Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
613801.0000Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals. Five strains of Cupriavidus plantarum, a metal-resistant, plant-associated bacterium, were selected for genome sequencing through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) Phase IV project at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE). The genome of the strains was in the size range of 6.2-6.4 Mbp and encoded 5605-5834 proteins; 16.9-23.7% of these genes could not be assigned to a COG-associated functional category. The G + C content was 65.83-65.99%, and the genomes encoded 59-67 stable RNAs. The strains were resistant in vitro to arsenite, arsenate, cobalt, chromium, copper, nickel and zinc, and their genomes possessed the resistance genes for these metals. The genomes also encoded the biosynthesis of potential antimicrobial compounds, such as terpenes, phosphonates, bacteriocins, betalactones, nonribosomal peptides, phenazine and siderophores, as well as the biosynthesis of cellulose and enzymes such as chitinase and trehalase. The average nucleotide identity (ANI) and DNA-DNA in silico hybridization of the genomes confirmed that C. plantarum is a single species. Moreover, the strains cluster within a single group upon multilocus sequence analyses with eight genes and a phylogenomic analyses. Noteworthy, the ability of the species to tolerate high concentrations of different metals might prove useful for bioremediation of naturally contaminated environments.202032405446
515110.9995Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes. Bacillus amyloliquefaciens is a gram-positive, nonpathogenic, endospore-forming, member of a group of free-living soil bacteria with a variety of traits including plant growth promotion, production of antifungal and antibacterial metabolites, and production of industrially important enzymes. We have attempted to reconstruct the biogeographical structure according to functional traits and the evolutionary lineage of B. amyloliquefaciens using comparative genomics analysis. All the available 96 genomes of B. amyloliquefaciens strains were curated from the NCBI genome database, having a variety of important functionalities in all sectors keeping a high focus on agricultural aspects. In-depth analysis was carried out to deduce the orthologous gene groups and whole-genome similarity. Pan genome analysis revealed that shell genes, soft core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which demonstrates that genomes are very different in the gene content. It also indicates that the strains may have flexible environmental adaptability or versatile functions. Phylogenetic analysis showed that B. amyloliquefaciens is divided into two clades, and clade 2 is further dived into two different clusters. This reflects the difference in the sequence similarity and diversification that happened in the B. amyloliquefaciens genome. The majority of plant-associated strains of B. amyloliquefaciens were grouped in clade 2 (73 strains), while food-associated strains were in clade 1 (23 strains). Genome mining has been adopted to deduce antimicrobial resistance and virulence genes and their prevalence among all strains. The genes tmrB and yuaB codes for tunicamycin resistance protein and hydrophobic coat forming protein only exist in clade 2, while clpP, which codes for serine proteases, is only in clade 1. Genome plasticity of all strains of B. amyloliquefaciens reflects their adaption to different niches.202134659348
615620.9995Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. A PCR approach was developed to assess the occurrence and diversity of arsenite transporters in arsenic-resistant bacteria. For this purpose, three sets of degenerate primers were designed for the specific amplification of approximately 750bp fragments from arsB and two subsets of ACR3 (designated ACR3(1) and ACR3(2)) arsenite carrier gene families. These primers were used to screen a collection of 41 arsenic-resistant strains isolated from two soil samples with contrasting amounts of arsenic. PCR results showed that 70.7% of the isolates contained a gene related to arsB or ACR3, with three of them carrying both arsB and ACR3-like genes. Phylogenetic analysis of the protein sequences deduced from the amplicons indicated a prevalence of arsB in Firmicutes and Gammaproteobacteria, while ACR3(1) and ACR3(2) were mostly present in Actinobacteria and Alphaproteobacteria, respectively. In addition to validating the use of degenerate primers for the identification of arsenite transporter genes in a taxonomically wide range of bacteria, the study describes a novel collection of strains displaying interesting features of resistance to arsenate, arsenite and antimonite, and the ability to oxidize arsenite.200717258434
48430.9994Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. We have isolated 25 new strains of streptomycetes from soil samples of a polluted site at the former uranium mine, Wismut, in eastern Thuringia, Germany. The strains grew on medium containing 1 mM NiCl2 and thus were resistant to the heavy metal ion. Seven of the strains were further characterized. All of these strains were resistant to heavy metals in various degrees with up to 10 mM resistance against NiCl2 supplied with the liquid minimal growth medium. The high level of resistance prompted us to look for high affinity nickel transporter genes thought to provide a means to eliminate the excess nickel ions form the cells. Degenerate oligonucleotide primers derived from sequences of P-type ATPase transporter genes of Gram negative bacteria identified a fragment which shows deduced amino acid sequence similarities to known high affinity nickel transporters. Investigation of two genes obtained from the isolates Streptomyces spec. E8 and F4 showed high sequence divergence. This was unexpected since a transmissible plasmid had been thought to convey heavy metal resistance.200011199488
615740.9993Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype. In the present study, 44 arsenic-resistant bacteria were isolated through serial dilutions on agar plate with concentrations ≥0.05 mM of sodium arsenite and ≥10 mM of sodium arsenate from Mandovi and Zuari--estuarine water systems. The ars genotype characterization in 36 bacterial isolates (resistant to 100 mM of sodium arsenate) revealed that only 17 isolates harboured the arsA (ATPase), B (arsenite permease) and C (arsenate reductase) genes on the plasmid DNA. The arsA, B and C genes were individually detected using PCR in 16, 9 and 13 bacterial isolates respectively. Molecular identification of the 17 isolates bearing the ars genotype was carried using 16S rDNA sequencing. A 1300 bp full length arsB gene encoding arsenite efflux pump and a 409 bp fragment of arsC gene coding for arsenate reductase were isolated from the genera Halomonas and Acinetobacter. Phylogenetic analysis of arsB and arsC genes indicated their close genetic relationship with plasmid borne ars genes of E. coli and arsenate reductase of plant origin. The putative arsenate reductase gene isolated from Acinetobacter species complemented arsenate resistance in E. coli WC3110 and JM109 validating its function. This study dealing with isolation of native arsenic-resistant bacteria and characterization of their ars genes might be useful to develop efficient arsenic detoxification strategies for arsenic contaminated aquifers.201221879358
603650.9993Comprehensive Phenotypic Characterization and Genomic Analysis Unveil the Probiotic Potential of Bacillus velezensis K12. Bacillus spp. have emerged as pivotal sources of probiotic preparations, garnering considerable attention in recent years owing to their vigorous bacteriostatic activity and antimicrobial resistance. This study aimed to investigate these probiotic characteristics in depth and verify the safety of Bacillus velezensis K12, a strain isolated from broiler intestine. The K12 strain was identified as Bacillus velezensis based on its morphology and 16S rDNA sequence homology analysis. Subsequently, B. velezensis K12 was evaluated for acid resistance, bile salt resistance, gastrointestinal tolerance, drug sensitivity, and antimicrobial activity. Additionally, whole-genome sequencing technology was employed to dissect its genomic components further, aiming to explore its potential applications as a probiotic strain. B. velezensis K12 was sensitive to six antibiotics and had acid tolerance. Furthermore, it showed potent antimicrobial activity against a wide range of pathogenic bacteria, including Escherichia coli (E. coli), Staphylococcus aureus, Salmonella, Clostridium perfringens, Bacillus cereus, and Vibrio parahaemolyticus. The complete genome sequencing of B. velezensis K12 revealed a genomic length of 3,973,105 base pairs containing 4123 coding genes, among which 3973 genes were functionally annotated. The genomic analysis identified genes associated with acid and bile tolerance, adhesion, antioxidants, and secondary metabolite production, whereas no functional genes related to enterotoxins or transferable antibiotic resistance were detected, thereby confirming the probiotic properties of B. velezensis K12. B. velezensis K12 exhibits broad-spectrum bacteriostatic activity and in vitro safety, positioning it as a potential candidate strain for developing probiotic Bacillus preparations.202540150327
515060.9993Cultivation and Genomic Characterization of the Bile Bacterial Species From Cholecystitis Patients. The microbes in human bile are closely related to gallbladder health and other potential disorders. Although the bile microbial community has been investigated by recent studies using amplicon or metagenomic sequencing technologies, the genomic information of the microbial species resident in bile is rarely reported. Herein, we isolated 138 bacterial colonies from the fresh bile specimens of four cholecystitis patients using a culturome approach and genomically characterized 35 non-redundant strains using whole-genome shotgun sequencing. The bile bacterial isolates spanned 3 classes, 6 orders, 10 families, and 14 genera, of which the members of Enterococcus, Escherichia-Shigella, Lysinibacillus, and Enterobacter frequently appeared. Genomic analysis identified three species, including Providencia sp. D135, Psychrobacter sp. D093, and Vibrio sp. D074, which are not represented in existing reference genome databases. Based on the genome data, the functional capacity between bile and gut isolates was compared. The bile strains encoded 5,488 KEGG orthologs, of which 4.9% were specific to the gut strains, including the enzymes involved in biofilm formation, two-component systems, and quorum-sensing pathways. A total of 472 antibiotic resistance genes (ARGs) were identified from the bile genomes including multidrug resistance proteins (42.6%), fluoroquinolone resistance proteins (12.3%), aminoglycoside resistance proteins (9.1%), and β-lactamase (7.2%). Moreover, in vitro experiments showed that some bile bacteria have the capabilities for bile salt deconjugation or biotransformation (of primary bile acids into secondary bile acids). Although the physiological or pathological significance of these bacteria needs further exploration, our works expanded knowledge about the genome, diversity, and function of human bile bacteria.202134790179
596170.9993Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. The soil microbial community is highly complex and contains a high density of antibiotic-producing bacteria, making it a likely source of diverse antibiotic resistance determinants. We used functional metagenomics to search for antibiotic resistance genes in libraries generated from three different soil samples, containing 3.6 Gb of DNA in total. We identified 11 new antibiotic resistance genes: 3 conferring resistance to ampicillin, 2 to gentamicin, 2 to chloramphenicol and 4 to trimethoprim. One of the clones identified was a new trimethoprim resistance gene encoding a 26.8 kDa protein closely resembling unassigned reductases of the dihydrofolate reductase group. This protein, Tm8-3, conferred trimethoprim resistance in Escherichia coli and Sinorhizobium meliloti (γ- and α-proteobacteria respectively). We demonstrated that this gene encoded an enzyme with dihydrofolate reductase activity, with kinetic constants similar to other type I and II dihydrofolate reductases (K(m) of 8.9 µM for NADPH and 3.7 µM for dihydrofolate and IC(50) of 20 µM for trimethoprim). This is the first description of a new type of reductase conferring resistance to trimethoprim. Our results indicate that soil bacteria display a high level of genetic diversity and are a reservoir of antibiotic resistance genes, supporting the use of this approach for the discovery of novel enzymes with unexpected activities unpredictable from their amino acid sequences.201121281423
839280.9993Identification of variable genomic regions related to stress response in Oenococcus oeni. The lactic acid bacterium Oenococcus oeni is the most important species involved in malolactic fermentation due to its capability to survive in presence of ethanol and in the acidic environment of wine. In order to identify novel genes involved in adaptation to wine, a new approach using genome-wide analysis based on stress-related genes was performed in strain O. oeni PSU-1, and 106 annotated stress genes were identified. The in silico analysis revealed the high similarity of all those genes through 57 O. oeni genomes; however, seven variable regions of genomic plasticity could be determined for their different presence observed among these strains. Regions 3 and 5 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhanced the fitness of O. oeni strains. Certain genes related to stress resistance were described in these regions, and similarities of putative acquired regions with other lactic acid bacteria species were found. Some genomic fragments present in all the strains were described and another new genomic island harbouring a threonine dehydrogenase was found. The association of selected sequences with adaptation to wine was assessed by screening 31 O. oeni strains using PCR of single genes, but no sequences were found to be exclusive to highly performing malolactic fermentation strains. This study provides new information about the genomic variability of O. oeni strains contributing to a further understanding of this species and the relationship of its genomic traits with the ability to adapt to stress conditions.201729195994
444890.9993The screening of antimicrobial bacteria with diverse novel nonribosomal peptide synthetase (NRPS) genes from South China sea sponges. Nonribosomal peptide synthetase (NRPS) adenylation (A) domain genes were investigated by polymerase chain reaction for 109 bacteria isolated from four South China Sea sponges, Stelletta tenuis, Halichondria rugosa, Dysidea avara, and Craniella australiensis. Meanwhile, the antimicrobial bioassay of bacteria with NRPS genes were carried out to confirm the screening of NRPS genes. Fifteen bacteria were found to contain NRPS genes and grouped into two phyla Firmicutes (13 of 15) and Proteobacteria (two of 15) according to 16S rDNA sequences. Based on the phylogenetic analysis of the conserved A domain amino acid sequences, most of the NRPS fragments (11 of 15) showed below 70% similarity to their closest relatives suggesting the novelty of these NRPS genes. All of the 15 bacteria with NRPS genes have antimicrobial activities, with most of them exhibiting activity against multiple indicators including fungi and gram-positive and gram-negative bacteria. The different antimicrobial spectra indicate the chemical diversity of biologically active metabolites of sponge-associated bacteria and the possible role of bacterial symbionts in the host's antimicrobial chemical defense. Phylogenetic analysis based on the representative NRPS genes shows high diversity of marine NRPS genes. The combined molecular technique and bioassay strategy will be useful to obtain sponge-associated bacteria with the potential to synthesize bioactive compounds.200918853226
6086100.9992Hybrid-genome sequence analysis of Enterobacter cloacae FACU and morphological characterization: insights into a highly arsenic-resistant strain. Many organisms have adapted to survive in environments with high levels of arsenic (As), a naturally occurring metalloid with various oxidation states and a common element in human activities. These organisms employ diverse mechanisms to resist the harmful effects of arsenic compounds. Ten arsenic-resistant bacteria were isolated from contaminated wastewater in this study. The most efficient bacterial isolate able to resist 15,000 ppm Na(2)HAsO(4)·7H(2)O was identified using the 16S rRNA gene and whole genome analysis as Enterobacter cloacae FACU. The arsenic E. cloacae FACU biosorption capability was analyzed. To further unravel the genetic determinants of As stress resistance, the whole genome sequence of E. cloacae FACU was performed. The FACU complete genome sequence consists of one chromosome (5.7 Mb) and two plasmids, pENCL 1 and pENCL 2 (755,058 and 1155666 bp, respectively). 7152 CDSs were identified in the E. cloacae FACU genome. The genome consists of 130 genes for tRNA and 21 for rRNAs. The average G + C content was found to be 54%. Sequencing analysis annotated 58 genes related to resistance to many heavy metals, including 16 genes involved in arsenic efflux transporter and arsenic reduction (five arsRDABC genes) and 42 genes related to lead, zinc, mercury, nickel, silver, copper, cadmium and chromium in FACU. Scanning electron microscopy (SEM) confirmed the difference between the morphological responses of the As-treated FACU compared to the control strain. The study highlights the genes involved in the mechanism of As stress resistance, metabolic pathways, and potential activity of E. cloacae FACU at the genetic level.202439320439
5958110.9992Genome-wide identification of fitness-genes in aminoglycoside-resistant Escherichia coli during antibiotic stress. Resistance against aminoglycosides is widespread in bacteria. This study aimed to identify genes that are important for growth of E. coli during aminoglycoside exposure, since such genes may be targeted to re-sensitize resistant E. coli to treatment. We constructed three transposon mutant libraries each containing > 230.000 mutants in E. coli MG1655 strains harboring streptomycin (aph(3″)-Ib/aph(6)-Id), gentamicin (aac(3)-IV), or neomycin (aph(3″)-Ia) resistance gene(s). Transposon Directed Insertion-site Sequencing (TraDIS), a combination of transposon mutagenesis and high-throughput sequencing, identified 56 genes which were deemed important for growth during streptomycin, 39 during gentamicin and 32 during neomycin exposure. Most of these fitness-genes were membrane-located (n = 55) and involved in either cell division, ATP-synthesis or stress response in the streptomycin and gentamicin exposed libraries, and enterobacterial common antigen biosynthesis or magnesium sensing/transport in the neomycin exposed library. For validation, eight selected fitness-genes/gene-clusters were deleted (minCDE, hflCK, clsA and cpxR associated with streptomycin and gentamicin resistance, and phoPQ, wecA, lpp and pal associated with neomycin resistance), and all mutants were shown to be growth attenuated upon exposure to the corresponding antibiotics. In summary, we identified genes that are advantageous in aminoglycoside-resistant E. coli during antibiotic stress. In addition, we increased the understanding of how aminoglycoside-resistant E. coli respond to antibiotic exposure.202438378700
6106120.9992Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compared to a low frequency of distribution for aio (arsenite oxidase) (12 strains), arr (arsenate respiratory reductase) (1 strain) and arsM (arsenite methytransferase)-like genes (4 strains), the ars (arsenic resistance system)-like genes were identified in 174 strains including 1,051 genes; b) 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms) which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c) the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d) only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e) the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms. On average, the number of arsenic-related genes per genome of strains isolated from arsenic-rich environments is more than four times higher than the strains from other environments. Compared with human, plant and animal pathogens, the environmental strains possess a larger average number of arsenic-related genes, which indicates that habitat is likely a key driver for bacterial arsenic resistance.201424632831
6037130.9992The Complete Genome of Probiotic Lactobacillus sakei Derived from Plateau Yak Feces. Probiotic bacteria are receiving increased attention due to the potential benefits to their hosts. Plateau yaks have resistance against diseases and stress, which is potentially related to their inner probiotics. To uncover the potential functional genes of yak probiotics, we sequenced the whole genome of Lactobacillus sakei (L. sakei). The results showed that the genome length of L. sakei was 1.99 Mbp, with 1943 protein coding genes (21 rRNA, 65 tRNA, and 1 tmRNA). There were three plasmids found in this bacteria, with 88 protein coding genes. EggNOG annotation uncovered that the L. sakei genes were found to belong to J (translation, ribosomal structure, and biogenesis), L (replication, recombination, and repair), G (carbohydrate transport and metabolism), and K (transcription). GO annotation showed that most of the L. sakei genes were related to cellular processes, metabolic processes, biological regulation, localization, response to stimulus, and organization or biogenesis of cellular components. CAZy annotation found that there were 123 CAZys in the L. sakei genome, with glycosyl transferases and glycoside hydrolases. Our results revealed the genome characteristics of L. sakei, which may give insight into the future employment of this probiotic bacterium for its functional benefits.202033371298
4498140.9992A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. Gene amplifications have been detected as a transitory phenomenon in bacterial cultures. They are predicted to contribute to rapid adaptation by simultaneously increasing the expression of genes clustered on the chromosome. However, genome amplifications have rarely been described in natural isolates. Through DNA array analysis, we have identified two Streptococcus agalactiae strains carrying tandem genome amplifications: a fourfold amplification of 13.5 kb and a duplication of 92 kb. Both amplifications were located close to the terminus of replication and originated independently from any long repeated sequence. They probably arose in the human host and showed different stabilities, the 13.5-kb amplification being lost at a frequency of 0.003 per generation and the 92-kb tandem duplication at a frequency of 0.035 per generation. The 13.5-kb tandem amplification carried the five genes required for dihydrofolate biosynthesis and led to both trimethoprim (TMP) and sulfonamide (SU) resistance. Resistance to SU probably resulted from the increased synthesis of dihydropteroate synthase, the target of this antibiotic, whereas the amplification of the whole pathway was responsible for TMP resistance. This revealed a new mechanism of resistance to TMP involving an increased dihydrofolate biosynthesis. This is, to our knowledge, the first reported case of naturally occurring antibiotic resistance resulting from genome amplification in bacteria. The low stability of DNA segment amplifications suggests that their role in antibiotic resistance might have been underestimated.200818024520
6097150.9992Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BACKGROUND: Alleviating arsenic (As) contamination is a high-priority environmental issue. Hyperaccumulator plants may harbor endophytic bacteria able to detoxify As. Therefore, we investigated the distribution, diversity, As (III) resistance levels, and resistance-related functional genes of arsenite-resistant bacterial endophytes in Pteris vittata L. growing in a lead-zinc mining area with different As contamination levels. RESULTS: A total of 116 arsenite-resistant bacteria were isolated from roots of P. vittata with different As concentrations. Based on the 16S rRNA gene sequence analysis of representative isolates, the isolates belonged to Proteobacteria, Actinobacteria, and Firmicutes. Major genera found were Agrobacterium, Stenotrophomonas, Pseudomonas, Rhodococcus, and Bacillus. The most highly arsenite-resistant bacteria (minimum inhibitory concentration > 45 mM) were isolated from P. vittata with high As concentrations and belonged to the genera Agrobacterium and Bacillus. The strains with high As tolerance also showed high levels of indole-3-acetic acid (IAA) production and carried arsB/ACR3(2) genes. The arsB and ACR3(2) were most likely horizontally transferred among the strains. CONCLUSION: The results of this study suggest that P. vittata plants with high As concentrations may select diverse arsenite-resistant bacteria; this diversity might, at least partly, be a result of horizontal gene transfer. These diverse endophytic bacteria are potential candidates to enhance phytoremediation techniques.201829739310
1786160.9992Correlation analysis of whole genome sequencing of a pathogenic Escherichia coli strain of Inner Mongolian origin. Anal swabs of 1-month-old Holstein calves with diarrhea were collected from an intensive cattle farm, and a highly pathogenic Escherichia coli strain was obtained by isolation and purification. To study the virulence and resistance genes of pathogenic E. coli that cause diarrhea in calves, a strain of E. coli E12 isolated from calf diarrhea samples was used as experimental material in this experiment, and the virulence of the E12 strain were identified by the mouse infection test, and the whole genome map of the E12 strain were obtained by whole-genome sequencing and analyzed for genome characterization. The results showed that the lethality of strain E12 was 100%, the total length of E12-encoded genes was 4,294,530 bp, Cluster of Orthologous Groups of proteins (COG) annotated to 4,194 functional genes, and the virulence genes of sequenced strain E12 were compared with the virulence genes of sequenced strain E12 from the Virulence Factors of Pathogenic Bacteria (VFDB), which contained a total of 366 virulence genes in sequenced strain E12. The analysis of virulence genes of E12 revealed a total of 52 virulence genes in the iron transferrin system, 56 virulence genes in the secretory system, 41 virulence genes in bacterial toxins, and a total of 217 virulence genes in the Adhesin and Invasins group. The antibiotic resistance genes of sequenced strain E12 were identified through the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Research Database, and it was found that its chromosome and plasmid included a total of 127 antibiotic resistance genes in four classes, and that E12 carried 71 genes related to the antibiotic efflux pumps, 36 genes related to antibiotic inactivation, and 14 antibiotic target alteration and reduced penetration into antibiotics, and 6 antibiotic resistance genes, and the resistance phenotypes were consistent with the genotypes. The pathogenic E. coli that causes diarrhea in calves on this ranch contains a large number of virulence and resistance genes. The results provide a theoretical basis for the prevention and treatment of diarrhea and other diseases caused by E. coli disease.202438969720
487170.9992Chromosome-encoded inducible copper resistance in Pseudomonas strains. Nine Pseudomonas strains were selected by their high copper tolerance from a population of bacteria isolated from heavy-metal polluted zones. Copper resistance (Cu(r)) was inducible by previous exposure of cultures to subinhibitory amounts of copper sulfate. All nine strains possessed large plasmids, but transformation and curing results suggest that Cu(r) is conferred by chromosomal genes. Plasmid-less Pseudomonas aeruginosa PAO-derived strains showed the same level of Cu(r) as environmental isolates and their resistance to copper was also inducible. Total DNA from the environmental Pseudomonas, as well as from P. aeruginosa PAO strains, showed homology to a Cu(r) P. syringae cop probe at low-stringency conditions but failed to hybridize at high-stringency conditions.19958572680
477180.9992Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment.200717675438
6139190.9992Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications.202338616876