# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6166 | 0 | 1.0000 | Intraperitoneal infection with Salmonella abortusovis is partially controlled by a gene closely linked with the Ity gene. The aim of the present study was to determine whether the Ity gene, which controls the resistance to S. typhimurium infection in mice, also governs the resistance to S. abortusovis, a serotype specific for goat and sheep. During either i.v. or i.p. infection, BALB/c mice (Itys) were not able to control the growth of S. abortusovis and eventually died from infection. In contrast CBA (Ityr) or (C.CB)F1 (Ityr/s) mice were able to control the growth of these bacteria. Using congenic C.D2 Ityr mice, we found that the gene controlling resistance to S. abortusovis was tightly linked to the Ity gene on chromosome 1. Furthermore, in the spleen and the liver of backcross BALB/c x (CBA x BALB/c) mice, the S. abortusovis resistance phenotype cosegregated with the two alleles of the Len-1 gene, a gene tightly linked to the Ity gene. By contrast, in these backcross mice, the level of infection of the peritoneal cavity, the site of inoculation, did not correlated with the Len-1 phenotype of the animal. These results provide evidence that after i.p. inoculation the control of S. abortusovis growth in the spleen and the liver is controlled by the Ity gene, but also suggest that additional gene(s) regulate the number of bacteria at the site of inoculation. | 1992 | 1544222 |
| 6172 | 1 | 0.9988 | Resistance and susceptibility of mice to bacterial infection. IV. Genetic and cellular basis of resistance to chronic infection with Brucella abortus. The number of Brucella abortus strain 19 organisms in the spleens of CBA/H mice peaked two weeks after intravenous injection of 5 X 10(6) organisms. With the onset of specific cell-mediated immunity, 90% of the bacteria were killed, but approximately 10(6) bacteria persisted up to seven weeks after infection. In contrast, in BALB/c, C57BL/10, and B10Br mice, bacterial numbers peaked at two weeks but decreased steadily with the onset of bactericidal activity. In all strains, clearance of bacteria from the liver was relatively efficient. The course of infection in (CBA/H X BALB/c) F1 mice was similar to that in CBA/H mice, indicating that the mechanism(s) leading to slower recovery from infection was dominant. The H-2 haplotype of the mice did not influence the rate of recovery from infection. The use of backcross mice showed that multiple genes were involved. In bone marrow-chimeric mice, resistance was determined by the genome of the bone marrow donor, not that of the host. | 1982 | 6809847 |
| 6214 | 2 | 0.9986 | Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Toll-like receptor 4 (TLR4) has been identified as a receptor for lipopolysaccharide. However, the precise role of TLR4 in regulating gene expression in response to an infection caused by gram-negative bacteria has not been fully elucidated. The role of TLR4 signaling in coordinating gene expression was assessed by gene expression profiling in lung tissue in a mouse model of experimental pneumonia with a low-dose infection of Klebsiella pneumoniae. We analyzed four mouse strains: C57BL/6 mice, which are resistant to bacterial dissemination; 129/SvJ mice, which are susceptible; C3H/HeJ mice, which are susceptible and have defective TLR4 signaling; and their respective control strain, C3H/HeN (intermediate resistance). At 4 h after infection, C57BL/6 and C3H/HeN mice demonstrated the greatest number of genes, with 67 shared induced genes which were TLR4 dependent and highly associated with the resistance phenotype. These genes included cytokine and chemokine genes required for neutrophil activation or recruitment, growth factor receptors, MyD88 (a critical adaptor protein for TLR signaling), and adhesion molecules. TLR4 signaling accounted for over 74% of the gene expression in the C3H background. These data suggest that early TLR4 signaling controls the vast majority of gene expression in the lung in response to an infection caused by gram-negative bacteria and that this subsequent gene expression determines survival of the host. | 2005 | 15618193 |
| 6216 | 3 | 0.9986 | Phosphoinositide 3-kinase family in channel catfish and their regulated expression after bacterial infection. The phosphoinositide-3-kinase (PI3Ks) family of lipid kinases is widely conserved from yeast to mammals. In this work, we identified a total of 14 members of the PI3Ks from the channel catfish genome and transcriptome and conducted phylogenetic and syntenic analyses of these genes. The expression profiles after infection with Edwardsiella ictaluri and Flavobacterium columnare were examined to determine the involvement of PI3Ks in immune responses after bacterial infection in catfish. The results indicated that PI3Ks genes including all of the catalytic subunit and several regulatory subunits genes were widely regulated after bacterial infection. The expression patterns were quite different when challenged with different bacteria. The PI3Ks were up-regulated rapidly at the early stage after ESC infection, but their induced expression was much slower, at the middle stage after columnaris infection. RNA-Seq datasets indicated that PI3K genes may be expressed at different levels in different catfish differing in their resistance levels against columnaris. Future studies are required to confirm and validate these observations. Taken together, this study indicated that PI3K genes may be involved as a part of the defense responses of catfish after infections, and they could be one of the determinants for disease resistance. | 2016 | 26772478 |
| 6171 | 4 | 0.9986 | Host response to infection with a temperature-sensitive mutant of Salmonella typhimurium in a susceptible and a resistant strain of mice. The inoculation of a temperature-sensitive mutant of Salmonella typhimurium induced a long-lasting infection in susceptible (C57BL/6) and resistant (A/J) mice. During week 1 of infection, the number of bacteria in the spleens was similar in both mouse strains. Then, the decrease of bacteria was more rapid in the resistant strain. Splenomegaly and granulomatous hepatitis were more severe in the susceptible strain. The immune response induced by this infection was studied. In both mouse strains delayed-type hypersensitivity to Salmonella antigens was present, and resistance to reinfection with a virulent strain of S. typhimurium or with Listeria monocytogenes appeared with the same kinetics. Thus, it does not seem that the gene(s) controlling natural resistance to S. typhimurium act(s) on acquired immunity. | 1985 | 3897053 |
| 6345 | 5 | 0.9985 | Transfer RNA gene numbers may not be completely responsible for the codon usage bias in asparagine, isoleucine, phenylalanine, and tyrosine in the high expression genes in bacteria. It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β', respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes. | 2012 | 23053196 |
| 4616 | 6 | 0.9985 | Effect of two candidate genes on the Salmonella carrier state in fowl. Selection for increased resistance to Salmonella carrier-state (defined as the persistency of the bacteria 4 wk after inoculation) could reduce the risk for the consumer of food toxi-infections. The effects of two genomic regions on chromosomes 7 and 17 harboring two genes, NRAMP1 (SLC11A1) and TLR4, known to be involved in the level of chicken infection 3 d after inoculation by Salmonella were thus tested on a total of 331 hens orally inoculated at the peak of lay with 10(9) bacteria. The animals and their parents were genotyped for a total of 10 microsatellite markers mapped on chromosomes 7 and 17. Using maximum likelihood analysis and interval mapping, it was found that the SLC11A1 region was significantly involved in the control of the probability of spleen contamination 4 wk after inoculation. Single nucleotide polymorphisms (SNP) within the SLC11A1 and TLR4 gene were tested on those animals as well as on a second batch of 279 hens whose resistance was assessed in the same conditions. As the former was significantly associated with the risk of spleen contamination and the number of contaminated organs, SLC11A1 appears to be involved in the control of resistance to Salmonella carrier state. The involvement of the TLR4 gene was also highly suspected as a significant association between SNP within the gene, and the number of contaminated organs was detected. | 2003 | 12762392 |
| 6217 | 7 | 0.9985 | Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content gram-positive bacteria. The alternative sigma factor sigma(B) has an important role in the acquisition of stress resistance in many gram-positive bacteria, including the food-borne pathogen Bacillus cereus. Here, we describe the identification of the set of sigma(B)-regulated genes in B. cereus by DNA microarray analysis of the transcriptome upon a mild heat shock. Twenty-four genes could be identified as being sigma(B) dependent as witnessed by (i) significantly lower expression levels of these genes in mutants with a deletion of sigB and rsbY (which encode the alternative sigma factor sigma(B) and a crucial positive regulator of sigma(B) activity, respectively) than in the parental strain B. cereus ATCC 14579 and (ii) increased expression of these genes upon a heat shock. Newly identified sigma(B)-dependent genes in B. cereus include a histidine kinase and two genes that have predicted functions in spore germination. This study shows that the sigma(B) regulon of B. cereus is considerably smaller than that of other gram-positive bacteria. This appears to be in line with phylogenetic analyses where sigma(B) of the B. cereus group was placed close to the ancestral form of sigma(B) in gram-positive bacteria. The data described in this study and previous studies in which the complete sigma(B) regulon of the gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus were determined enabled a comparison of the sets of sigma(B)-regulated genes in the different gram-positive bacteria. This showed that only three genes (rsbV, rsbW, and sigB) are conserved in their sigma(B) dependency in all four bacteria, suggesting that the sigma(B) regulon of the different gram-positive bacteria has evolved to perform niche-specific functions. | 2007 | 17416654 |
| 253 | 8 | 0.9985 | The Rxo1/ Rba1 locus of maize controls resistance reactions to pathogenic and non-host bacteria. Infiltration of different maize lines with a variety of bacterial pathogens of maize, rice and sorghum identified qualitative differences in resistant reactions. Isolates from two bacterial species induced rapid hypersensitive reactions (HR) in some maize lines, but not others. All isolates of the non-host pathogen Xanthomonas oryzae pv. oryzicola (bacterial leaf streak disease of rice) and some isolates of the pathogenic bacterium Burkholderia andropogonis induced HR when infiltrated into maize line B73, but not Mo17. Genetic control of the HR to both bacteria segregated as a single dominant gene. Surprisingly, both phenotypes mapped to the same locus, indicating they are either tightly linked or controlled by the same gene. The locus maps on the short arm of maize chromosome six near several other disease-resistance genes. Results indicate the same type of genes may contribute to both non-host resistance and resistance to pathogens. | 2004 | 15114472 |
| 6219 | 9 | 0.9985 | Isolation and characterization of bacteriophage-resistant mutants of Vibrio cholerae O139. Vibrio cholerae O139 strains produce a capsule which is associated with complement resistance and is used as a receptor by bacteriophage JA1. Spontaneous JA1-resistant mutants were found to have several phenotypes, with loss of capsule and/or O-antigen from the cell surface. Determination of the residual complement resistance and infant mouse colonization potential of each mutant suggested that production of O-antigen is of much greater significance than the presence of capsular material for both of these properties. Two different in vitro assays of complement resistance were compared and the results of one shown to closely reflect the comparative recoveries of bacteria from the colonization experiments. Preliminary complementation studies implicated two rfb region genes, wzz and wbfP, as being essential for the biosynthesis of capsule but not O-antigen. | 2001 | 11312617 |
| 239 | 10 | 0.9985 | Extensive differences in antifungal immune response in two Drosophila species revealed by comparative transcriptome analysis. The innate immune system of Drosophila is activated by ingestion of microorganisms. D. melanogaster breeds on fruits fermented by Saccharomyces cerevisiae, whereas D. virilis breeds on slime flux and decaying bark of tree housing a variety of bacteria, yeasts, and molds. In this study, it is shown that D. virilis has a higher resistance to oral infection of a species of filamentous fungi belonging to the genus Penicillium compared to D. melanogaster. In response to the fungal infection, a transcriptome profile of immune-related genes was considerably different between D. melanogaster and D. virilis: the genes encoding antifungal peptides, Drosomycin and Metchnikowin, were highly expressed in D. melanogaster whereas, the genes encoding Diptericin and Defensin were highly expressed in D. virilis. On the other hand, the immune-induced molecule (IM) genes showed contrary expression patterns between the two species: they were induced by the fungal infection in D. melanogaster but tended to be suppressed in D. virilis. Our transcriptome analysis also showed newly predicted immune-related genes in D. virilis. These results suggest that the innate immune system has been extensively differentiated during the evolution of these Drosophila species. | 2013 | 24151578 |
| 6164 | 11 | 0.9985 | Genetic factors involved in murine resistance to experimental brucellosis. C57 B1/6 are more resistant than DBA2 mice to IV inoculation of Brucella suis 1330. This difference does not concern the blood clearance of the injected bacteria or the number of infective colonies in the spleen at very early (less than 24 h) or at late (greater than 2 months) stages but the splenic infection at intermediate stages with maximal differences between days 7 and 14. The "resistance" character is inherited by F1 and backcrosses as a partially dominant character with polygenic control and a better expression of resistance factor(s) in females, independently of male-female matings. Association of the "resistance" character with known genetic markers was investigated using (B6 X DB) X DB backcrosses, BALB/B, BALB/c, C3H/eb and C3H/HeJ mice. No correlation of "resistance" with Ig allotypes, the "d" coat colour or the LPS genes was evidenced. On the other hand significant differences in the number of splenic colonies on day 7 were observed according to the H-2 haplotype or the "b" coat colour phenotypes. These results are discussed in terms of a comparison with the genetics of other facultative intracellular bacteria and of the partially common and partially independent genetic regulation of the functional components of anti-Brucella resistance. | 1984 | 6593265 |
| 6169 | 12 | 0.9985 | The effect of mating on immunity can be masked by experimental piercing in female Drosophila melanogaster. Mating and immunity are two major components of fitness and links between them have been demonstrated in a number of recent investigations. In Drosophila melanogaster, a seminal fluid protein, sex-peptide (SP), up-regulates a number of antimicrobial peptide (AMP) genes in females after mating but the resulting effect on pathogen resistance is unclear. In this study, we tested (1) whether SP-induced changes in gene expression affect the ability of females to kill injected non-pathogenic bacteria and (2) how the injection process per se affects the expression of AMP genes relative to SP. The ability of virgin females and females mated to SP lacking or control males to clear bacteria was assayed using an established technique in which Escherichia coli are injected directly into the fly body and the rate of clearance of the injected bacteria is determined. We found no repeatable differences in clearance rates between virgin females and females mated to SP producing or SP lacking males. However, we found that the piercing of the integument, as occurs during injection, up-regulates AMP gene expression much more strongly than SP. Thus, assays that involve piercing, which are commonly used in immunity studies, can mask more subtle and biologically relevant changes in immunity, such as those induced by mating. | 2008 | 18068720 |
| 6170 | 13 | 0.9984 | Resistance and susceptibility of mice to bacterial infection. IV. Functional specificity in natural resistance to facultative intracellular bacteria. The effect of opsonic antibody on resistance of susceptibility of three strains of mice, C57Bl/10, BALB/c, and CBA to the intracellular bacteria Listeria monocytogenes, Salmonella typhimurium, and Brucella abortus was tested. Bacteria were opsonized by serum treatment before their injection into mice, or the mice were preimmunized by injection with alcohol killed bacteria which induces antibody without macrophage activation. Antibody did not increase the rate of clearance of Listeria from the bloodstream, nor did it affect the subsequent growth of that organism in the spleen and liver. Blood clearance of S. typhimurium and of B. abortus was increased by preopsonization with specific antibody, indicating that opsonins were a limiting factor in resistance to these two bacteria. However, neither opsonization before infection nor immunization with alcohol killed vaccines had any effect on the strain distribution of resistance/susceptibility, which differs for each of the three intracellular pathogens. Thus, even in the presence of adequate opsonization the three strains of mice showed different patterns of resistance/susceptibility to Listeria, S. typhimurium, and B. abortus. This implies that each has a unique cellular mechanism of early nonspecific resistance. | 1983 | 6413682 |
| 187 | 14 | 0.9984 | Functional coexistence of twin arsenic resistance systems in Pseudomonas putida KT2440. The genome of the soil bacterium Pseudomonas putida KT2440 bears two virtually identical arsRBCH operons putatively encoding resistance to inorganic arsenic species. Single and double chromosomal deletions in each of these ars clusters of this bacterium were tested for arsenic sensitivity and found that the contribution of each operon to the resistance to the metalloid was not additive, as either cluster sufficed to endow cells with high-level resistance. However, otherwise identical traits linked to each of the ars sites diverged when temperature was decreased. Growth of the various mutants at 15°C (instead of the standard 30°C for P. putida) uncovered that ars2 affords a much higher resistance to As (III) than the ars1 counterpart. Reverse transcription polymerase chain reaction of arsB1 and arsB2 genes as well as lacZ fusions to the Pars1 and Pars2 promoters traced the difference to variations in transcription of the corresponding gene sets at each temperature. Functional redundancy may thus be selected as a stable condition - rather than just as transient state - if it affords one key activity to be expressed under a wider range of physicochemical settings. This seems to provide a straightforward solution to regulatory problems in environmental bacteria that thrive under changing scenarios. | 2015 | 24673935 |
| 6229 | 15 | 0.9984 | Response of Bacillus cereus ATCC 14579 to challenges with sublethal concentrations of enterocin AS-48. BACKGROUND: Enterocin AS-48 is produced by Enterococcus faecalis S48 to compete with other bacteria in their environment. Due to its activity against various Gram positive and some Gram negative bacteria it has clear potential for use as a food preservative. Here, we studied the effect of enterocin AS-48 challenges on vegetative cells of Bacillus cereus ATCC 14579 by use of transcriptome analysis. RESULTS: Of the 5200 genes analysed, expression of 24 genes was found to change significantly after a 30 min treatment with a subinhibitory bacteriocin concentration of 0.5 microg/ml. Most of up-regulated genes encode membrane-associated or secreted proteins with putative transmembrane segments or signal sequences, respectively. One operon involved in arginine metabolism was significantly downregulated. The BC4206-BC4207 operon was found to be the most upregulated target in our experiments. BC4206 codes for a PadR type transcriptional regulator, while BC4207 codes for a hypothetical membrane protein. The operon structure and genes are conserved in B. cereus and B. thuringiensis species, but are not present in B. anthracis and B. subtilis. Using real-time qPCR, we show that these genes are upregulated when we treated the cells with AS-48, but not upon nisin treatment. Upon overexpression of BC4207 in B. cereus, we observed an increased resistance against AS-48. Expression of BC4207 in B. subtilis 168, which lacks this operon also showed increased resistance against AS-48. CONCLUSION: BC4207 membrane protein is involved in the resistance mechanism of B. cereus cells against AS-48. | 2009 | 19863785 |
| 4496 | 16 | 0.9984 | Phenotypic and genetic barriers to establishment of horizontally transferred genes encoding ribosomal protection proteins. BACKGROUND: Ribosomal protection proteins (RPPs) interact with bacterial ribosomes to prevent inhibition of protein synthesis by tetracycline. RPP genes have evolved from a common ancestor into at least 12 distinct classes and spread by horizontal genetic transfer into a wide range of bacteria. Many bacterial genera host RPP genes from multiple classes but tet(M) is the predominant RPP gene found in Escherichia coli. OBJECTIVES: We asked whether phenotypic barriers (low-level resistance, high fitness cost) might constrain the fixation of other RPP genes in E. coli. METHODS: We expressed a diverse set of six different RPP genes in E. coli, including tet(M), and quantified tetracycline susceptibility and growth phenotypes as a function of expression level, and evolvability to overcome identified phenotypic barriers. RESULTS: The genes tet(M) and tet(Q) conferred high-level tetracycline resistance without reducing fitness; tet(O) and tet(W) conferred high-level resistance but significantly reduced growth fitness; tetB(P) conferred low-level resistance and while mutants conferring high-level resistance were selectable these had reduced growth fitness; otr(A) did not confer resistance and resistant mutants could not be selected. Evolution experiments suggested that codon usage patterns in tet(O) and tet(W), and transcriptional silencing associated with nucleotide composition in tetB(P), accounted for the observed phenotypic barriers. CONCLUSIONS: With the exception of tet(Q), the data reveal significant phenotypic and genetic barriers to the fixation of additional RPP genes in E. coli. | 2021 | 33655294 |
| 6168 | 17 | 0.9984 | SdiA aids enterohemorrhagic Escherichia coli carriage by cattle fed a forage or grain diet. Enterohemorrhagic Escherichia coli (EHEC) causes hemorrhagic colitis and life-threatening complications. The main reservoirs for EHEC are healthy ruminants. We reported that SdiA senses acyl homoserine lactones (AHLs) in the bovine rumen to activate expression of the glutamate acid resistance (gad) genes priming EHEC's acid resistance before they pass into the acidic abomasum. Conversely, SdiA represses expression of the locus of enterocyte effacement (LEE) genes, whose expression is not required for bacterial survival in the rumen but is necessary for efficient colonization at the rectoanal junction (RAJ) mucosa. Our previous studies show that SdiA-dependent regulation was necessary for efficient EHEC colonization of cattle fed a grain diet. Here, we compared the SdiA role in EHEC colonization of cattle fed a forage hay diet. We detected AHLs in the rumen of cattle fed a hay diet, and these AHLs activated gad gene expression in an SdiA-dependent manner. The rumen fluid and fecal samples from hay-fed cattle were near neutrality, while the same digesta samples from grain-fed animals were acidic. Cattle fed either grain or hay and challenged with EHEC orally carried the bacteria similarly. EHEC was cleared from the rumen within days and from the RAJ mucosa after approximately one month. In competition trials, where animals were challenged with both wild-type and SdiA deletion mutant bacteria, diet did not affect the outcome that the wild-type strain was better able to persist and colonize. However, the wild-type strain had a greater advantage over the SdiA deletion mutant at the RAJ mucosa among cattle fed the grain diet. | 2013 | 23836826 |
| 8414 | 18 | 0.9983 | Patterns of Piscirickettsia salmonis load in susceptible and resistant families of Salmo salar. The pathogen Piscirickettsia salmonis produces a systemic aggressive infection that involves several organs and tissues in salmonids. In spite of the great economic losses caused by this pathogen in the Atlantic salmon (Salmo salar) industry, very little is known about the resistance mechanisms of the host to this pathogen. In this paper, for the first time, we aimed to identify the bacterial load in head kidney and muscle of Atlantic salmon exhibiting differential familiar mortality. Furthermore, in order to assess the patterns of gene expression of immune related genes in susceptible and resistant families, a set of candidate genes was evaluated using deep sequencing of the transcriptome. The results showed that the bacterial load was significantly lower in resistant fish, when compared with the susceptible individuals. Based on the candidate genes analysis, we infer that the resistant hosts triggered up-regulation of specific genes (such as for example the LysC), which may explain a decrease in the bacterial load in head kidney, while the susceptible fish presented an exacerbated innate response, which is unable to exert an effective response against the bacteria. Interestingly, we found a higher bacterial load in muscle when compared with head kidney. We argue that this is possible due to the availability of an additional source of iron in muscle. Besides, the results show that the resistant fish could not be a likely reservoir of the bacteria. | 2015 | 25862974 |
| 6318 | 19 | 0.9983 | Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Phenotypic differences among closely related bacteria have been largely ascribed to species-specific genes, such as those residing in pathogenicity islands. However, we now report that the differential regulation of homologous genes is the mechanism responsible for the divergence of the enteric bacteria Salmonella enterica and Escherichia coli in their ability to make LPS modifications mediating resistance to the antibiotic polymyxin B. In S. enterica serovar Typhimurium, the PmrA/PmrB two-component system governing polymyxin B resistance is induced in low Mg(2+) in a process that requires the PmrD protein and by Fe(3+) in a PmrD-independent fashion. We establish that E. coli K-12 induces PmrA-activated gene transcription and polymyxin B resistance in response to Fe(3+), but that it is blind to the low Mg(2+) signal. The highly divergent PmrD protein is responsible for this phenotype as replacement of the E. coli pmrD gene by its Salmonella counterpart resulted in an E. coli strain that transcribed PmrA-activated genes and displayed polymyxin B resistance under the same conditions as Salmonella. Molecular analysis of natural isolates of E. coli and Salmonella revealed that the PmrD proteins are conserved within each genus and that selection might have driven the divergence between the Salmonella and E. coli PmrD proteins. Investigation of PmrD function demonstrated statistically different distributions for the Salmonella and E. coli isolates in PmrD-dependent transcription occurring in low Mg(2+). Our results suggest that the differential regulation of conserved genes may have ecological consequences, determining the range of niches a microorganism can occupy. | 2004 | 15569938 |