAJ) mucosa. Our previous studies show that SdiA-dependent regulation was necessary for efficient EHEC colonization of cattle fed a grain diet. Here, we compared the SdiA role in EHEC colonization of cattle fed a forage hay diet. We detected AHLs in the rumen of cattle fed a hay diet, and these AHLs activated gad gene expression in an SdiA-dependent manner. The rumen fluid and fecal samples from hay-fed cattle were near neutrality, while the same digesta samples from grain-fed animals were acidic. Cattle fed either grain or hay and challenged with EHEC orally carried the bacteria similarly. EHEC was cleared from the rumen within days and from the RAJ mucosa after approximately one month. In competition trials, where animals were challenged with both wild-type and SdiA deletion mutant bacteria, diet did not affect the outcome that the wild-type strain was better able to persist and colonize. However, the wild-type strain had a greater advantage over the SdiA deletion mutant at the RAJ mucosa among cattle fed the grain diet.201323836826
838510.9993Function and Phylogeny of Bacterial Butyryl Coenzyme A:Acetate Transferases and Their Diversity in the Proximal Colon of Swine. Studying the host-associated butyrate-producing bacterial community is important, because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl coenzyme A (CoA):acetate-CoA transferase (EC 2.3.8.3) as a gene of primary importance for butyrate production in intestinal ecosystems; however, this gene family (but) remains poorly defined. We developed tools for the analysis of butyrate-producing bacteria based on 12 putative but genes identified in the genomes of nine butyrate-producing bacteria obtained from the swine intestinal tract. Functional analyses revealed that eight of these genes had strong But enzyme activity. When but paralogues were found within a genome, only one gene per genome encoded strong activity, with the exception of one strain in which no gene encoded strong But activity. Degenerate primers were designed to amplify the functional but genes and were tested by amplifying environmental but sequences from DNA and RNA extracted from swine colonic contents. The results show diverse but sequences from swine-associated butyrate-producing bacteria, most of which clustered near functionally confirmed sequences. Here, we describe tools and a framework that allow the bacterial butyrate-producing community to be profiled in the context of animal health and disease. IMPORTANCE: Butyrate is a compound produced by the microbiota in the intestinal tracts of animals. This compound is of critical importance for intestinal health, and yet studying its production by diverse intestinal bacteria is technically challenging. Here, we present an additional way to study the butyrate-producing community of bacteria using one degenerate primer set that selectively targets genes experimentally demonstrated to encode butyrate production. This work will enable researchers to more easily study this very important bacterial function that has implications for host health and resistance to disease.201627613689
931720.9992From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.201020711443
378930.9992The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. We have examined the fate of an antibiotic resistance marker, incorporated into transgenic maize when fed to chicks. Plant-derived markers were found in the crops of five birds fed transgenic maize and in the stomach contents of two birds. The plant-derived marker gene was not found in the intestines. The survival of the antibiotic resistance marker gene mirrored that of plant DNA targets, demonstrating that it survives no better than other DNA and indicating that it is very unlikely that bacteria in the gut of chickens will be transformed to ampicillin resistance when the birds are fed transgenic maize.200211751781
892840.9992Increased survival of antibiotic-resistant Escherichia coli inside macrophages. Mutations causing antibiotic resistance usually incur a fitness cost in the absence of antibiotics. The magnitude of such costs is known to vary with the environment. Little is known about the fitness effects of antibiotic resistance mutations when bacteria confront the host's immune system. Here, we study the fitness effects of mutations in the rpoB, rpsL, and gyrA genes, which confer resistance to rifampin, streptomycin, and nalidixic acid, respectively. These antibiotics are frequently used in the treatment of bacterial infections. We measured two important fitness traits-growth rate and survival ability-of 12 Escherichia coli K-12 strains, each carrying a single resistance mutation, in the presence of macrophages. Strikingly, we found that 67% of the mutants survived better than the susceptible bacteria in the intracellular niche of the phagocytic cells. In particular, all E. coli streptomycin-resistant mutants exhibited an intracellular advantage. On the other hand, 42% of the mutants incurred a high fitness cost when the bacteria were allowed to divide outside of macrophages. This study shows that single nonsynonymous changes affecting fundamental processes in the cell can contribute to prolonged survival of E. coli in the context of an infection.201323089747
380750.9992Antimicrobial drug resistance genes do not convey a secondary fitness advantage to calf-adapted Escherichia coli. Maintenance of antimicrobial drug resistance in bacteria can be influenced by factors unrelated to direct selection pressure such as close linkage to other selectively advantageous genes and secondary advantage conveyed by antimicrobial resistance genes in the absence of drug selection. Our previous trials at a dairy showed that the maintenance of the antimicrobial resistance genes is not influenced by specific antimicrobial selection and that the most prevalent antimicrobial resistance phenotype of Escherichia coli is specifically selected for in young calves. In this paper we examine the role of secondary advantages conveyed by antimicrobial resistance genes. We tested antimicrobial-susceptible null mutant strains for their ability to compete with their progenitor strains in vitro and in vivo. The null mutant strains were generated by selection for spontaneous loss of resistance genes in broth supplemented with fusaric acid or nickel chloride. On average, the null mutant strains were as competitive as the progenitor strains in vitro and in newborn calves (in vivo). Inoculation of newborn calves at the dairy with antimicrobial-susceptible strains of E. coli did not impact the prevalence of antimicrobial-resistant E. coli. Our results demonstrate that the antimicrobial resistance genes are not responsible for the greater fitness advantage of antimicrobial-resistant E. coli in calves, but the farm environment and the diet clearly exert critical selective pressures responsible for the maintenance of antimicrobial resistance genes. Our current hypothesis is that the antimicrobial resistance genes are linked to other genes responsible for differential fitness in dairy calves.200616391076
449660.9992Phenotypic and genetic barriers to establishment of horizontally transferred genes encoding ribosomal protection proteins. BACKGROUND: Ribosomal protection proteins (RPPs) interact with bacterial ribosomes to prevent inhibition of protein synthesis by tetracycline. RPP genes have evolved from a common ancestor into at least 12 distinct classes and spread by horizontal genetic transfer into a wide range of bacteria. Many bacterial genera host RPP genes from multiple classes but tet(M) is the predominant RPP gene found in Escherichia coli. OBJECTIVES: We asked whether phenotypic barriers (low-level resistance, high fitness cost) might constrain the fixation of other RPP genes in E. coli. METHODS: We expressed a diverse set of six different RPP genes in E. coli, including tet(M), and quantified tetracycline susceptibility and growth phenotypes as a function of expression level, and evolvability to overcome identified phenotypic barriers. RESULTS: The genes tet(M) and tet(Q) conferred high-level tetracycline resistance without reducing fitness; tet(O) and tet(W) conferred high-level resistance but significantly reduced growth fitness; tetB(P) conferred low-level resistance and while mutants conferring high-level resistance were selectable these had reduced growth fitness; otr(A) did not confer resistance and resistant mutants could not be selected. Evolution experiments suggested that codon usage patterns in tet(O) and tet(W), and transcriptional silencing associated with nucleotide composition in tetB(P), accounted for the observed phenotypic barriers. CONCLUSIONS: With the exception of tet(Q), the data reveal significant phenotypic and genetic barriers to the fixation of additional RPP genes in E. coli.202133655294
632170.9992An active β-lactamase is a part of an orchestrated cell wall stress resistance network of Bacillus subtilis and related rhizosphere species. A hallmark of the Gram-positive bacteria, such as the soil-dwelling bacterium Bacillus subtilis, is their cell wall. Here, we report that d-leucine and flavomycin, biofilm inhibitors targeting the cell wall, activate the β-lactamase PenP. This β-lactamase contributes to ampicillin resistance in B. subtilis under all conditions tested. In contrast, both Spo0A, a master regulator of nutritional stress, and the general cell wall stress response, differentially contribute to β-lactam resistance under different conditions. To test whether β-lactam resistance and β-lactamase genes are widespread in other Bacilli, we isolated Bacillus species from undisturbed soils, and found that their genomes can encode up to five β-lactamases with differentiated activity spectra. Surprisingly, the activity of environmental β-lactamases and PenP, as well as the general stress response, resulted in a similarly reduced lag phase of the culture in the presence of β-lactam antibiotics, with little or no impact on the logarithmic growth rate. The length of the lag phase may determine the outcome of the competition between β-lactams and β-lactamases producers. Overall, our work suggests that antibiotic resistance genes in B. subtilis and related species are ancient and widespread, and could be selected by interspecies competition in undisturbed soils.201930637927
17580.9992The acquired pco gene cluster in Salmonella enterica mediates resistance to copper. The pervasive environmental metal contamination has led to selection of heavy-metal resistance genes in bacteria. The pco and sil clusters are located on a mobile genetic element and linked to heavy-metal resistance. These clusters have been found in Salmonella enterica serovars isolated from human clinical cases and foods of animal origin. This may be due to the use of heavy metals, such as copper, in animal feed for their antimicrobial and growth promotion properties. The sil cluster can be found alone or in combination with pco cluster, either in the chromosome or on a plasmid. Previous reports have indicated that sil, but not pco, cluster contributes to copper resistance in S. enterica Typhimurium. However, the role of the pco cluster on the physiology of non-typhoidal S. enterica remains poorly understood. To understand the function of the pco gene cluster, a deletion mutant of pcoABCD genes was constructed using allelic exchange mutagenesis. Deletion of pcoABCD genes inhibited growth of S. enterica in high-copper medium, but only under anaerobic environment. Complementation of the mutant reversed the growth phenotype. The survival of S. enterica in RAW264.7 macrophages was not affected by the loss of pcoABCD genes. This study indicates that the acquired pco cluster is crucial for copper detoxification in S. enterica, but it is not essential for intracellular replication within macrophages.202439290517
379790.9992Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates. Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut.201424955767
6314100.9992Identification of genes involved in the resistance of mycobacteria to killing by macrophages. The survival of M. leprae and M. tuberculosis in the human host is dependent upon their ability to produce gene products that counteract the bactericidal activities of macrophages. To identify such mycobacterial genes and gene products, recombinant DNA libraries of mycobacterial DNA in E. coli were passed through macrophages to enrich for clones carrying genes that endow the normally susceptible E. coli bacteria with an enhanced ability to survive within macrophages. Following three cycles of enrichment, 15 independent clones were isolated. Three recombinants were characterized in detail, and each confers significantly enhanced survival on E. coli cells carrying them. Two of the cloned genetic elements also confer enhanced survival onto M. smegmatis cells. Further characterization of these genes and gene products should provide insights into the survival of mycobacteria within macrophages and may identify new approaches of targets for combatting these important pathogens.19948080180
4810110.9991Salmonella carrier-state in hens: study of host resistance by a gene expression approach. Salmonellosis is one of the main causes of food-borne poisoning due to the consumption of contaminated poultry products. In the flocks, Salmonella is able to persist in the digestive tract of birds for weeks without triggering any symptom. In order to identify molecules and genes involved in the mechanism of host resistance to intestinal carrier-state, two different inbred lines of laying hens were orally inoculated with Salmonella Enteritidis. Bacterial colonization and host gene expression were measured in the caecum and its sentinel lymphoid tissue, respectively. Significantly increased expression of chemokine, anti-infectious cytokine, bacterial receptor, antimicrobial mediator and particularly, defensin genes was observed in the line carrying a lower level of bacteria in the caecum. These innate immunity molecules were either constitutively or inductively highly expressed in resistant adult birds and thus present candidate genes to play an important role in the host defence against Salmonella colonization.200616702014
8990120.9991Enhanced virulence of Salmonella enterica serovar typhimurium after passage through mice. The interaction between Salmonella enterica and the host immune system is complex. The outcome of an infection is the result of a balance between the in vivo environment where the bacteria survive and grow and the regulation of fitness genes at a level sufficient for the bacteria to retain their characteristic rate of growth in a given host. Using bacteriological counts from tissue homogenates and fluorescence microscopy to determine the spread, localization, and distribution of S. enterica in the tissues, we show that, during a systemic infection, S. enterica adapts to the in vivo environment. The adaptation becomes a measurable phenotype when bacteria that have resided in a donor animal are introduced into a recipient naïve animal. This adaptation does not confer increased resistance to early host killing mechanisms but can be detected as an enhancement in the bacterial net growth rate later in the infection. The enhanced growth rate is lost upon a single passage in vitro, and it is therefore transient and not due to selection of mutants. The adapted bacteria on average reach higher intracellular numbers in individual infected cells and therefore have patterns of organ spread different from those of nonadapted bacteria. These experiments help in developing an understanding of the influence of passage in a host on the fitness and virulence of S. enterica.201121098099
6317130.9991O-specific polysaccharide confers lysozyme resistance to extraintestinal pathogenic Escherichia coli. Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of bloodstream and other extraintestinal infections in human and animals. The greatest challenge encountered by ExPEC during an infection is posed by the host defense mechanisms, including lysozyme. ExPEC have developed diverse strategies to overcome this challenge. The aim of this study was to characterize the molecular mechanism of ExPEC resistance to lysozyme. For this, 15,000 transposon mutants of a lysozyme-resistant ExPEC strain NMEC38 were screened; 20 genes were identified as involved in ExPEC resistance to lysozyme-of which five were located in the gene cluster between galF and gnd, and were further confirmed to be involved in O-specific polysaccharide biosynthesis. The O-specific polysaccharide was able to inhibit the hydrolytic activity of lysozyme; it was also required by the complete lipopolysaccharide (LPS)-mediated protection of ExPEC against the bactericidal activity of lysozyme. The O-specific polysaccharide was further shown to be able to directly interact with lysozyme. Furthermore, LPS from ExPEC strains of different O serotypes was also able to inhibit the hydrolytic activity of lysozyme. Because of their cell surface localization and wide distribution in Gram-negative bacteria, O-specific polysaccharides appear to play a long-overlooked role in protecting bacteria against exogenous lysozyme.201829405825
4808140.9991Key Roles of Human Polymorphonuclear Cells and Ciprofloxacin in Lactobacillus Species Infection Control. Lactobacilli have the potential to act as reservoirs of antibiotic resistance genes similar to those found in human pathogens, with the risk of transferring these genes to many pathogenic bacteria. In this study, we investigated the role of human polymorphonuclear cells (PMNs) against Lactobacillus spp. both resistant and susceptible to ciprofloxacin (a fluoroquinolone) and the effect of ciprofloxacin on the interaction between PMNs and three Lactobacillus spp. with different patterns of susceptibility to this drug. Hence, the primary functions of PMNs, such as phagocytosis and bacterial intracellular killing, against lactobacilli were investigated. The rate of PMN phagocytosis was high for ciprofloxacin-sensitive and ciprofloxacin-resistant strains. The patterns of intracellular killing of ciprofloxacin-sensitive and ciprofloxacin-resistant strains by PMNs underline that PMNs alone were able to kill lactobacilli. The addition of ciprofloxacin to PMNs did not result in a significant increase in the bacterial uptake by phagocytes. On the contrary, ciprofloxacin had a marked effect on PMN intracellular killing, resulting in increased numbers of killed ciprofloxacin-sensitive bacteria in comparison with antibiotic-free controls. Our data show that by itself, the profile of antibiotic resistance does not constitute an intrinsic factor of greater or lesser pathogenicity toward the host. The ability of PMNs to kill a diverse array of bacterial pathogens is essential for human innate host defense, primarily in immunocompromised patients.201526711767
3799150.9991Antibiotic Degradation by Commensal Microbes Shields Pathogens. The complex bacterial populations that constitute the gut microbiota can harbor antibiotic resistance genes (ARGs), including those encoding β-lactamase enzymes (BLA), which degrade commonly prescribed antibiotics such as ampicillin. The prevalence of such genes in commensal bacteria has been increased in recent years by the wide use of antibiotics in human populations and in livestock. While transfer of ARGs between bacterial species has well-established dramatic public health implications, these genes can also function in trans within bacterial consortia, where antibiotic-resistant bacteria can provide antibiotic-sensitive neighbors with leaky protection from drugs, as shown both in vitro and in vivo, in models of lung and subcutaneous coinfection. However, whether the expression of ARGs by harmless commensal bacterial species can destroy antibiotics in the intestinal lumen and shield antibiotic-sensitive pathogens is unknown. To address this question, we colonized germfree or wild-type mice with a model intestinal commensal strain of Escherichia coli that produces either functional or defective BLA. Mice were subsequently infected with Listeria monocytogenes or Clostridioides difficile, followed by treatment with oral ampicillin. The production of functional BLA by commensal E. coli markedly reduced clearance of these pathogens and enhanced systemic dissemination during ampicillin treatment. Pathogen resistance was independent of ARG acquisition via horizontal gene transfer but instead relied on antibiotic degradation in the intestinal lumen by BLA. We conclude that commensal bacteria that have acquired ARGs can mediate shielding of pathogens from the bactericidal effects of antibiotics.202031964746
8913160.9991The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Abundance and diversity of bacteria and their viral predators, bacteriophages (phages), in the digestive tract are associated with human health. Particularly intriguing is the long-term coexistence of these two antagonistic populations. We performed genome-wide RNA sequencing on a human enteroaggregative Escherichia coli isolate to identify genes differentially expressed between in vitro conditions and in murine intestines. We experimentally demonstrated that four of these differentially expressed genes modified the interactions between E. coli and three virulent phages by either increasing or decreasing its susceptibility/resistance pattern and also by interfering with biofilm formation. Therefore, the regulation of bacterial genes expression during the colonization of the digestive tract influences the coexistence of phages and bacteria, highlighting the intricacy of tripartite relationships between phages, bacteria, and the animal host in intestinal homeostasis.202235421351
3812170.9991What Is the Impact of Antibiotic Resistance Determinants on the Bacterial Death Rate? Objectives: Antibiotic-resistant bacteria are widespread, with resistance arising from chromosomal mutations and resistance genes located in the chromosome or in mobile genetic elements. While resistance determinants often reduce bacterial growth rates, their influence on bacterial death under bactericidal antibiotics remains poorly understood. When bacteria are exposed to bactericidal antibiotics to which they are susceptible, they typically undergo a two-phase decline: a fast initial exponentially decaying phase, followed by a persistent slow-decaying phase. This study examined how resistance determinants affect death rates during both phases. Methods: We analyzed the death rates of ampicillin-exposed Escherichia coli populations of strains sensitive to ampicillin but resistant to nalidixic acid, rifampicin, or both, and bacteria carrying the conjugative plasmids RN3 or R702. Results: Single mutants resistant to nalidixic acid or rifampicin decayed faster than sensitive cells during the early phase, whereas the double-resistant mutant exhibited prolonged survival. These contrasting impacts suggest epistatic interactions between both chromosomal mutations. Persistent-phase death rates for chromosomal mutants did not differ significantly from wild-type cells. In contrast, plasmid-carrying bacteria displayed distinct dynamics: R702 plasmid-bearing cells showed higher persistent-phase death rates than plasmid-free cells, while RN3 plasmid-bearing cells exhibited lower rates. Conclusions: Bactericidal antibiotics may kill bacteria resistant to other antibiotics more effectively than wild-type cells. Moreover, epistasis may occur when different resistance determinants occur in the same cell, impacting the bactericidal potential of the antibiotic of choice. These results have significant implications for optimizing bacterial eradication protocols in clinical settings, as well as in animal health and industrial food safety management.202540001444
8892180.9991Fur is the master regulator of the extraintestinal pathogenic Escherichia coli response to serum. Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains are the major cause of colisepticemia (colibacillosis), a condition that has become an increasing public health problem in recent years. ExPEC strains are characterized by high resistance to serum, which is otherwise highly toxic to most bacteria. To understand how these bacteria survive and grow in serum, we performed system-wide analyses of their response to serum, making a clear distinction between the responses to nutritional immunity and innate immunity. Thus, mild heat inactivation of serum destroys the immune complement and abolishes the bactericidal effect of serum (inactive serum), making it possible to examine nutritional immunity. We used a combination of deep RNA sequencing and proteomics in order to characterize ExPEC genes whose expression is affected by the nutritional stress of serum and by the immune complement. The major change in gene expression induced by serum-active and inactive-involved metabolic genes. In particular, the serum metabolic response is coordinated by three transcriptional regulators, Fur, BasR, and CysB. Fur alone was responsible for more than 80% of the serum-induced transcriptional response. Consistent with its role as a major serum response regulator, deletion of Fur renders the bacteria completely serum sensitive. These results highlight the role of metabolic adaptation in colisepticemia and virulence. IMPORTANCE: Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains have emerged as major pathogens, especially in community- and hospital-acquired infections. These bacteria cause a large spectrum of syndromes, the most serious of which is septicemia, a condition with a high mortality rate. These bacterial strains are characterized by high resistance to serum, otherwise highly toxic to most bacteria. To understand the basis of this resistance, we carried out system-wide analyses of the response of ExPEC strains to serum by using proteomics and deep RNA sequencing. The major changes in gene expression induced by exposure to serum involved metabolic genes, not necessarily implicated in relation to virulence. One metabolic regulator-Fur-involved in iron metabolism was responsible for more than 80% of the serum-induced response, and its deletion renders the bacteria completely serum sensitive. These results highlight the role of metabolic adaptation in virulence.201425118243
8877190.9991Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. While in transit within and between hosts, uropathogenic Escherichia coli (UPEC) encounters multiple stresses, including substantial levels of nitric oxide and reactive nitrogen intermediates. Here we show that UPEC, the primary cause of urinary tract infections, can be conditioned to grow at higher rates in the presence of acidified sodium nitrite (ASN), a model system used to generate nitrosative stress. When inoculated into the bladder of a mouse, ASN-conditioned UPEC bacteria are far more likely to establish an infection than nonconditioned bacteria. Microarray analysis of ASN-conditioned bacteria suggests that several NsrR-regulated genes and other stress- and polyamine-responsive factors may be partially responsible for this effect. Compared to K-12 reference strains, most UPEC isolates have increased resistance to ASN, and this resistance can be substantially enhanced by addition of the polyamine cadaverine. Nitrosative stress, as generated by ASN, can stimulate cadaverine synthesis by UPEC, and growth of UPEC in cadaverine-supplemented broth in the absence of ASN can also promote UPEC colonization of the bladder. These results suggest that UPEC interactions with polyamines or stresses such as reactive nitrogen intermediates can in effect reprogram the bacteria, enabling them to better colonize the host.200919255192