# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6140 | 0 | 1.0000 | Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry. | 2017 | 28676278 |
| 6036 | 1 | 0.9993 | Comprehensive Phenotypic Characterization and Genomic Analysis Unveil the Probiotic Potential of Bacillus velezensis K12. Bacillus spp. have emerged as pivotal sources of probiotic preparations, garnering considerable attention in recent years owing to their vigorous bacteriostatic activity and antimicrobial resistance. This study aimed to investigate these probiotic characteristics in depth and verify the safety of Bacillus velezensis K12, a strain isolated from broiler intestine. The K12 strain was identified as Bacillus velezensis based on its morphology and 16S rDNA sequence homology analysis. Subsequently, B. velezensis K12 was evaluated for acid resistance, bile salt resistance, gastrointestinal tolerance, drug sensitivity, and antimicrobial activity. Additionally, whole-genome sequencing technology was employed to dissect its genomic components further, aiming to explore its potential applications as a probiotic strain. B. velezensis K12 was sensitive to six antibiotics and had acid tolerance. Furthermore, it showed potent antimicrobial activity against a wide range of pathogenic bacteria, including Escherichia coli (E. coli), Staphylococcus aureus, Salmonella, Clostridium perfringens, Bacillus cereus, and Vibrio parahaemolyticus. The complete genome sequencing of B. velezensis K12 revealed a genomic length of 3,973,105 base pairs containing 4123 coding genes, among which 3973 genes were functionally annotated. The genomic analysis identified genes associated with acid and bile tolerance, adhesion, antioxidants, and secondary metabolite production, whereas no functional genes related to enterotoxins or transferable antibiotic resistance were detected, thereby confirming the probiotic properties of B. velezensis K12. B. velezensis K12 exhibits broad-spectrum bacteriostatic activity and in vitro safety, positioning it as a potential candidate strain for developing probiotic Bacillus preparations. | 2025 | 40150327 |
| 6141 | 2 | 0.9992 | Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. In lactic acid bacteria (LAB), amino acids and their derivatives may be converted into amine-containing compounds designated biogenic amines, in pathways providing metabolic energy and/or acid resistance to the bacteria. In a previous study, a pathway converting tyrosine to tyramine was detected in Lactobacillus brevis and a fragment of a gene possibly involved in the production of another biogenic amine, putrescine, from agmatine, was detected in the same locus. The present study was carried out to determine if Lb. brevis actually harbours two biogenic amine-producing pathways in the same locus and to investigate the occurrence of the two gene clusters in other bacteria. Sequencing of the DNA locus in Lb. brevis revealed a cluster of six genes that are related to previously reported genes of agmatine deiminase pathways but with marked differences such as two genes encoding putative agmatine deiminases rather than one. Heterologous expression of encoded enzymes confirmed the presence of at least one active agmatine deiminase and one amino acid transporter that efficiently exchanged agmatine and putrescine. It was concluded that the Lb. brevis gene cluster encodes a functional and highly specific agmatine deiminase pathway. Screening of a collection of 197 LAB disclosed the same genes in 36 strains from six different species, and almost all the positive bacteria also contained the tyrosine catabolic pathway genes in the same locus. These results support the hypothesis that the agmatine deiminase and tyrosine catabolic pathways belong to a genomic region that provides acid resistance and that is exchanged horizontally as a whole between LAB. | 2007 | 17600066 |
| 6139 | 3 | 0.9991 | Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications. | 2023 | 38616876 |
| 6035 | 4 | 0.9990 | Developing Gut-Healthy Strains for Pets: Probiotic Potential and Genomic Insights of Canine-Derived Lactobacillus acidophilus GLA09. Probiotics are widely used to improve pet health and welfare due to their significant biological activity and health benefits. Lactobacillus acidophilus GLA09 was derived from the intestinal tract of healthy beagles. The safety and suitability evaluation of GLA09 was completed through a combination of whole genome sequence and phenotypic analyses, including tests for the inhibition of harmful bacteria, acid resistance, bile salt tolerance, adhesion, and amine-producing substance content. The findings revealed that GLA09 has good gastrointestinal tolerance, inhibits the growth of pathogenic bacteria, and does not produce toxic biogenic amines. The genome of GLA09 comprises one chromosome and one plasmid, with a genome size of 2.10 M and a Guanine + Cytosine content of 38.71%. It encodes a total of 2208 genes, including 10 prophages, and 1 CRISPR sequence. Moreover, 56 carbohydrate-encoding genes were identified in the CAZy database, along with 11 genes for cold and heat stress tolerance, 5 genes for bile salt tolerance, 12 genes for acid tolerance, and 14 predicted antioxidant genes. Furthermore, GLA09 has one lincosamide resistance gene, but there is no risk of transfer. GLA09 harbors a cluster of Helveticin J and Enterolysin A genes linked to antimicrobial activity. Genomic analysis validated the probiotic attributes of GLA09, indicating its potential utility as a significant probiotic in the pet food industry. In summary, L. acidophilus GLA09 has the potential to be used as a probiotic in pet food and can effectively combat intestinal health in pets. | 2025 | 40005717 |
| 8465 | 5 | 0.9990 | Complete Genome Sequence of Weissella cibaria NH9449 and Comprehensive Comparative-Genomic Analysis: Genomic Diversity and Versatility Trait Revealed. Lactic acid bacteria (LAB) in the genus Weissella spp. contain traits in their genome that confer versatility. In particular, Weissella cibaria encodes several beneficial genes that are useful in biotechnological applications. The complete genome of W. cibaria NH9449 was sequenced and an in silico comparative analysis was performed to gain insight into the genomic diversity among members of the genus Weissella. A total of 219 Weissella genomes were used in a bioinformatics analysis of pan-genomes, phylogenetics, self-defense mechanisms, virulence factors, antimicrobial resistance, and carbohydrate-active enzymes. These investigations showed that the strain NH9449 encodes several restriction-modification-related genes and a CRISPR-Cas region in its genome. The identification of carbohydrate-active enzyme-encoding genes indicated that this strain could be beneficial in biotechnological applications. The comparative genomic analysis reveals the very high genomic diversity in this genus, and some marked differences in genetic variation and genes among Weissella species. The calculated average amino acid identity (AAI) and phylogenetic analysis of core and accessory genes shows the possible existence of three new species in this genus. These new genomic insights into Weissella species and their biological functions could be useful in the food industry and other applications. | 2022 | 35663880 |
| 6142 | 6 | 0.9990 | Genome analysis of lactic acid bacterial strains selected as potential starters for traditional Slovakian bryndza cheese. Genomes of 21 strains of lactic acid bacteria isolated from Slovakian traditional cheeses were sequenced on an Illumina MiSeq platform. Subsequently, they were analysed regarding taxonomic classification, presence of genes encoding defence systems, antibiotic resistance and production of biogenic amines. Thirteen strains were found to carry genes encoding at least one bacteriocin, 18 carried genes encoding at least one restriction-modification system, all strains carried 1-6 prophages and 9 strains had CRISPR-Cas systems. CRISPR-Cas type II-A was the most common, containing 0-24 spacers. Only 10% spacers were found to be homological to known bacteriophage or plasmid sequences in databases. Two Enterococcus faecium strains and a Lactococcus lactis strain carried antibiotic resistance genes. Genes encoding for ornithine decarboxylase were detected in four strains and genes encoding for agmatine deiminase were detected in four strains. Lactobacillus paraplantarum 251 L appeared to be the most interesting strain, as it contained genes encoding for two bacteriocins, a restriction-modification system, two CRISPR-Cas systems, four prophages and no genes connected with antibiotic resistance or production of biogenic amines. | 2018 | 30346516 |
| 6067 | 7 | 0.9990 | Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product "lukanka". The present work discusses the technological and new selection criteria that should be included for selecting lactic acid bacteria for production of fermented meat. Lactic acid bacteria isolated from Bulgarian traditional fermented "lulanka" salami was studied regarding some positive technological parameters (growth at different temperature, pH, and proteolytic activity). The presence of genes related to the virulence factors, production of biogenic amines, and vancomycin resistance were presented in low frequency in the studied lactic acid bacteria. On the other hand, production of antimicrobial peptides and high spread of bacteriocin genes were broadly presented. Very strong activity against L. monocytogenes was detected in some of the studied lactic acid bacteria. In addition, the studied strains did not present any antimicrobial activity against tested closely related bacteria such as Lactobacillus spp., Lactococcus spp., Enterococcus spp. or Pediococcus spp. To our knowledge this is the first study on the safety and antimicrobial properties of lactic acid bacteria isolated from Bulgarian lukanka obtained by spontaneous fermentation. | 2017 | 28552660 |
| 6136 | 8 | 0.9990 | Complete genome sequences of Lacticaseibacillus paracasei INIA P272 (CECT 8315) and Lacticaseibacillus rhamnosus INIA P344 (CECT 8316) isolated from breast-fed infants reveal probiotic determinants. Lacticaseibacillus paracasei INIA P272 and Lacticaseibacillus rhamnosus INIA P344, isolated from breast-fed infants, are two promising bacterial strains for their use in functional foods according to their demonstrated probiotic and technological characteristics. To better understand their probiotic characteristics and evaluate their safety, here we report the draft genome sequences of both strains as well as the analysis of their genetical content. The draft genomes of L. paracasei INIA P272 and L. rhamnosus INIA P344 comprise 3.01 and 3.26 Mb, a total of 2994 and 3166 genes and a GC content of 46.27 % and 46.56 %, respectively. Genomic safety was assessed following the EFSA guidelines: the identification of both strains was confirmed through Average Nucleotide Identity, and the absence of virulence, pathogenic and antibiotic resistance genes was demonstrated. The genome stability analysis revealed the presence of plasmids and phage regions in both genomes, however, CRISPR sequences and other mechanisms to fight against phage infections were encoded. The probiotic abilities of both strains were supported by the presence of genes for the synthesis of SCFA, genes involved in resistance to acid and bile salts or a thiamine production cluster. Moreover, the encoded exopolysaccharide biosynthesis genes could provide additional protection against the deleterious gastrointestinal conditions, besides which, playing a key role in adherence and coaggregation of pathogenic bacteria together with the high number of adhesion proteins and domains encoded by both genomes. Additionally, the bacteriocin cluster genes found in both strains, could provide an advantageous ability to compete against pathogenic bacteria. This genomic study supports the probiotic characteristics described previously for these two strains and satisfies the safety requirements to be used in food products. | 2022 | 35868412 |
| 6034 | 9 | 0.9990 | Isolation and Characterization of Lactic Acid Bacteria With Probiotic Attributes From Different Parts of the Gastrointestinal Tract of Free-living Wild Boars in Hungary. Lactic acid bacteria (LAB) in the microbiota play an important role in human and animal health and, when used as probiotics, can contribute to an increased growth performance in livestock management. Animals living in their native habitat can serve as natural sources of microorganisms, so isolation of LAB strains from wild boars could provide the opportunity to develop effective probiotics to improve production in swine industry. In this study, the probiotic potential of 56 LAB isolates, originated from the ileum, colon, caecum and faeces of 5 wild boars, were assessed in vitro in details. Their taxonomic identity at species level and their antibacterial activity against four representative strains of potentially pathogenic bacteria were determined. The ability to tolerate low pH and bile salt, antibiotic susceptibility, bile salt hydrolase activity and lack of hemolysis were tested. Draft genome sequences of ten Limosilactobacillus mucosae and three Leuconostoc suionicum strains were determined. Bioinformatic analysis excluded the presence of any known acquired antibiotic resistance genes. Three genes, encoding mesentericin B105 and two different bacteriocin-IIc class proteins, as well as two genes with possible involvement in mesentericin secretion (mesE) and transport (mesD) were identified in two L. suionicum strains. Lam29 protein, a component of an ABC transporter with proved function as mucin- and epithelial cell-adhesion factor, and a bile salt hydrolase gene were found in all ten L. mucosae genomes. Comprehensive reconsideration of all data helps to select candidate strains to assess their probiotic potential further in animal experiments. | 2024 | 37353593 |
| 8464 | 10 | 0.9990 | Comparative genomics of 40 Weissella paramesenteroides strains. Weissella strains are often detected in spontaneously fermented foods. Because of their abilities to produce lactic acid and functional exopolysaccharides as well as their probiotic traits, Weissella spp. improve not only the sensorial properties but also nutritional values of the fermented food products. However, some Weissella species have been associated with human and animal diseases. In the era of vast genomic sequencing, new genomic/genome data are becoming available to the public on daily pace. Detailed genomic analyses are due to provide a full understanding of individual Weissella species. In this study, the genomes of six Weissella paramesenteroides strains were de novo sequenced. The genomes of 42 W. paramesenteroides strains were compared to discover their metabolic and functional potentials in food fermentation. Comparative genomics and metabolic pathway reconstructions revealed that W. paramesenteroides is a compact group of heterofermentative bacteria with good capacity of producing secondary metabolites and vitamin Bs. Since the strains rarely harbored plasmid DNA, they did not commonly possess the genes associated with bacteriocin production. All 42 strains were shown to bear vanT gene from the glycopeptide resistance gene cluster vanG. Yet none of the strains carried virulence genes. | 2023 | 37065164 |
| 424 | 11 | 0.9990 | Molecular analysis of bacterial cytolysins. Results of molecular and pathogenic studies of three different bacterial hemolysins (cytolysins) are presented. These exoproteins derive from the two gram-negative bacteria Escherichia coli and Aeromonas hydrophila and from the gram-positive pathogen Listeria monocytogenes. The hemolysin of E. coli is determined by an 8-kilobase (kb) region that includes four clustered genes (hlyC, hlyA, hlyB, and hlyD). This hemolysin determinant is part either of large transmissible plasmids or of the chromosome. The genes located chromosomally are found predominantly in E. coli strains that can cause pyelonephritis and/or other extraintestinal infections. A detailed analysis of the chromosomal hyl determinants of one nephropathogenic E. coli strain revealed the existence of specific, large chromosomal insertions 75 kb and 100 kb in size that carry the hly genes but that also influence the expression of other virulence properties, i.e., adhesion and serum resistance. The direct involvement of E. coli hemolysin in virulence could be demonstrated in several model systems. The genetic determinants for hemolysin (cytolysin) formation in A. hydrophila (aerolysin) and L. monocytogenes (listeriolysin) are less complex. Both cytolysins seem to be encoded by single genes, although two loci (aerB and aerC) that affect the expression and activity of aerolysin have been identified distal and proximal to the structural gene for aerolysin (aerA). Cytolysin-negative mutants of both bacteria were obtained by site-specific deletion and/or transposon mutagenesis. These mutants show a drastic reduction in the virulence of the respective bacteria. | 1987 | 2825323 |
| 6137 | 12 | 0.9989 | Genomic and phenotypic analyses of Carnobacterium jeotgali strain MS3(T), a lactate-producing candidate biopreservative bacterium isolated from salt-fermented shrimp. Carnobacterium jeotgali strain MS3(T) was isolated from traditionally fermented Korean shrimp produced with bay salt. The bacterium belongs to the family Carnobacteriaceae, produces lactic acid and contains gene clusters involved in the production of lactate, butyrate, aromatic compounds and exopolysaccharides. Carnobacterium jeotgali strain MS3(T) was characterized through extensive comparison of the virulence potential, genomic relatedness and sequence similarities of its genome with the genomes of other Carnobacteria and lactic acid bacteria. In addition, links between predicted functions of genes and phenotypic characteristics, such as antibiotic resistance and lactate and butyrate production, were extensively evaluated. Genomic and phenotypic analyses of strain MS3(T) revealed promising features, including minimal virulence genes and lactate production, which make this bacterium a desirable candidate for exploitation by the fermented food industry. | 2015 | 25868912 |
| 6039 | 13 | 0.9989 | Genome Characterization and Probiotic Potential of Corynebacterium amycolatum Human Vaginal Isolates. The vaginal microbiome of healthy women contains nondiphtheria corynebacteria. The role and functions of nondiphtheria corynebacteria in the vaginal biotope are still under study. We sequenced and analysed the genomes of three vaginal C. amycolatum strains isolated from healthy women. Previous studies have shown that these strains produced metabolites that significantly increased the antagonistic activity of peroxide-producing lactic acid bacteria against pathogenic and opportunistic microorganisms and had strong antimicrobial activity against opportunistic pathogens. Analysis of the C. amycolatum genomes revealed the genes responsible for adaptation and survival in the vaginal environment, including acid and oxidative stress resistance genes. The genes responsible for the production of H(2)O(2) and the synthesis of secondary metabolites, essential amino acids and vitamins were identified. A cluster of genes encoding the synthesis of bacteriocin was revealed in one of the annotated genomes. The obtained results allow us to consider the studied strains as potential probiotics that are capable of preventing the growth of pathogenic microorganisms and supporting colonisation resistance in the vaginal biotope. | 2022 | 35208706 |
| 6068 | 14 | 0.9989 | Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese. AIM: Evaluate technologically relevant properties from bacteriocin-producing strains to use as starter/adjunct cultures in cheese making. METHODS AND RESULTS: Eight isolates obtained from Pico cheese produced in Azores (Portugal) were found to produce bacteriocins against Listeria monocytogenes and three isolates against Clostridium perfringens. They were identified as Lactococcus lactis and Enterococcus faecalis and submitted to technological tests: growth at different conditions of temperature and salt, acid production, proteolysis, lipolysis, coexistence, enzymatic profile and autolytic capacity. Safety evaluation was performed by evaluating haemolytic, gelatinase and DNase activity, resistance to antibiotics and the presence of virulence genes. Some isolates presented good technological features such as high autolytic activity, acid and diacetyl production. Lactococcus lactis was negative for all virulence genes tested and inhibit the growth of all Lactic acid bacteria (LAB) isolates. Enterococci were positive for the presence of some virulence genes, but none of the isolates were classified as resistant to important antibiotics. CONCLUSIONS: The bacteriocin-producing Lc. lactis present good potential for application in food as adjunct culture in cheese production. The study also reveals good technological features for some Enterococcus isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriocin-producing strains presented important technological properties to be exploited as new adjunct culture for the dairy industry, influencing flavour development and improve safety. | 2014 | 24206097 |
| 8392 | 15 | 0.9989 | Identification of variable genomic regions related to stress response in Oenococcus oeni. The lactic acid bacterium Oenococcus oeni is the most important species involved in malolactic fermentation due to its capability to survive in presence of ethanol and in the acidic environment of wine. In order to identify novel genes involved in adaptation to wine, a new approach using genome-wide analysis based on stress-related genes was performed in strain O. oeni PSU-1, and 106 annotated stress genes were identified. The in silico analysis revealed the high similarity of all those genes through 57 O. oeni genomes; however, seven variable regions of genomic plasticity could be determined for their different presence observed among these strains. Regions 3 and 5 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhanced the fitness of O. oeni strains. Certain genes related to stress resistance were described in these regions, and similarities of putative acquired regions with other lactic acid bacteria species were found. Some genomic fragments present in all the strains were described and another new genomic island harbouring a threonine dehydrogenase was found. The association of selected sequences with adaptation to wine was assessed by screening 31 O. oeni strains using PCR of single genes, but no sequences were found to be exclusive to highly performing malolactic fermentation strains. This study provides new information about the genomic variability of O. oeni strains contributing to a further understanding of this species and the relationship of its genomic traits with the ability to adapt to stress conditions. | 2017 | 29195994 |
| 5878 | 16 | 0.9989 | Phenotypic and Safety Assessment of the Cheese Strain Lactiplantibacillus plantarum LL441, and Sequence Analysis of its Complete Genome and Plasmidome. This work describes the phenotypic typing and complete genome analysis of LL441, a dairy Lactiplantibacillus plantarum strain. LL441 utilized a large range of carbohydrates and showed strong activity of some carbohydrate-degrading enzymes. The strain grew slowly in milk and produced acids and ketones along with other volatile compounds. The genome of LL441 included eight circular molecules, the bacterial chromosome, and seven plasmids (pLL441-1 through pLL441-7), ranging in size from 8.7 to 53.3 kbp. Genome analysis revealed vast arrays of genes involved in carbohydrate utilization and flavor formation in milk, as well as genes providing acid and bile resistance. No genes coding for virulence traits or pathogenicity factors were detected. Chromosome and plasmids were packed with insertion sequence (IS) elements. Plasmids were also abundant in genes encoding heavy metal resistance traits and plasmid maintenance functions. Technologically relevant phenotypes linked to plasmids, such as the production of plantaricin C (pLL441-1), lactose utilization (pLL441-2), and bacteriophage resistance (pLL441-4), were also identified. The absence of acquired antibiotic resistance and of phenotypes and genes of concern suggests L. plantarum LL441 be safe. The strain might therefore have a use as a starter or starter component in dairy and other food fermentations or as a probiotic. | 2022 | 36614048 |
| 5877 | 17 | 0.9989 | Comparative genomics of four lactic acid bacteria identified with Vitek MS (MALDI-TOF) and whole-genome sequencing. Lactic acid bacteria (LAB) can be used as a probiotic or starter culture in dairy, meat, and vegetable fermentation. Therefore, their isolation and identification are essential. Recent advances in omics technologies and high-throughput sequencing have made the identification and characterization of bacteria. This study firstly aimed to demonstrate the sensitivity of the Vitek MS (MALDI-TOF) system in the identification of lactic acid bacteria and, secondly, to characterize bacteria using various bioinformatics approaches. Probiotic potency-related genes and secondary metabolite biosynthesis gene clusters were examined. The Vitek MS (MALDI-TOF) system was able to identify all of the bacteria at the genus level. According to whole genome sequencing, the bacteria were confirmed to be Lentilactobacillus buchneri, Levilactobacillus brevis, Lactiplantibacillus plantarum, Levilactobacillus namurensis. Bacteria had most of the probiotic potency-related genes, and different toxin-antitoxin systems such as PemIK/MazEF, Hig A/B, YdcE/YdcD, YefM/YoeB. Also, some of the secondary metabolite biosynthesis gene clusters, some toxic metabolite-related genes, and antibiotic resistance-related genes were detected. In addition, Lentilactobacillus buchneri Egmn17 had a type II-A CRISPR/Cas system. Lactiplantibacillus plantarum Gmze16 had a bacteriocin, plantaricin E/F. | 2024 | 38472540 |
| 6069 | 18 | 0.9989 | Phenotypic and genotypic characterization of lactic acid bacteria from traditional cheese in Khorramabad city of Iran with probiotic potential. Lactic acid bacteria (LAB) with proteolitic activity are used as aromatic and antibacterial substances, cholesterol reduces, bile salt hydrolyses, and probiotic. The aims of this project were to isolate and identify natural LAB flora involved in traditional fermentation in cheeses of Khoramabad city and also to survey their probiotic potential. In order to achieve this goal, LAB were isolated and characterized using phenotypic and genotypic methods (PCR-sequencing); in the next stage, they were analyzed lowering cholesterol medium, hydrolysis of the bile, resistance to bile-resistant PH acidic stomach. At the end of the study, 88 cocci and 3 bacill were found: 58 Enterococcus faecium, 16 Enterococcus hirae, 5 Lactococcus lactis, 3 Lactobacillus plantarum, and 9 undetermined. The probiotic results of the bacteria had effects on the reduction of cholesterol, resistance to stomach acid, had relative antibacterial effects, and some strains had effects on hydrolyzing the bile. For further identification, the PCR method and the application of 16s-DNA-ITS genes and its sequencing were found useful. This study showed that lactic acid bacteria in the traditional cheese of the Khorramabad city have relative probiotic effect and that these lactic acid bacteria in fermented milk are suitable. | 2015 | 25519007 |
| 6071 | 19 | 0.9989 | Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. In this study 635 lactic acid bacteria of food origin were evaluated for their potential application as protective cultures in foods. A stepwise selection method was used to obtain the most appropriate strains for application as protective cultures in chicken meat. Specifically, all strains were examined for antimicrobial activity against various Gram positive and Gram negative pathogenic and spoilage bacteria. Strains exhibiting anti-bacterial activity were subsequently examined for survival in simulated food processing and gastrointestinal tract conditions, such as high temperatures, low pH, starvation and the presence of NaCl and bile salts. Selected strains where then examined for basic safety properties such as antibiotic resistance and haemolytic potential, while their antimicrobial activity was further investigated by PCR screening for possession of known bacteriocin genes. Two chosen strains were then applied on raw chicken meat to evaluate their protective ability against two common food pathogens, Listeria monocytogenes and Salmonella enteritidis, but also to identify potential spoilage effects by the application of the protective cultures on the food matrix. Antimicrobial activity in vitro was evident against Gram positive indicators, mainly Listeria and Brochothrix spp., while no antibacterial activity was obtained against any of the Gram negative bacteria tested. The antimicrobial activity was of a proteinaceous nature while strains with anti-listerial activity were found to possess one or more bacteriocin genes, mainly enterocins. Strains generally exhibited sensitivity to pH 2.0, but good survival at 45 degrees C, in the presence of bile salts and NaCl as well as during starvation, while variable survival rates were obtained at 55 degrees C. None of the strains was found to be haemolytic while variable antibiotic resistance profiles were obtained. Finally, when the selected strains Enterococcus faecium PCD71 and Lactobacillus fermentum ACA-DC179 were applied as protective cultures in chicken meat against L. monocytogenes and S. enteritidis respectively, a significantly reduced growth of these pathogenic bacteria was observed. In addition, these two strains did not appear to have any detrimental effect on biochemical parameters related to spoilage of the chicken meat. | 2009 | 19249112 |