The resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
616201.0000The resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17. Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F(2) mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis.200818573896
621410.9990Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Toll-like receptor 4 (TLR4) has been identified as a receptor for lipopolysaccharide. However, the precise role of TLR4 in regulating gene expression in response to an infection caused by gram-negative bacteria has not been fully elucidated. The role of TLR4 signaling in coordinating gene expression was assessed by gene expression profiling in lung tissue in a mouse model of experimental pneumonia with a low-dose infection of Klebsiella pneumoniae. We analyzed four mouse strains: C57BL/6 mice, which are resistant to bacterial dissemination; 129/SvJ mice, which are susceptible; C3H/HeJ mice, which are susceptible and have defective TLR4 signaling; and their respective control strain, C3H/HeN (intermediate resistance). At 4 h after infection, C57BL/6 and C3H/HeN mice demonstrated the greatest number of genes, with 67 shared induced genes which were TLR4 dependent and highly associated with the resistance phenotype. These genes included cytokine and chemokine genes required for neutrophil activation or recruitment, growth factor receptors, MyD88 (a critical adaptor protein for TLR signaling), and adhesion molecules. TLR4 signaling accounted for over 74% of the gene expression in the C3H background. These data suggest that early TLR4 signaling controls the vast majority of gene expression in the lung in response to an infection caused by gram-negative bacteria and that this subsequent gene expression determines survival of the host.200515618193
478720.9990Strain Specific Variations in Acinetobacter baumannii Complement Sensitivity. The complement system is required for innate immunity against Acinetobacter baumannii, an important cause of antibiotic resistant systemic infections. A. baumannii strains differ in their susceptibility to the membrane attack complex (MAC) formed from terminal complement pathway proteins, but the reasons for this variation remain poorly understood. We have characterized in detail the complement sensitivity phenotypes of nine A. baumannii clinical strains and some of the factors that might influence differences between strains. Using A. baumannii laboratory strains and flow cytometry assays, we first reconfirmed that both opsonization with the complement proteins C3b/iC3b and MAC formation were inhibited by the capsule. There were marked differences in C3b/iC3b and MAC binding between the nine clinical A. baumannii strains, but this variation was partially independent of capsule composition or size. Opsonization with C3b/iC3b improved neutrophil phagocytosis of most strains. Importantly, although C3b/iC3b binding and MAC formation on the bacterial surface correlated closely, MAC formation did not correlate with variations between A. baumannii strains in their levels of serum resistance. Genomic analysis identified only limited differences between strains in the distribution of genes required for serum resistance, but RNAseq data identified three complement-resistance genes that were differentially regulated between a MAC resistant and two MAC intermediate resistant strains when cultured in serum. These data demonstrate that clinical A. baumannii strains vary in their sensitivity to different aspects of the complement system, and that the serum resistance phenotype was influenced by factors in addition to the amount of MAC forming on the bacterial surface.202235812377
621330.9989Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae. Phagocytosis resistance is an important virulence factor in Klebsiella pneumoniae. Dictyostelium has been used to study the interaction between phagocytes and bacteria because of its similarity to mammalian macrophages. In this study, we used a Dictyostelium model to investigate genes for resistance to phagocytosis in NTUH-K2044, a strain of K. pneumoniae causing pyogenic liver abscess that is highly resistant to phagocytosis. A total of 2,500 transposon mutants were screened by plaque assay, and 29 of them permitted phagocytosis by Dictyostelium. In the 29 mutants, six loci were identified; three were capsular synthesis genes. Of the other three, one was related to carnitine metabolism, one encoded a subunit of protease (clpX), and one encoded a lipopolysaccharide O-antigen transporter (wzm). Deletion and complementation of these genes showed that only ΔclpX and Δwzm mutants became susceptible to Dictyostelium phagocytosis, and their complementation restored the phagocytosis resistance phenotype. These two mutants were also susceptible to phagocytosis by human neutrophils and revealed attenuated virulence in a mouse model, implying that they play important roles in the pathogenesis of K. pneumoniae. Furthermore, we demonstrated that clpP, which exists in an operon with clpX, was also involved in resistance to phagocytosis. The transcriptional profile of ΔclpX was examined by microarray analysis and revealed a 3-fold lower level of expression of capsular synthesis genes. Therefore, we have identified genes involved in resistance to phagocytosis in K. pneumoniae using Dictyostelium, and this model is useful to explore genes associated with resistance to phagocytosis in heavily encapsulated bacteria.201121173313
884340.9989Dual RNA-seq in Streptococcus pneumoniae Infection Reveals Compartmentalized Neutrophil Responses in Lung and Pleural Space. Streptococcus pneumoniae is the dominant cause of community-acquired pneumonia worldwide. Invasion of the pleural space is common and results in increased mortality. We set out to determine the bacterial and host factors that influence invasion of the pleural space. In a murine model of pneumococcal infection, we isolated neutrophil-dominated samples of bronchoalveolar and pleural fluid containing bacteria 48 hours after infection. Using dual RNA sequencing (RNA-seq), we characterized bacterial and host transcripts that were differentially regulated between these compartments and bacteria in broth and resting neutrophils, respectively. Pleural and lung samples showed upregulation of genes involved in the positive regulation of neutrophil extravasation but downregulation of genes mediating bacterial killing. Compared to the lung samples, cells within the pleural space showed marked upregulation of many genes induced by type I interferons, which are cytokines implicated in preventing bacterial transmigration across epithelial barriers. Differences in the bacterial transcripts between the infected samples and bacteria grown in broth showed the upregulation of genes in the bacteriocin locus, the pneumococcal surface adhesin PsaA, and the glycopeptide resistance gene vanZ; the gene encoding the ClpP protease was downregulated in infection. One hundred sixty-nine intergenic putative small bacterial RNAs were also identified, of which 43 (25.4%) small RNAs had been previously described. Forty-two of the small RNAs were upregulated in pleura compared to broth, including many previously identified as being important in virulence. Our results have identified key host and bacterial responses to invasion of the pleural space that can be potentially exploited to develop alternative antimicrobial strategies for the prevention and treatment of pneumococcal pleural disease.IMPORTANCE The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space.201931409659
617250.9989Resistance and susceptibility of mice to bacterial infection. IV. Genetic and cellular basis of resistance to chronic infection with Brucella abortus. The number of Brucella abortus strain 19 organisms in the spleens of CBA/H mice peaked two weeks after intravenous injection of 5 X 10(6) organisms. With the onset of specific cell-mediated immunity, 90% of the bacteria were killed, but approximately 10(6) bacteria persisted up to seven weeks after infection. In contrast, in BALB/c, C57BL/10, and B10Br mice, bacterial numbers peaked at two weeks but decreased steadily with the onset of bactericidal activity. In all strains, clearance of bacteria from the liver was relatively efficient. The course of infection in (CBA/H X BALB/c) F1 mice was similar to that in CBA/H mice, indicating that the mechanism(s) leading to slower recovery from infection was dominant. The H-2 haplotype of the mice did not influence the rate of recovery from infection. The use of backcross mice showed that multiple genes were involved. In bone marrow-chimeric mice, resistance was determined by the genome of the bone marrow donor, not that of the host.19826809847
461860.9989Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review. Salmonellosis is a frequent disease in poultry stocks, caused by several serotypes of the bacterial species Salmonella enterica and sometimes transmitted to humans through the consumption of contaminated meat or eggs. Symptom-free carriers of the bacteria contribute greatly to the propagation of the disease in poultry stocks. So far, several candidate genes and quantitative trait loci (QTL) for resistance to carrier state or to acute disease have been identified using artificial infection of S. enterica serovar Enteritidis or S. enterica serovar Typhimurium strains in diverse genetic backgrounds, with several different infection procedures and phenotypic assessment protocols. This diversity in experimental conditions has led to a complex sum of results, but allows a more complete description of the disease. Comparisons among studies show that genes controlling resistance to Salmonella differ according to the chicken line studied, the trait assessed and the chicken's age. The loci identified are located on 25 of the 38 chicken autosomal chromosomes. Some of these loci are clustered in several genomic regions, indicating the possibility of a common genetic control for different models. In particular, the genomic regions carrying the candidate genes TLR4 and SLC11A1, the Major Histocompatibility Complex (MHC) and the QTL SAL1 are interesting for more in-depth studies. This article reviews the main Salmonella infection models and chicken lines studied under a historical perspective and then the candidate genes and QTL identified so far.201020429884
480970.9989Genetic variation in Drosophila melanogaster resistance to infection: a comparison across bacteria. Insects use a generalized immune response to combat bacterial infection. We have previously noted that natural populations of D. melanogaster harbor substantial genetic variation for antibacterial immunocompetence and that much of this variation can be mapped to genes that are known to play direct roles in immunity. It was not known, however, whether the phenotypic effects of variation in these genes are general across the range of potentially infectious bacteria. To address this question, we have reinfected the same set of D. melanogaster lines with Serratia marcescens, the bacterium used in the previous study, and with three additional bacteria that were isolated from the hemolymph of wild-caught D. melanogaster. Two of the new bacteria, Enterococcus faecalis and Lactococcus lactis, are gram positive. The third, Providencia burhodogranaria, is gram negative like S. marcescens. Drosophila genotypes vary highly significantly in bacterial load sustained after infection with each of the four bacteria, but mean loads are largely uncorrelated across bacteria. We have tested statistical associations between immunity phenotypes and nucleotide polymorphism in 21 candidate immunity genes. We find that molecular variation in some genes, such as Tehao, contributes to phenotypic variation in the suppression of only a subset of the pathogens. Variation in SR-CII and 18-wheeler, however, has effects that are more general. Although markers in SR-CII and 18-wheeler explain >20% of the phenotypic variation in resistance to L. lactis and E. faecalis, respectively, most of the molecular polymorphisms tested explain <10% of the total variance in bacterial load sustained after infection.200616888344
617180.9989Host response to infection with a temperature-sensitive mutant of Salmonella typhimurium in a susceptible and a resistant strain of mice. The inoculation of a temperature-sensitive mutant of Salmonella typhimurium induced a long-lasting infection in susceptible (C57BL/6) and resistant (A/J) mice. During week 1 of infection, the number of bacteria in the spleens was similar in both mouse strains. Then, the decrease of bacteria was more rapid in the resistant strain. Splenomegaly and granulomatous hepatitis were more severe in the susceptible strain. The immune response induced by this infection was studied. In both mouse strains delayed-type hypersensitivity to Salmonella antigens was present, and resistance to reinfection with a virulent strain of S. typhimurium or with Listeria monocytogenes appeared with the same kinetics. Thus, it does not seem that the gene(s) controlling natural resistance to S. typhimurium act(s) on acquired immunity.19853897053
627790.9988A large-scale whole-genome comparison shows that experimental evolution in response to antibiotics predicts changes in naturally evolved clinical Pseudomonas aeruginosa. Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations.201931570397
6244100.9988Whole-genome sequencing reveals a link between β-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. The overwhelming majority of methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates exhibit a peculiar heterogeneous resistance to β-lactam antibiotics: in cultures of such strains, the majority of cells display only a low level of methicillin resistance--often close to the MIC breakpoint of susceptible strains. Yet, in the same cultures, subpopulations of bacteria exhibiting very high levels of resistance are also present with variable frequencies, which are characteristic of the particular MRSA lineage. The mechanism of heterogeneous resistance is not understood. We describe here an experimental system for exploring the mechanism of heterogeneous resistance. Copies of the resistance gene mecA cloned into a temperature-sensitive plasmid were introduced into the fully sequenced methicillin-susceptible clinical isolate S. aureus strain 476. Transductants of strain 476 expressed methicillin resistance in a heterogeneous fashion: the great majority of cells showed only low MIC (0.75 μg/ml) for the antibiotic, but a minority population of highly resistant bacteria (MIC >300 μg/ml) was also present with a frequency of ∼10(-4). The genetic backgrounds of the majority and minority cells were compared by whole-genome sequencing: the only differences detectable were two point mutations in relA of the highly resistant minority population of bacteria. The relA gene codes for the synthesis of (p)ppGpp, an effector of the stringent stress response. Titration of (p)ppGpp showed increased amounts of this effector in the highly resistant cells. Involvement of (p)ppGpp synthesis genes may explain some of the perplexing aspects of β-lactam resistance in MRSA, since many environmental and genetic changes can modulate cellular levels of (p)ppGpp.201323659600
4807110.9988Age influences resistance of Caenorhabditis elegans to killing by pathogenic bacteria. Caenorhabditis elegans has previously been proposed as an alternative host for models of infectious disease caused by human pathogens. When exposed to some human pathogenic bacteria, the life span of nematodes is significantly reduced. We have shown that mutations in the age-1, and/or age-2 genes of C. elegans, that normally enhance life expectancy, can also increase resistance to killing by the bacterial pathogens Pseudomonas aeruginosa, Salmonella enterica var. Typhimurium, Burkholderia cepacia or Yersinia pseudotuberculosis. We also found that the rate at which wild-type C. elegans was killed by the bacterial pathogens tested increased as nematodes aged. In the case of P. aeruginosa infection, the difference in life span of wild type and age-1 mutants of C. elegans was not due to differences in the level of bacterial colonisation of the gut.200415135534
8230120.9988Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes. In silico analysis of available bacterial genomes revealed the phylogenetic proximity levels of enzymes responsible for biosynthesis of lipopolysaccharide (LPS) of Yersinia pestis, the cause of plague, to homologous proteins of closely related Yersinia spp. and some other bacteria (Serratia proteamaculans, Erwinia carotovora, Burkholderia dolosa, Photorhabdus luminescens and others). Isogenic Y. pestis mutants with single or double mutations in 14 genes of LPS biosynthetic pathways were constructed by site-directed mutagenesis on the base of the virulent strain 231 and its attenuated derivative. Using high-resolution electrospray ionization mass spectrometry, the full LPS structures were elucidated in each mutant, and the sequence of monosaccharide transfers in the assembly of the LPS core was inferred. Truncation of the core decreased significantly the resistance of bacteria to normal human serum and polymyxin B, the latter probably as a result of a less efficient incorporation of 4-amino-4-deoxyarabinose into lipid A. Impairing of LPS biosynthesis resulted also in reduction of LPS-dependent enzymatic activities of plasminogen activator and elevation of LD(50) and average survival time in mice and guinea pigs infected with experimental plague. Unraveling correlations between biological properties of bacteria and particular LPS structures may help a better understanding of pathogenesis of plague and implication of appropriate genes as potential molecular targets for treatment of plague.201121999543
4616130.9988Effect of two candidate genes on the Salmonella carrier state in fowl. Selection for increased resistance to Salmonella carrier-state (defined as the persistency of the bacteria 4 wk after inoculation) could reduce the risk for the consumer of food toxi-infections. The effects of two genomic regions on chromosomes 7 and 17 harboring two genes, NRAMP1 (SLC11A1) and TLR4, known to be involved in the level of chicken infection 3 d after inoculation by Salmonella were thus tested on a total of 331 hens orally inoculated at the peak of lay with 10(9) bacteria. The animals and their parents were genotyped for a total of 10 microsatellite markers mapped on chromosomes 7 and 17. Using maximum likelihood analysis and interval mapping, it was found that the SLC11A1 region was significantly involved in the control of the probability of spleen contamination 4 wk after inoculation. Single nucleotide polymorphisms (SNP) within the SLC11A1 and TLR4 gene were tested on those animals as well as on a second batch of 279 hens whose resistance was assessed in the same conditions. As the former was significantly associated with the risk of spleen contamination and the number of contaminated organs, SLC11A1 appears to be involved in the control of resistance to Salmonella carrier state. The involvement of the TLR4 gene was also highly suspected as a significant association between SNP within the gene, and the number of contaminated organs was detected.200312762392
4617140.9988A maximum likelihood QTL analysis reveals common genome regions controlling resistance to Salmonella colonization and carrier-state. BACKGROUND: The serovars Enteritidis and Typhimurium of the Gram-negative bacterium Salmonella enterica are significant causes of human food poisoning. Fowl carrying these bacteria often show no clinical disease, with detection only established post-mortem. Increased resistance to the carrier state in commercial poultry could be a way to improve food safety by reducing the spread of these bacteria in poultry flocks. Previous studies identified QTLs for both resistance to carrier state and resistance to Salmonella colonization in the same White Leghorn inbred lines. Until now, none of the QTLs identified was common to the two types of resistance. All these analyses were performed using the F2 inbred or backcross option of the QTLExpress software based on linear regression. In the present study, QTL analysis was achieved using Maximum Likelihood with QTLMap software, in order to test the effect of the QTL analysis method on QTL detection. We analyzed the same phenotypic and genotypic data as those used in previous studies, which were collected on 378 animals genotyped with 480 genome-wide SNP markers. To enrich these data, we added eleven SNP markers located within QTLs controlling resistance to colonization and we looked for potential candidate genes co-localizing with QTLs. RESULTS: In our case the QTL analysis method had an important impact on QTL detection. We were able to identify new genomic regions controlling resistance to carrier-state, in particular by testing the existence of two segregating QTLs. But some of the previously identified QTLs were not confirmed. Interestingly, two QTLs were detected on chromosomes 2 and 3, close to the locations of the major QTLs controlling resistance to colonization and to candidate genes involved in the immune response identified in other, independent studies. CONCLUSIONS: Due to the lack of stability of the QTLs detected, we suggest that interesting regions for further studies are those that were identified in several independent studies, which is the case of the QTL regions on chromosomes 2 and 3, involved in resistance to both Salmonella colonization and carrier state. These observations provide evidence of common genes controlling S. Typhimurium colonization and S. Enteritidis carrier-state in chickens.201222613937
8837150.9988Phage resistance formation and fitness costs of hypervirulent Klebsiella pneumoniae mediated by K2 capsule-specific phage and the corresponding mechanisms. INTRODUCTION: Phage is promising for the treatment of hypervirulent Klebsiella pneumoniae (hvKP) infections. Although phage resistance seems inevitable, we found that there still was optimization space in phage therapy for hvKP infection. METHODS: The clinical isolate K. pneumoniae FK1979 was used to recover the lysis phage ΦFK1979 from hospital sewage. Phage-resistant bacteria were obtained on LB agar and used to isolate phages from sewage. The plaque assay, transmission electron microscopy (TEM), multiplicity of infection test, one-step growth curve assay, and genome analysis were performed to characterize the phages. Colony morphology, precipitation test and scanning electron microscope were used to characterize the bacteria. The absorption test, spot test and efficiency of plating (EOP) assay were used to identify the sensitivity of bacteria to phages. Whole genome sequencing (WGS) was used to identify gene mutations of phage-resistant bacteria. The gene expression levels were detected by RT-qPCR. Genes knockout and complementation of the mutant genes were performed. The change of capsules was detected by capsule quantification and TEM. The growth kinetics, serum resistance, biofilm formation, adhesion and invasion to A549 and RAW 264.7 cells, as well as G. mellonella and mice infection models, were used to evaluate the fitness and virulence of bacteria. RESULTS AND DISCUSSION: Here, we demonstrated that K2 capsule type sequence type 86 hvKP FK1979, one of the main pandemic lineages of hvKP with thick capsule, rapidly developed resistance to a K2-specific lysis phage ΦFK1979 which was well-studied in this work to possess polysaccharide depolymerase. The phage-resistant mutants showed a marked decrease in capsule expression. WGS revealed single nucleotide polymorphism (SNP) in genes encoding RfaH, galU, sugar glycosyltransferase, and polysaccharide deacetylase family protein in the mutants. RfaH and galU were further identified as being required for capsule production and phage sensitivity. Expressions of genes involved in the biosynthesis or regulation of capsule and/or lipopolysaccharide significantly decreased in the mutants. Despite the rapid and frequent development of phage resistance being a disadvantage, the attenuation of virulence and fitness in vitro and in vivo indicated that phage-resistant mutants of hvKP were more susceptible to the immunity system. Interestingly, the newly isolated phages targeting mutants changed significantly in their plaque and virus particle morphology. Their genomes were much larger than and significantly different from that of ΦFK1979. They possessed much more functional proteins and strikingly broader host spectrums than ΦFK1979. Our study suggests that K2-specific phage has the potential to function as an antivirulence agent, or a part of phage cocktails combined with phages targeting phage-resistant bacteria, against hvKP-relevant infections.202337538841
6216160.9988Phosphoinositide 3-kinase family in channel catfish and their regulated expression after bacterial infection. The phosphoinositide-3-kinase (PI3Ks) family of lipid kinases is widely conserved from yeast to mammals. In this work, we identified a total of 14 members of the PI3Ks from the channel catfish genome and transcriptome and conducted phylogenetic and syntenic analyses of these genes. The expression profiles after infection with Edwardsiella ictaluri and Flavobacterium columnare were examined to determine the involvement of PI3Ks in immune responses after bacterial infection in catfish. The results indicated that PI3Ks genes including all of the catalytic subunit and several regulatory subunits genes were widely regulated after bacterial infection. The expression patterns were quite different when challenged with different bacteria. The PI3Ks were up-regulated rapidly at the early stage after ESC infection, but their induced expression was much slower, at the middle stage after columnaris infection. RNA-Seq datasets indicated that PI3K genes may be expressed at different levels in different catfish differing in their resistance levels against columnaris. Future studies are required to confirm and validate these observations. Taken together, this study indicated that PI3K genes may be involved as a part of the defense responses of catfish after infections, and they could be one of the determinants for disease resistance.201626772478
6345170.9988Transfer RNA gene numbers may not be completely responsible for the codon usage bias in asparagine, isoleucine, phenylalanine, and tyrosine in the high expression genes in bacteria. It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β', respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes.201223053196
6164180.9988Genetic factors involved in murine resistance to experimental brucellosis. C57 B1/6 are more resistant than DBA2 mice to IV inoculation of Brucella suis 1330. This difference does not concern the blood clearance of the injected bacteria or the number of infective colonies in the spleen at very early (less than 24 h) or at late (greater than 2 months) stages but the splenic infection at intermediate stages with maximal differences between days 7 and 14. The "resistance" character is inherited by F1 and backcrosses as a partially dominant character with polygenic control and a better expression of resistance factor(s) in females, independently of male-female matings. Association of the "resistance" character with known genetic markers was investigated using (B6 X DB) X DB backcrosses, BALB/B, BALB/c, C3H/eb and C3H/HeJ mice. No correlation of "resistance" with Ig allotypes, the "d" coat colour or the LPS genes was evidenced. On the other hand significant differences in the number of splenic colonies on day 7 were observed according to the H-2 haplotype or the "b" coat colour phenotypes. These results are discussed in terms of a comparison with the genetics of other facultative intracellular bacteria and of the partially common and partially independent genetic regulation of the functional components of anti-Brucella resistance.19846593265
6278190.9988Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lungs of patients with cystic fibrosis (CF). During infection the bacteria evolve and adapt to the lung environment. Here we use genomic, transcriptomic and phenotypic approaches to compare multiple isolates of P. aeruginosa collected more than 20 years apart during a chronic infection in a CF patient. Complete genome sequencing of the isolates, using short- and long-read technologies, showed that a genetic bottleneck occurred during infection and was followed by diversification of the bacteria. A 125 kb deletion, an 0.9 Mb inversion and hundreds of smaller mutations occurred during evolution of the bacteria in the lung, with an average rate of 17 mutations per year. Many of the mutated genes are associated with infection or antibiotic resistance. RNA sequencing was used to compare the transcriptomes of an earlier and a later isolate. Substantial reprogramming of the transcriptional network had occurred, affecting multiple genes that contribute to continuing infection. Changes included greatly reduced expression of flagellar machinery and increased expression of genes for nutrient acquisition and biofilm formation, as well as altered expression of a large number of genes of unknown function. Phenotypic studies showed that most later isolates had increased cell adherence and antibiotic resistance, reduced motility, and reduced production of pyoverdine (an iron-scavenging siderophore), consistent with genomic and transcriptomic data. The approach of integrating genomic, transcriptomic and phenotypic analyses reveals, and helps to explain, the plethora of changes that P. aeruginosa undergoes to enable it to adapt to the environment of the CF lung during a chronic infection.202134826267