# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6133 | 0 | 1.0000 | Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats. In the present study, we report the whole genome sequences of two species, Ornithinibacillus contaminans DSM22953(T) isolated from human blood and Ornithinibacillus californiensis DSM 16628(T) isolated from marine sediment, in genus Ornithinibacillus. Comparative genomic study of the two species was conducted together with their close relative Ornithinibacillus scapharcae TW25(T), a putative pathogenic bacteria isolated from dead ark clam. The comparisons showed O. contaminans DSM22953(T) had the smallest genome size of the three species indicating that it has a relatively more stable habitat. More stress response and heavy metal resistance genes were found in the genome of O. californiensis DSM 16628(T) reflecting its adaption to the complex marine environment. O. scapharcae TW25(T) contained more antibiotic resistance genes and virus factors in the genome than the other two species, which revealed its pathogen potential. | 2016 | 26706221 |
| 6135 | 1 | 0.9978 | Complete genome sequence of Bifidobacterium animalis subsp. lactis KLDS 2.0603, a probiotic strain with digestive tract resistance and adhesion to the intestinal epithelial cells. Bifidobacterium animalis subsp. lactis KLDS 2.0603 (abbreviated as KLDS 2.0603) is a probiotic strain isolated from the feces of an adult human. Previous studies showed that KLDS 2.0603 has a high resistance to simulated digestive tract conditions and a high ability to adhere to intestinal epithelial cells (Caco-2). These two characteristics are essential requirements for the selection of probiotic bacteria. To explore the stress resistance mechanism to the digestive tract environment and the adhesive proteins of this strain, in this paper, we reported the complete genome sequence of KLDS 2.0603, which contains 19,469bp and encodes 1614 coding sequences(CDSs), 15 rRNA genes, 52 tRNA genes with 1678 open reading frames. | 2016 | 26795356 |
| 6137 | 2 | 0.9977 | Genomic and phenotypic analyses of Carnobacterium jeotgali strain MS3(T), a lactate-producing candidate biopreservative bacterium isolated from salt-fermented shrimp. Carnobacterium jeotgali strain MS3(T) was isolated from traditionally fermented Korean shrimp produced with bay salt. The bacterium belongs to the family Carnobacteriaceae, produces lactic acid and contains gene clusters involved in the production of lactate, butyrate, aromatic compounds and exopolysaccharides. Carnobacterium jeotgali strain MS3(T) was characterized through extensive comparison of the virulence potential, genomic relatedness and sequence similarities of its genome with the genomes of other Carnobacteria and lactic acid bacteria. In addition, links between predicted functions of genes and phenotypic characteristics, such as antibiotic resistance and lactate and butyrate production, were extensively evaluated. Genomic and phenotypic analyses of strain MS3(T) revealed promising features, including minimal virulence genes and lactate production, which make this bacterium a desirable candidate for exploitation by the fermented food industry. | 2015 | 25868912 |
| 6140 | 3 | 0.9976 | Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry. | 2017 | 28676278 |
| 475 | 4 | 0.9975 | Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. Filtration usually eliminates water-living bacteria. Here, we report on the complete genome sequence of Minibacterium massiliensis, a beta-proteobacteria that was recovered from 0.22-mum filtered water used for patients in the hospital. The unexpectedly large 4,110,251-nucleotide genome sequence of M. massiliensis was determined using the traditional shotgun sequencing approach. Bioinformatic analyses shows that the M. massiliensis genome sequence illustrates characteristic features of water-living bacteria, including overrepresentation of genes encoding transporters and transcription regulators. Phylogenomic analysis based on the gene content of available bacterial genome sequences displays a congruent evolution of water-living bacteria from various taxonomic origins, principally for genes involved in energy production and conversion, cell division, chromosome partitioning, and lipid metabolism. This phylogenomic clustering partially results from lateral gene transfer, which appears to be more frequent in water than in other environments. The M. massiliensis genome analyses strongly suggest that water-living bacteria are a common source for genes involved in heavy-metal resistance, antibiotics resistance, and virulence factors. | 2007 | 17722982 |
| 472 | 5 | 0.9975 | MiniReview: bioinformatic study of bile responses in Campylobacterales. Campylobacter, Helicobacter and Wolinella are genera of the order Campylobacterales, belonging to the class Epsilonproteobacteria. Their habitats are various niches in the gastrointestinal tract of higher animals, where they may come into contact with bile. Microorganisms in these environments require mechanisms of resistance to the surface-active amphipathic molecules with potent antimicrobial activities present in bile. This review summarizes current knowledge on the molecular responses to bile by Campylobacterales and other bacterial species that inhabit the intestinal tract and belong to the phyla Proteobacteria, Bacteriodetes, Firmicutes and Actinobacteria. To date, 125 specific genes have been implicated in bile responses, of which 10 are found in Campylobacterales. Genome database searches, analyses of protein sequence and domain similarities, and gene ontology data integration were performed to compare the responses to bile of these bacteria. The results showed that 33 proteins of bacteria belonging to the four phyla had similarities equal to or greater than 50-46% proteins of Campylobacterales. Domain architecture analyses revealed that 151 Campylobacterales proteins had similar domain composition and organization to 60 proteins known to participate in the tolerance to bile in other bacteria. The proteins CmeB, CmeF and CbrR of Campylobacter jejuni involved in bile tolerance were homologous to 42 proteins identified in the Proteobacteria, Bacteriodetes and Firmicutes. On the other hand, the proteins CiaB, CmeA, CmeC, CmeD, CmeE and FlaAsigma(28) also involved in the response to bile of C. jejuni, did not have homologues in other bacteria. Among the bacteria inhabiting the gastrointestinal tract, the Campylobacterales seem to have evolved some mechanisms of bile resistance similar to those of other bacteria, as well as other mechanisms that appear to be characteristic of this order. | 2007 | 17266717 |
| 479 | 6 | 0.9975 | Genome sequences of Methylobacterium and Methylorubrum isolates from Cd-contaminated soils in the Tar Creek Superfund site. Soil bacteria were isolated from the Tar Creek Superfund site in the presence of cadmium. Eight of these strains belong to the genus Methylobacterium, whereas one strain belongs to the genus Methylorubrum. Here, we report drafts of their genome sequences and highlight cadmium-resistance genes required in an exceptionally contaminated environment. | 2025 | 39835800 |
| 3687 | 7 | 0.9975 | Genome Sequence of a Novel Multiple-Antibiotic-Resistant Member of the Erysipelotrichaceae Family Isolated from a Swine Manure Storage Pit. The swine gastrointestinal tract and stored swine manure may serve as reservoirs of antibiotic resistance genes, as well as sources of novel bacteria. Here, we report the draft genome sequence of a novel taxon in the Erysipelotrichaceae family, isolated from a swine manure storage pit that is resistant to multiple antibiotics. | 2016 | 27660777 |
| 5189 | 8 | 0.9975 | Genomic analysis of halophilic bacterium, Lentibacillus sp. CBA3610, derived from human feces. BACKGROUND: Lentibacillus species are gram variable aerobic bacteria that live primarily in halophilic environments. Previous reports have shown that bacteria belonging to this species are primarily isolated from salty environments or food. We isolated a bacterial strain CBA3610, identified as a novel species of the genus Lentibacillus, from a human fecal sample. In this report, the whole genome sequence of Lentibacillus sp. CBA3610 is presented, and genomic analyses are performed. RESULTS: Complete genome sequence of strain CBA3610 was obtained through PacBio RSII and Illumina HiSeq platforms. The size of genome is 4,035,571 bp and genes estimated to be 4714 coding DNA sequences and 64 tRNA and 17 rRNA were identified. The phylogenetic analysis confirmed that it belongs to the genus Lentibacillus. In addition, there were genes related to antibiotic resistance and virulence, and genes predicted as CRISPR and prophage were also identified. Genes related to osmotic stress were found according to the characteristics of halophilic bacterium. Genomic differences from other Lentibacillus species were also confirmed through comparative genomic analysis. CONCLUSIONS: Strain CBA3610 is predicted to be a novel candidate species of Lentibacillus through phylogenetic analysis and comparative genomic analysis with other species in the same genus. This strain has antibiotic resistance gene and pathogenic genes. In future, the information derived from the results of several genomic analyses of this strain is thought to be helpful in identifying the relationship between halophilic bacteria and human gut microbiota. | 2021 | 34162403 |
| 3712 | 9 | 0.9975 | Enumeration and characterization of culturable arsenate resistant bacteria in a large estuary. Arsenic is a toxic element that exists in two major inorganic forms, arsenate and arsenite. A number of bacteria have been shown to resist arsenic exposure, and even more bacteria appear to possess the genes for arsenic resistance. In this study, the numbers of culturable arsenate-resistant bacteria present in water at three coastal sites in the Lake Pontchartrain estuary, Louisiana, was determined. Despite insignificant (less than 1.33 microM) levels of arsenic in this system, 20-50% of the viable count of bacteria showed appreciable arsenate resistance, suggesting that arsenic-resistant bacteria are common and widespread. A diverse array of arsenate-resistant isolates was obtained, with 16S rRNA sequence analysis indicating 37 different bacterial strains, representing six major bacterial groups. Many of these isolates were affiliated with groups of bacteria that have been poorly characterized in terms of arsenic resistance, such as the Betaproteobacteria or Flavobacteria. Some isolates were capable of tolerating very high (> 100 mM) levels of arsenate, although arsenite resistance was generally much lower. The results suggest that arsenic-resistant bacteria are common, even in environments with insignificant arsenic contamination, and that many different groups of aquatic bacteria show appreciable arsenic resistance. | 2005 | 16261862 |
| 467 | 10 | 0.9975 | Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Photosynthesis genes and operons of aerobic anoxygenic photosynthetic (AAP) bacteria have been examined in a variety of marine habitats, but genomic information about freshwater AAP bacteria is lacking. The goal of this study was to examine photosynthesis genes of AAP bacteria in the Delaware River. In a fosmid library, we found two clones bearing photosynthesis gene clusters with unique gene content and organization. Both clones contained 37 open reading frames, with most of those genes encoding known AAP bacterial proteins. The genes in one fosmid were most closely related to those of AAP bacteria in the Rhodobacter genus. The genes of the other clone were related to those of freshwater beta-proteobacteria. Both clones contained the acsF gene, which is required for aerobic bacteriochlorophyll synthesis, suggesting that these bacteria are not anaerobes. The beta-proteobacterial fosmid has the puf operon B-A-L-M-C and is the first example of an uncultured bacterium with this operon structure. The alpha-3-proteobacterial fosmid has a rare gene order (Q-B-A-L-M-X), previously observed only in the Rhodobacter genus. Phylogenetic analyses of photosynthesis genes revealed a possible freshwater cluster of AAP beta-proteobacteria. The data from both Delaware River clones suggest there are groups of freshwater or estuarine AAP bacteria distinct from those found in marine environments. | 2005 | 16309388 |
| 4662 | 11 | 0.9974 | Characterization of a multiresistant mosaic plasmid from a fish farm Sediment Exiguobacterium sp. isolate reveals aggregation of functional clinic-associated antibiotic resistance genes. The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. | 2014 | 24362420 |
| 483 | 12 | 0.9974 | Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the Upper Pleistocene. Transposons closely related to mercury resistance transposons Tn5041, Tn5053, and Tn5056, which have been previously described in present-day bacteria, were detected in a survey of 12 mercury-resistant Pseudomonas strains isolated from permafrost samples aged 15-40 thousand years. In addition, Tn5042, a novel type of mercury resistance transposon, was revealed in the permafrost strain collection and its variants found to be common among present-day bacteria. The results reveal that no drastic changes in the distribution mode of the different types of mercury resistance transposons among environmental bacteria have taken place in the last 15-40 thousand years. | 2005 | 16084067 |
| 5133 | 13 | 0.9974 | Draft genome sequence of Marinobacter sp. DUT-3, a manganese-oxidizing and potential antibiotic-resistant bacterium from Bohai coastal sediments. A manganese-oxidizing bacterium, Marinobacter sp. DUT-3, was isolated from Bohai coastal sediments. A total of 24 contigs with GC content of 57.91% and 3,817 protein-coding genes were obtained by genome sequencing. Isolation of this strain suggests potential for synergistic antibiotics removal via biogenic manganese oxides and intrinsic resistance. | 2025 | 41081498 |
| 473 | 14 | 0.9973 | Survey of genomic diversity among Enterococcus faecalis strains by microarray-based comparative genomic hybridization. We have compared nine Enterococcus faecalis strains with E. faecalis V583 by comparative genomic hybridization using microarrays (CGH). The strains used in this study (the "test" strains) originated from various environments. CGH is a powerful and promising tool for obtaining novel information on genome diversity in bacteria. By CGH, one obtains clues about which genes are present or divergent in the strains, compared to a reference strain (here, V583). The information obtained by CGH is important from both ecological and systematic points of view. CGH of E. faecalis showed considerable diversity in gene content: Compared to V583, the percentage of divergent genes in the test strains varied from 15% to 23%, and 154 genes were divergent in all strains. The main variation was found in regions corresponding to exogenously acquired or mobile DNA in V583. Antibiotic resistance genes, virulence factors, and integrated plasmid genes dominated among the divergent genes. The strains examined showed various contents of genes corresponding to the pTEF1, pTEF2, and pTEF3 genes in V583. The extensive transport and metabolic capabilities of V583 appeared similar in the test strains; CGH indicated that the ability to transport and metabolize various carbohydrates was similar in the test strains (verified by API 50 CH assays). The contents of genes related to stress tolerance appeared similar in V583 and the nine test strains, supporting the view of E. faecalis as an organism able to resist harsh conditions. | 2007 | 17220255 |
| 9862 | 15 | 0.9973 | Comparative Genomic Analysis Uncovered Evolution of Pathogenicity Factors, Horizontal Gene Transfer Events, and Heavy Metal Resistance Traits in Citrus Canker Bacterium Xanthomonas citri subsp. citri. Background: Worldwide citrus production is severely threatened by Asiatic citrus canker which is caused by the proteobacterium Xanthomonas citri subsp. citri. Foliar sprays of copper-based bactericides are frequently used to control plant bacterial diseases. Despite the sequencing of many X. citri strains, the genome diversity and distribution of genes responsible for metal resistance in X. citri subsp. citri strains from orchards with different management practices in Taiwan are not well understood. Results: The genomes of three X. citri subsp. citri strains including one copper-resistant strain collected from farms with different management regimes in Taiwan were sequenced by Illumina and Nanopore sequencing and assembled into complete circular chromosomes and plasmids. CRISPR spoligotyping and phylogenomic analysis indicated that the three strains were located in the same phylogenetic lineages and shared ∼3,000 core-genes with published X. citri subsp. citri strains. These strains differed mainly in the CRISPR repeats and pathogenicity-related plasmid-borne transcription activator-like effector (TALE)-encoding pthA genes. The copper-resistant strain has a unique, large copper resistance plasmid due to an unusual ∼40 kbp inverted repeat. Each repeat contains a complete set of the gene cluster responsible for copper and heavy metal resistance. Conversely, the copper sensitive strains carry no metal resistance genes in the plasmid. Through comparative analysis, the origin and evolution of the metal resistance clusters was resolved. Conclusion: Chromosomes remained constant among three strains collected in Taiwan, but plasmids likely played an important role in maintaining pathogenicity and developing bacterial fitness in the field. The evolution of pathogenicity factors and horizontal gene transfer events were observed in the three strains. These data suggest that agricultural management practices could be a potential trigger for the evolution of citrus canker pathogens. The decrease in the number of CRISPR repeats and pthA genes might be the result of adaptation to a less stressful environment. The metal resistance genes in the copper resistant X. citri strain likely originated from the Mauritian strain not the local copper-resistant X. euvesicatoria strain. This study highlights the importance of plasmids as 'vehicles' for exchanging genetic elements between plant pathogenic bacteria and contributing to bacterial adaptation to the environment. | 2021 | 34557177 |
| 5149 | 16 | 0.9973 | Complete genome sequence and comparative genomic analysis of Enterococcus faecalis EF-2001, a probiotic bacterium. Enterococcus faecalis is a common human gut commensal bacterium. While some E. faecalis strains are probiotic, others are known to cause opportunistic infections, and clear distinction between these strains is difficult using traditional taxonomic approaches. In this study, we completed the genome sequencing of EF-2001, a probiotic strain, using our in-house hybrid assembly approach. Comparative analysis showed that EF-2001 was devoid of cytolysins, major factors associated with pathogenesis, and was phylogenetically distant from pathogenic E. faecalis V583. Genomic analysis of strains with a publicly available complete genome sequence predicted that drug-resistance genes- dfrE, efrA, efrB, emeA, and lsaA were present in all strains, and EF-2001 lacked additional drug-resistance genes. Core- and pan-genome analyses revealed a higher degree of genomic fluidity. We found 49 genes specific to EF-2001, further characterization of which may provide insights into its diverse biological activities. Our comparative genomic analysis approach could help predict the pathogenic or probiotic potential of E. faecalis leading to an early distinction based on genome sequences. | 2021 | 33771633 |
| 480 | 17 | 0.9973 | Permanent draft genome sequences of cadmium-resistant isolates of Cupriavidus from soils within the Tar Creek Superfund site. Soil samples taken near the abandoned town of Picher, OK, USA, were used to enrich and isolate bacteria in the presence of cadmium. Isolates reported belong to the genus Cupriavidus. Here, we report their permanent draft sequences with an emphasis on genes conferring resistance to cadmium. | 2025 | 39589146 |
| 6106 | 18 | 0.9973 | Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compared to a low frequency of distribution for aio (arsenite oxidase) (12 strains), arr (arsenate respiratory reductase) (1 strain) and arsM (arsenite methytransferase)-like genes (4 strains), the ars (arsenic resistance system)-like genes were identified in 174 strains including 1,051 genes; b) 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms) which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c) the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d) only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e) the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms. On average, the number of arsenic-related genes per genome of strains isolated from arsenic-rich environments is more than four times higher than the strains from other environments. Compared with human, plant and animal pathogens, the environmental strains possess a larger average number of arsenic-related genes, which indicates that habitat is likely a key driver for bacterial arsenic resistance. | 2014 | 24632831 |
| 3713 | 19 | 0.9973 | Arsenic Pollution and Anaerobic Arsenic Metabolizing Bacteria in Lake Van, the World's Largest Soda Lake. Arsenic is responsible for water pollution in many places around the world and presents a serious health risk for people. Lake Van is the world's largest soda lake, and there are no studies on seasonal arsenic pollution and arsenic-resistant bacteria. We aimed to determine the amount of arsenic in the lake water and sediment, to isolate arsenic-metabolizing anaerobic bacteria and their identification, and determination of arsenic metabolism. Sampling was done from 7.5 m to represent the four seasons. Metal contents were determined by using ICP-MS. Pure cultures were obtained using the Hungate technique. Growth characteristics of the strains were determined at different conditions as well as at arsenate and arsenite concentrations. Molecular studies were also carried out for various resistance genes. Our results showed that Lake Van's total arsenic amount changes seasonally. As a result of 16S rRNA sequencing, it was determined that the isolates were members of 8 genera with arsC resistance genes. In conclusion, to sustain water resources, it is necessary to prevent chemical and microorganism-based pollution. It is thought that the arsenic-resistant bacteria obtained as a result of this study will contribute to the solution of environmental arsenic pollution problems, as they are the first data and provide the necessary basic data for the bioremediation studies of arsenic from contaminated environmental habitats. At the same time, the first data that will contribute to the creation of the seasonal arsenic map of Lake Van are obtained. | 2022 | 36431035 |