# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6155 | 0 | 1.0000 | MerP/MerT-mediated mechanism: A different approach to mercury resistance and bioaccumulation by marine bacteria. Currently, mechanism underlying mercury resistance and bioaccumulation of marine bacteria remains little understood. A marine bacterium Pseudomonas pseudoalcaligenes S1 is resistant to 120 mg/L Hg(2+) with bioaccumulation capacity of 133.33 mg/g. Accordingly, Hg(2+) resistance and bioaccumulation mechanism of S1 was investigated at molecular and cellular level. Annotation of S1 transcriptome reveals 772 differentially expressed genes, including Hg(2+)-relevant genes merT, merP and merA. Both merT and merP gene have three complete copies in S1 genome, while merA gene has only one. In order to evaluate the function of these Hg(2+)-relevant genes, three recombinant strains were constructed to express MerA (named as A), MerT/MerP (TP) and MerT/MerP/MerA (TPA), respectively. The results show that Hg(2+) resistance of strain TP, TPA, and A are improved with minimum inhibition concentration (MIC) being 60 mg/L, 40 mg/L, and 20 mg/L, respectively compared to 2 mg/L of host strain. Strain TP and TPA exhibit enhanced Hg(2+) bioaccumulation capacity, while strain A does not differ from the control. Their equilibrium Hg(2+) bioaccumulation capacities are 110.48 mg/g, 94.49 mg/g, 83.76 mg/g and 82.29 mg/g, respectively. Summarily, different from most microorganisms that exhibit Hg(2+) resistance by MerA-mediated mechanism, marine bacterium S1 achieves Hg(2+) resistance and bioaccumulation capability via MerT/MerP-mediated strategy. | 2020 | 31955028 |
| 6113 | 1 | 0.9995 | Metal tolerance assisted antibiotic susceptibility profiling in Comamonas acidovorans. Metal ions are known selective agents for antibiotic resistance and frequently accumulate in natural environments due to the anthropogenic activities. However, the action of metals that cause the antibiotic resistance is not known for all bacteria. The present work is aimed to investigate the co-selection of metals and antibiotic resistance in Comamonas acidovorans. Tolerance profile of 16 metals revealed that the strain could tolerate high concentrations of toxic metals i.e., Cr (710 ppm), As (380 ppm), Cd (320 ppm), Pb (305 ppm) and Hg (205 ppm). Additionally, metal tolerant phenotypes were subjected to antibiotic resistance profiling; wherein several metal tolerant phenotypes (Cr 1.35-fold; Co-1.33 fold; Mn-1.29 fold) were resistant, while other metal tolerant phenotypes (Mg 1.32-fold; Hg 1.29-fold; Cu 1.28-fold) were susceptible than control phenotype. Metal accumulation may alter the metabolism of C. acidovorans that activates or inactivates the genes responsible for antibiotic resistance, resulting in the resistance and/or susceptibility pattern observed in metal resistant phenotypes. | 2018 | 29302860 |
| 6156 | 2 | 0.9995 | Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. A PCR approach was developed to assess the occurrence and diversity of arsenite transporters in arsenic-resistant bacteria. For this purpose, three sets of degenerate primers were designed for the specific amplification of approximately 750bp fragments from arsB and two subsets of ACR3 (designated ACR3(1) and ACR3(2)) arsenite carrier gene families. These primers were used to screen a collection of 41 arsenic-resistant strains isolated from two soil samples with contrasting amounts of arsenic. PCR results showed that 70.7% of the isolates contained a gene related to arsB or ACR3, with three of them carrying both arsB and ACR3-like genes. Phylogenetic analysis of the protein sequences deduced from the amplicons indicated a prevalence of arsB in Firmicutes and Gammaproteobacteria, while ACR3(1) and ACR3(2) were mostly present in Actinobacteria and Alphaproteobacteria, respectively. In addition to validating the use of degenerate primers for the identification of arsenite transporter genes in a taxonomically wide range of bacteria, the study describes a novel collection of strains displaying interesting features of resistance to arsenate, arsenite and antimonite, and the ability to oxidize arsenite. | 2007 | 17258434 |
| 6108 | 3 | 0.9994 | Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BACKGROUND: Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III) and As(V)] and can be transformed by microbial redox processes in the natural environment. As(III) is much more toxic and mobile than As(V), hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III) resistance levels and related functional genes of these species. RESULTS: A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM) were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1) and 21 ACR3(2)] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB) and an arsenite transporter gene (ACR3 or arsB) displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2) and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. CONCLUSION: Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in part by horizontal gene transfer events. Bacteria capable of both arsenite oxidation and arsenite efflux mechanisms had an elevated arsenite resistance level. | 2009 | 19128515 |
| 3612 | 4 | 0.9994 | Copper resistance in Desulfovibrio strain R2. A sulfate-reducing bacterium, designated as strain R2, was isolated from wastewater of a ball-bearing manufacturing facility in Tomsk, Western Siberia. This isolate was resistant up to 800 mg Cu/l in the growth medium. By comparison, Cu-resistance of reference cultures of sulfate-reducing bacteria ranged from 50 to 75 mg Cu/l. Growth experiments with strain R2 showed that Cu was an essential trace element and, on one hand, enhanced growth at concentrations up to 10 mg/l but, on the other hand, the growth rate decreased and lag-period extended at copper concentrations of >50 mg/l. Phenotypic characteristics and a 1078 bp nucleotide sequence of the 16S rDNA placed strain R2 within the genus Desulfovibrio. Desulfovibrio R2 carried at least one plasmid of approximately of 23.1 kbp. A 636 bp fragment of the pcoR gene of the pco operon that encodes Cu resistance was amplified by PCR from plasmid DNA of strain R2. The pco genes are involved in Cu-resistance in some enteric and aerobic soil bacteria. Desulfovibrio R2 is a prospective strain for bioremediation purposes and for developing a homologous system for transformation of Cu-resistance in sulfate-reducing bacteria. | 2003 | 12755486 |
| 6157 | 5 | 0.9994 | Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype. In the present study, 44 arsenic-resistant bacteria were isolated through serial dilutions on agar plate with concentrations ≥0.05 mM of sodium arsenite and ≥10 mM of sodium arsenate from Mandovi and Zuari--estuarine water systems. The ars genotype characterization in 36 bacterial isolates (resistant to 100 mM of sodium arsenate) revealed that only 17 isolates harboured the arsA (ATPase), B (arsenite permease) and C (arsenate reductase) genes on the plasmid DNA. The arsA, B and C genes were individually detected using PCR in 16, 9 and 13 bacterial isolates respectively. Molecular identification of the 17 isolates bearing the ars genotype was carried using 16S rDNA sequencing. A 1300 bp full length arsB gene encoding arsenite efflux pump and a 409 bp fragment of arsC gene coding for arsenate reductase were isolated from the genera Halomonas and Acinetobacter. Phylogenetic analysis of arsB and arsC genes indicated their close genetic relationship with plasmid borne ars genes of E. coli and arsenate reductase of plant origin. The putative arsenate reductase gene isolated from Acinetobacter species complemented arsenate resistance in E. coli WC3110 and JM109 validating its function. This study dealing with isolation of native arsenic-resistant bacteria and characterization of their ars genes might be useful to develop efficient arsenic detoxification strategies for arsenic contaminated aquifers. | 2012 | 21879358 |
| 6109 | 6 | 0.9993 | Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment. Ten different Gram-negative arsenic (As)-resistant and As-transforming bacteria isolated from As-rich groundwater of West Bengal were characterized to assess their role in As mobilization. 16S rRNA gene analysis confirmed the affiliation of these bacteria to genera Achromobacter, Brevundimonas, Rhizobium, Ochrobactrum, and Pseudoxanthomonas. Along with superior As-resistance and As-transformation abilities, the isolates showed broad metabolic capacity in terms of utilizing a variety of electron donors and acceptors (including As) under aerobic and anaerobic conditions, respectively. Arsenic transformation studies performed under various conditions indicated highly efficient As(3+) oxidation or As(5+) reduction kinetics. Genes encoding As(3+) oxidase (aioA), cytosolic As(5+) reductase (arsC), and As(3+) efflux pump (arsB and acr3) were detected within the test isolates. Sequence analyses suggested that As homeostasis genes (particularly arsC, arsB, and acr3) were acquired by most of the bacteria through horizontal gene transfer. A strong correlation between As resistance phenotype and the presence of As(3+) transporter genes was observed. Microcosm study showed that bacterial strain having cytosolic As(5+) reductase property could play important role in mobilizing As (as As(3+)) from subsurface sediment. | 2014 | 24764001 |
| 6102 | 7 | 0.9993 | Isolation of highly copper-resistant bacteria from deep-sea hydrothermal fields and description of a novel species Marinobacter metalliresistant sp. nov. INTRODUCTION: Hydrothermal vents, rich in heavy metals, provided a unique niche for heavy metal resistant microbes. However, knowledge about copper resistant microbes in deep sea hydrothermal vents is still limited. METHODS: The copper-resistant bacteria were isolated from deep-sea hydrothermal vent samples and conducted thorough physical, phylogenetic, and genomic analyses to elucidate their copper resistance capability and related genes. RESULTS: Twelve highly copper-resistant bacteria (up to 6-10 mM) were isolated from deep sea hydrothermal fields They were affiliated with the Pseudoalteromonas (4), Marinobacter (3), Halomonas (2), Psychrobacter (1), and Pseudomonas (1) genus in the α-Proteobacteria, and the Sphingomonas (1) genus in the β-Proteobacteria. The presence of copper in the medium obviously induced the amount of polysaccharides and proteins in the crude extracellular polymeric substances (EPS) produced by Halomonas sp. CuT 3-1, Pseudoalteromonas sp. CuT 4-3 and Marinobacter metalliresistant CuT 6, which could absorb 40 to 50 mg•g(-1) copper. We further described a novel species, Marinobacter metalliresistant sp. nov. CuT 6(T), which exhibited a higher copper resistance and encoded more heavy metal resistance-related genes than other Marinobacter species. DISCUSSION: It revealed that the copper resistance capability exhibited by these strains in hydrothermal fields is likely attributed to the production of exopolymeric substances, such as polysaccharides and proteins, as well as active transport or efflux mechanisms for heavy metals. | 2024 | 39234539 |
| 487 | 8 | 0.9993 | Chromosome-encoded inducible copper resistance in Pseudomonas strains. Nine Pseudomonas strains were selected by their high copper tolerance from a population of bacteria isolated from heavy-metal polluted zones. Copper resistance (Cu(r)) was inducible by previous exposure of cultures to subinhibitory amounts of copper sulfate. All nine strains possessed large plasmids, but transformation and curing results suggest that Cu(r) is conferred by chromosomal genes. Plasmid-less Pseudomonas aeruginosa PAO-derived strains showed the same level of Cu(r) as environmental isolates and their resistance to copper was also inducible. Total DNA from the environmental Pseudomonas, as well as from P. aeruginosa PAO strains, showed homology to a Cu(r) P. syringae cop probe at low-stringency conditions but failed to hybridize at high-stringency conditions. | 1995 | 8572680 |
| 6106 | 9 | 0.9993 | Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compared to a low frequency of distribution for aio (arsenite oxidase) (12 strains), arr (arsenate respiratory reductase) (1 strain) and arsM (arsenite methytransferase)-like genes (4 strains), the ars (arsenic resistance system)-like genes were identified in 174 strains including 1,051 genes; b) 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms) which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c) the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d) only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e) the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms. On average, the number of arsenic-related genes per genome of strains isolated from arsenic-rich environments is more than four times higher than the strains from other environments. Compared with human, plant and animal pathogens, the environmental strains possess a larger average number of arsenic-related genes, which indicates that habitat is likely a key driver for bacterial arsenic resistance. | 2014 | 24632831 |
| 486 | 10 | 0.9993 | Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Resistance to a range of heavy metal ions was determined for lead-resistant and other bacteria which had been isolated from a battery-manufacturing site contaminated with high concentration of lead. Several Gram-positive (belonging to the genera Arthrobacter and Corynebacterium) and Gram-negative (Alcaligenes species) isolates were resistant to lead, mercury, cadmium, cobalt, zinc and copper, although the levels of resistance to the different metal ions were specific for each isolate. Polymerase chain reaction, DNA-DNA hybridization and DNA sequencing were used to explore the nature of genetic systems responsible for the metal resistance in eight of the isolates. Specific DNA sequences could be amplified from the genomic DNA of all the isolates using primers for sections of the mer (mercury resistance determinant on the transposon Tn501) and pco (copper resistance determinant on the plasmid pRJ1004) genetic systems. Positive hybridizations with mer and pco probes indicated that the amplified segments were highly homologous to these genes. Some of the PCR products were cloned and partially sequenced, and the regions sequenced were highly homologous to the appropriate regions of the mer and pco determinants. These results demonstrate the wide distribution of mercury and copper resistance genes in both Gram-positive and Gram-negative isolates obtained from this lead-contaminated soil. In contrast, the czc (cobalt, zinc and cadmium resistance) and chr (chromate resistance) genes could not be amplified from DNAs of some isolates, indicating the limited contribution, if any, of these genetic systems to the metal ion resistance of these isolates. | 1997 | 9342884 |
| 6098 | 11 | 0.9993 | Isolation and Characterization of Multi-Metal-Resistant Halomonas sp. MG from Tamil Nadu Magnesite Ore Soil in India. The aim of the study was to isolate and characterize potential multi-metal-resistant bacteria from ore soils. A total of three bacteria were isolated and assayed for resistance to arsenic (As), copper (Cu), and lead (Pb). Isolate Halomonas sp. MG exhibited maximum resistance to 1000 mg Pb/L, 800 mg As/L, and 500 mg Cu/L and it was identified as Halomonas sp. based on the partial 16S rDNA sequences. The metal(loid)s resistance mechanisms were further confirmed by amplification of arsC (As) copAU (Cu), and pbrT (Pb) genes. Biological transmission electron micrographs and XRD studies showed that the isolate Halomonas sp. MG transformed and/or biomineralized the metals either intracellularly or extracellularly. These results suggest that the isolate could be used as a potential candidate for the bioremediation of As, Cu, and Pb. | 2015 | 26298269 |
| 2801 | 12 | 0.9993 | Principal component analysis exploring the association between antibiotic resistance and heavy metal tolerance of plasmid-bearing sewage wastewater bacteria of clinical relevance. This paper unravels the occurrence of plasmid-mediated antibiotic resistance in association with tolerance to heavy metals among clinically relevant bacteria isolated from sewage wastewater. The bacteria isolated were identified following conventional phenotypic and/or molecular methods, and were subjected to multiple-antibiotic resistance (MAR) profiling. The isolates were tested against the heavy metals Hg(2+), Cd(2+), Cr(2+) and Cu(2+). SDS-PAGE and agarose gel electrophoretic analyses were performed, respectively, for the characterization of heavy metal stress protein and R-plasmid among the isolated bacteria. Principal component analysis was applied in determining bacterial resistance to antibiotics and heavy metals. Both lactose-fermenting ( Escherichia coli ) and non-fermenting ( Acinetobacter baumannii and Pseudomonas putida ) Gram-negative bacterial strains were procured, and showed MAR phenotypes with respect to three or more antibiotics, along with resistance to the heavy metals Hg(2+), Cd(2+), Cr(2+) and Cu(2+). The Gram-positive bacteria, Enterococcus faecalis , isolated had 'ampicillin-kanamycin-nalidixic acid' resistance. The bacterial isolates had MAR indices of 0.3-0.9, indicating their ( E. faecalis , E. coli , A. baumannii and P. putida ) origin from niches with high antibiotic pollution and human faecal contamination. The Gram-negative bacteria isolated contained a single plasmid (≈54 kb) conferring multiple antibiotic resistance, which was linked to heavy metal tolerance; the SDS-PAGE analysis demonstrated the expression of heavy metal stress proteins (≈59 and ≈10 kDa) in wastewater bacteria with a Cd(2+) stressor. The study results grant an insight into the co-occurrence of antibiotic resistance and heavy metal tolerance among clinically relevant bacteria in sewage wastewater, prompting an intense health impact over antibiotic usage. | 2020 | 32974572 |
| 6097 | 13 | 0.9992 | Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BACKGROUND: Alleviating arsenic (As) contamination is a high-priority environmental issue. Hyperaccumulator plants may harbor endophytic bacteria able to detoxify As. Therefore, we investigated the distribution, diversity, As (III) resistance levels, and resistance-related functional genes of arsenite-resistant bacterial endophytes in Pteris vittata L. growing in a lead-zinc mining area with different As contamination levels. RESULTS: A total of 116 arsenite-resistant bacteria were isolated from roots of P. vittata with different As concentrations. Based on the 16S rRNA gene sequence analysis of representative isolates, the isolates belonged to Proteobacteria, Actinobacteria, and Firmicutes. Major genera found were Agrobacterium, Stenotrophomonas, Pseudomonas, Rhodococcus, and Bacillus. The most highly arsenite-resistant bacteria (minimum inhibitory concentration > 45 mM) were isolated from P. vittata with high As concentrations and belonged to the genera Agrobacterium and Bacillus. The strains with high As tolerance also showed high levels of indole-3-acetic acid (IAA) production and carried arsB/ACR3(2) genes. The arsB and ACR3(2) were most likely horizontally transferred among the strains. CONCLUSION: The results of this study suggest that P. vittata plants with high As concentrations may select diverse arsenite-resistant bacteria; this diversity might, at least partly, be a result of horizontal gene transfer. These diverse endophytic bacteria are potential candidates to enhance phytoremediation techniques. | 2018 | 29739310 |
| 5757 | 14 | 0.9992 | The expression regulation of recA gene and bacterial class 2 integron-associated genes induced by antibiotics. OBJECTIVE: To investigate the effects and mechanisms of common antibiotics induction on the expression of class 2 integron integrase and variable region resistance genes in bacteria, as well as potential structural mutations. METHODS: Clinical isolates containing non-functional class 2 integrons and functional class 2 integrons were selected. Strains containing non-functional class 2 integrons or functional class 2 integrons were constructed using isolated DNA templates. These strains were subjected to continuous induction with drug concentrations of 1/2 MIC and 1/4 MIC (ciprofloxacin, ampicillin, and kanamycin) and a concentration of 0.2 μg/ml (mitomycin C) over 8 days. The relative expression levels of relevant genes were measured on days 1, 3, and 8. Drug resistance in the experimental strains was assessed before and after induction to identify any differences. Finally, the sequence of the non-functional class 2 integron integrase gene was analyzed for structural changes that occurred as a result of induction. RESULTS: All drugs selected in this study increased the relative expression levels of recA, intI2, dfrA1, sat2, and aadA1. Significant differences in inductive abilities were observed among the drugs. The 1/2 MIC concentrations were more effective than 1/4 MIC concentrations in increasing the relative expression levels of target genes and enhancing the resistance of the experimental strains. The relative expression levels of recA, intI2, and dfrA1 rose on day 1, peaked on day 3, and slightly declined by day 8. Induced strains exhibited increased resistance to the drugs, with the most significant changes observed in the clinical isolates, particularly concerning CIP resistance. Notably, clinical isolate 7b induced with 1/2 MIC KAN exhibited the loss of one base at position 12bp in the integrase sequence. However, none of the four drugs induced mutations at the 444 bp position of class 2 integrons. CONCLUSION: Sub-MIC concentrations of drugs have been shown to induce an increase in the relative expression level of the SOS response-related gene recA, as well as the integrase and resistance genes of class 2 integrons. Continuous induction leads to sustained upregulation of these genes, which stabilizes or slightly decreases upon reaching a plateau. However, the capacity of different drugs to induce expression varies significantly. Short-term antibiotic exposure did not result in critical mutations that convert class 2 integrons into functional forms. | 2025 | 40950603 |
| 3601 | 15 | 0.9992 | R factors mediate resistance to mercury, nickel, and cobalt. Fifty-five clinical isolates and laboratory stocks of Escherichia coli and Salmonella were studied for resistance to each of ten metals. Eleven clinical isolates carrying R factors were resistant to mercury, and, in each case, the resistance was mediated by a previously undefined R-factor gene. The gene was phenotypically expressed within 2 to 4 minutes after entry into sensitive bacteria, but the basis for the resistance remains undefined. Fourteen strains, 12 infected with R factors, were resistant to cobalt and nickel, but these resistances were mediated by R-factor genes in only two strains; separate R-factor genes mediated the resistances to nickel and cobalt. These and other results indicate that the genetic composition of R factors is greater than that originally defined. | 1967 | 5337360 |
| 5137 | 16 | 0.9992 | Genomic Islands Confer Heavy Metal Resistance in Mucilaginibacter kameinonensis and Mucilaginibacter rubeus Isolated from a Gold/Copper Mine. Heavy metals (HMs) are compounds that can be hazardous and impair growth of living organisms. Bacteria have evolved the capability not only to cope with heavy metals but also to detoxify polluted environments. Three heavy metal-resistant strains of Mucilaginibacer rubeus and one of Mucilaginibacter kameinonensis were isolated from the gold/copper Zijin mining site, Longyan, Fujian, China. These strains were shown to exhibit high resistance to heavy metals with minimal inhibitory concentration reaching up to 3.5 mM Cu((II)), 21 mM Zn((II)), 1.2 mM Cd((II)), and 10.0 mM As((III)). Genomes of the four strains were sequenced by Illumina. Sequence analyses revealed the presence of a high abundance of heavy metal resistance (HMR) determinants. One of the strain, M. rubeus P2, carried genes encoding 6 putative P(IB-1)-ATPase, 5 putative P(IB-3)-ATPase, 4 putative Zn((II))/Cd((II)) P(IB-4) type ATPase, and 16 putative resistance-nodulation-division (RND)-type metal transporter systems. Moreover, the four genomes contained a high abundance of genes coding for putative metal binding chaperones. Analysis of the close vicinity of these HMR determinants uncovered the presence of clusters of genes potentially associated with mobile genetic elements. These loci included genes coding for tyrosine recombinases (integrases) and subunits of mating pore (type 4 secretion system), respectively allowing integration/excision and conjugative transfer of numerous genomic islands. Further in silico analyses revealed that their genetic organization and gene products resemble the Bacteroides integrative and conjugative element CTnDOT. These results highlight the pivotal role of genomic islands in the acquisition and dissemination of adaptive traits, allowing for rapid adaption of bacteria and colonization of hostile environments. | 2018 | 30477188 |
| 5961 | 17 | 0.9992 | Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. The soil microbial community is highly complex and contains a high density of antibiotic-producing bacteria, making it a likely source of diverse antibiotic resistance determinants. We used functional metagenomics to search for antibiotic resistance genes in libraries generated from three different soil samples, containing 3.6 Gb of DNA in total. We identified 11 new antibiotic resistance genes: 3 conferring resistance to ampicillin, 2 to gentamicin, 2 to chloramphenicol and 4 to trimethoprim. One of the clones identified was a new trimethoprim resistance gene encoding a 26.8 kDa protein closely resembling unassigned reductases of the dihydrofolate reductase group. This protein, Tm8-3, conferred trimethoprim resistance in Escherichia coli and Sinorhizobium meliloti (γ- and α-proteobacteria respectively). We demonstrated that this gene encoded an enzyme with dihydrofolate reductase activity, with kinetic constants similar to other type I and II dihydrofolate reductases (K(m) of 8.9 µM for NADPH and 3.7 µM for dihydrofolate and IC(50) of 20 µM for trimethoprim). This is the first description of a new type of reductase conferring resistance to trimethoprim. Our results indicate that soil bacteria display a high level of genetic diversity and are a reservoir of antibiotic resistance genes, supporting the use of this approach for the discovery of novel enzymes with unexpected activities unpredictable from their amino acid sequences. | 2011 | 21281423 |
| 3613 | 18 | 0.9992 | Copper and Zinc Tolerance in Bacteria Isolated from Fresh Produce. The continued agricultural exposure of bacteria to metals such as copper and zinc may result in an increased copper tolerance through the food chain. The aim of this study was to determine the Cu and Zn tolerance of bacteria from fresh produce (cucumber, zucchini, green pepper, tomato, lettuce, vegetable salad, broccoli, cabbage, carrot, green onion, onion, and mango). Isolates (506 aerobic mesophiles) from 12 different food produce products were tested for growth in a range of Cu and Zn concentrations. Selected isolates were identified using 16S rDNA sequencing, and the presence of metal resistance genes was studied using PCR amplification. More than 50% of the isolates had MICs for copper sulfate greater than 16 mM, and more than 40% had MICs greater than 4 mM for zinc chloride. Isolates with high levels of tolerance to Cu and Zn were detected in all the produce products investigated. A selection of 51 isolates with high MICs for both Cu and Zn were identified as belonging to the genera Pseudomonas (28), Enterobacter (7), Serratia (4), Leclercia (1), Bacillus (10), and Paenibacillus (1). A study of the genetic determinants of resistance in the selected gram-negative isolates revealed a high incidence of genes from the pco multicopper oxidase cluster, from the sil cluster involved in Cu and silver resistance, and from the chromate resistance gene chrB. A high percentage carried both pco and sil. The results suggest that Cu and Zn tolerance, as well as metal resistance genes, is widespread in bacteria from fresh produce. | 2017 | 28467185 |
| 6099 | 19 | 0.9992 | Culture-dependent and independent studies of microbial diversity in highly copper-contaminated Chilean marine sediments. Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions, focusing on sulfate-, thiosulfate-, and iron-reducing bacteria. For both sediments, the cultivable bacteria isolated at oxic conditions were mostly affiliated to the genus Bacillus, while at anoxic conditions the majority of the cultivable bacteria found were closely related to members of the genera Desulfovibrio, Sphingomonas, and Virgibacillus. Copper resistance was between 100 and 400 ppm, with the exception of a strain affiliated to members of the genus Desulfuromonas, which was resistant up to 1,000 ppm of copper. In parallel, cloning and sequencing of 16S rRNA was performed to study the total bacterial diversity in the sediments. A weak correlation was observed between the isolated strains and the 16S rRNA operational taxonomic units detected. The presence of copper resistance genes (copA, cusA, and pcoA) was tested for all the strains isolated; only copA was detected in a few isolates, suggesting that other copper resistance mechanisms could be used by the bacteria in those highly copper-contaminated sediments. | 2013 | 22976340 |