# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6127 | 0 | 1.0000 | Paenibacillus associated with milky disease in Central and South American scarabs. Thirty-one isolates of bacteria causing milky disease in scarab larvae collected in Central and South America were identified as Paenibacillus popilliae or Paenibacillus lentimorbus by use of DNA similarity analysis. The isolates were more similar to each other than to the North American isolates that are the type strains of the species. All of the bacteria of both species produced parasporal bodies, a characteristic previously believed to be unique to P. popilliae. Screening of the bacteria using PCR with parasporal protein primers revealed differences among the parasporal protein genes of P. popilliae isolates and between the parasporal genes of P. popilliae and P. lentimorbus. In contrast to P. popilliae from North America, none of the isolates from Central and South America was resistant to vancomycin, an indication of an interesting geographic distribution of the resistance genes. | 2000 | 11023744 |
| 6128 | 1 | 0.9979 | Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon. Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae. The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented. A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria. Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group. Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species. A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology. | 1997 | 8979353 |
| 5894 | 2 | 0.9977 | Virulence Genes and In Vitro Antibiotic Profile of Photobacterium damselae Strains, Isolated from Fish Reared in Greek Aquaculture Facilities. Bacteria belonging to the species Photobacterium damselae are pathogens of cultured marine fish, causing diseases of high importance, such as Pasteurellosis. Thus, they are considered a major threat to the aquaculture sector. Despite the great importance of fish mariculture for the Greek economy, the distribution and abundance of these bacteria are not well documented in aquaculture units in Greece. Keeping this in mind, the scope of the present study was to investigate the presence, antibiotic profile, and virulence of Photobacterium bacteria originating from a representative sample of mariculture units throughout Greece. Samples were collected from diseased fish belonging to three different cultured fish species, namely Sparus aurata, Dicentrarchus labrax, and Pagrus pagrus, from both the Aegean and the Ionian Sea. Tissue samples were cultured in agar media, and bacteria were molecularly identified using both bacterial universal and species-specific primer pairs for Photobacterium spp. Additionally, the identified strains were characterized for the presence of virulence genes as well as antibiotic profiles. According to the results, the aforementioned bacteria are distributed in the Greek aquaculture units and are characterized by high pathogenicity based on the abundance of virulence genes. Furthermore, the majority of the detected strains exhibit some level of antibiotic resistance. In summary, our results indicate the need for systematic surveillance and study of their antibiotic profiles in Greek aquaculture since these bacteria constitute a major threat to the sector. | 2022 | 36428362 |
| 5988 | 3 | 0.9976 | Enterococcal vanB resistance locus in anaerobic bacteria in human faeces. While developing a rapid method to detect carriers of vancomycin-resistant enterococci (VRE), we found the vanB gene by PCR in 13 of 50 human faecal specimens that did not contain culturable VRE. Passaging under antibiotic selection allowed us to isolate two species of anaerobic bacteria that were vanB PCR positive, vancomycin resistant, and teicoplanin sensitive. Sequence analysis of the 16S rRNA genes showed that one isolate resembled Eggerthella lenta (98% identity), and the other Clostridium innocuum (92% identity). Southern hybridisation and nucleotide sequencing showed a vanB locus homologous to that in VRE. We propose that vanB resistance in enterococci might arise from gene transfer in the human bowel. | 2001 | 11265957 |
| 3590 | 4 | 0.9976 | Antimicrobial Resistance Genes in Bacteria Isolated From Japanese Honey, and Their Potential for Conferring Macrolide and Lincosamide Resistance in the American Foulbrood Pathogen Paenibacillus larvae. American foulbrood (AFB) is the most serious bacterial disease of honey bee brood. Spores of the causative agent Paenibacillus larvae are ingested by bee larvae via brood foods and germinated cells proliferate in the larval midgut. In Japan, a macrolide antibiotic, tylosin, is used as the approved prophylactic for AFB. Although tylosin-resistant P. larvae has yet to be found in Japan, it may emerge in the future through the acquisition of macrolide resistance genes from other bacteria, and bacteria latent in brood foods, such as honey, may serve as a source of resistance genes. In this study, to investigate macrolide resistance genes in honey, we attempted to isolate tylosin-resistant bacteria from 53 Japanese honey samples and obtained 209 isolates from 48 samples in the presence of 1 μg/ml of tylosin. All isolates were Gram-positive spore-forming bacteria mainly belonging to genera Bacillus and Paenibacillus, and 94.3% exhibited lower susceptibility to tylosin than Japanese P. larvae isolates. Genome analysis of 50 representative isolates revealed the presence of putative macrolide resistance genes in the isolates, and some of them were located on mobile genetic elements (MGEs). Among the genes on MGEs, ermC on the putative mobilizable plasmid pJ18TS1mac of Oceanobacillus strain J18TS1 conferred tylosin and lincomycin resistance to P. larvae after introducing the cloned gene using the expression vector. Moreover, pJ18TS1mac was retained in the P. larvae population for a long period even under non-selective conditions. This suggests that bacteria in honey is a source of genes for conferring tylosin resistance to P. larvae; therefore, monitoring of bacteria in honey may be helpful to predict the emergence of tylosin-resistant P. larvae and prevent the selection of resistant strains. | 2021 | 33995331 |
| 469 | 5 | 0.9976 | Ancient permafrost staphylococci carry antibiotic resistance genes. Background: Permafrost preserves a variety of viable ancient microorganisms. Some of them can be cultivated after being kept at subzero temperatures for thousands or even millions of years. Objective: To cultivate bacterial strains from permafrost. Design: We isolated and cultivated two bacterial strains from permafrost that was obtained at Mammoth Mountain in Siberia and attributed to the Middle Miocene. Bacterial genomic DNA was sequenced with 40-60× coverage and high-quality contigs were assembled. The first strain was assigned to Staphylococcus warneri species (designated MMP1) and the second one to Staphylococcus hominis species (designated MMP2), based on the classification of 16S ribosomal RNA genes and genomic sequences. Results: Genomic sequence analysis revealed the close relation of the isolated ancient bacteria to the modern bacteria of this species. Moreover, several genes associated with resistance to different groups of antibiotics were found in the S. hominis MMP2 genome. Conclusions: These findings supports a hypothesis that antibiotic resistance has an ancient origin. The enrichment of cultivated bacterial communities with ancient permafrost strains is essential for the analysis of bacterial evolution and antibiotic resistance. | 2017 | 28959177 |
| 5469 | 6 | 0.9976 | Whole genome sequencing of nine Vibrio parahaemolyticus strains encoding (Pir) toxin-like genes from shrimp cultures in northern Peru using Oxford Nanopore technology. Nine Peruvian isolates of Vibrio parahaemolyticus were characterized through sequencing, revealing the presence of simple sequence repeat, Pir toxin-like genes, and genes associated with antibiotic resistance, toxic components, and transposable elements. These findings expand our understanding of the genetic diversity, disease resistance, and virulence in cultivated shrimp populations in Peru. | 2024 | 38345394 |
| 453 | 7 | 0.9976 | Visualization of pathogenicity regions in bacteria. We show here how pathogenicity islands can be analysed using GenomeAtlases, which is a method for visualising repeats, DNA structural characteristics, and base composition of chromosomes and plasmids. We have applied this method to the E. coli plasmid pO157, and the Y. pestis plasmid pPCP1. In both cases pathogenic genes were shown to differ in A + T content and structural properties. Furthermore, examination of an antibiotic resistance gene cluster from S. typhimurium showed that the same was true for genes encoding antibiotic resistance. | 2000 | 11145420 |
| 3692 | 8 | 0.9976 | Occurrence and distribution antibiotic resistance of heterotrophic bacteria isolated from a marine beach. Antibiotic resistance of heterotrophic bacteria isolated from a sandy beach in Sopot, at the Southern Baltic Sea coast was determined. The levels of resistance of bacteria to various antibiotics differed considerably. Bacteria inhabiting the middle part of the beach and the dune were most resistant; the least resistant were bacteria isolated from the sea-beach contact zone. Generally, there were no significant differences in antibiotic resistance between pigmented and non-pigmented bacteria. Bacteria isolated from the surface layer of the sand were more resistant to the tested antibiotics than bacteria from the subsurface layers. The majority of bacterial strains were resistant to 3-8 antibiotics. Bacterial resistance to antibiotics was dependent on their chemical structure. | 2005 | 15664036 |
| 3388 | 9 | 0.9976 | Imported ornamental fish are colonized with antibiotic-resistant bacteria. There has been growing concern about the overuse of antibiotics in the ornamental fish industry and its possible effect on the increasing drug resistance in both commensal and pathogenic organisms in these fish. The aim of this study was to carry out an assessment of the diversity of bacteria, including pathogens, in ornamental fish species imported into North America and to assess their antibiotic resistance. Kidney samples were collected from 32 freshwater ornamental fish of various species, which arrived to an importing facility in Portland, Oregon from Colombia, Singapore and Florida. Sixty-four unique bacterial colonies were isolated and identified by PCR using bacterial 16S primers and DNA sequencing. Multiple isolates were identified as bacteria with potential to cause disease in both fish and humans. The antibiotic resistance profile of each isolate was performed for nine different antibiotics. Among them, cefotaxime (16% resistance among isolates) was the antibiotic associated with more activity, while the least active was tetracycline (77% resistant). Knowing information about the diversity of bacteria in imported ornamental fish, as well as the resistance profiles for the bacteria will be useful in more effectively treating clinical infected fish, and also potential zoonoses in the future. | 2013 | 23294440 |
| 3587 | 10 | 0.9975 | Distribution of the streptomycin-resistance transposon Tn5393 among phylloplane and soil bacteria from managed agricultural habitats. The distribution of the strA-strB streptomycin-resistance (Smr) genes associated with Tn5393 was examined in bacteria isolated from the phylloplane and soil of ornamental pear and tomato. Two ornamental pear nurseries received previous foliar applications of streptomycin, whereas the tomato fields had no prior exposure to streptomycin bactericides. Although the recovery of culturable Smr bacteria was generally higher from soil, the highest occurrence of Smr was observed in phylloplane bacteria of an ornamental pear nursery that received 15 annual applications of streptomycin during the previous 2 years. Twenty-two and 12% of 143 Gram-negative phylloplane and 163 Gram-negative soil isolates, respectively, contained sequences that hybridized to probes specific for the strA-strB Smr genes and for the transposase and resolvase genes of Tn5393. These sequences were located on large plasmids (> 60 kb) in 74% of the isolates. The 77 Smr Gram-positive bacteria isolated in the present study showed no homology to the Tn5393-derived probes. Although the repeated use of a single antibiotic in clinical situations is known to favor the development of strains with resistance to other antibiotics, we found no evidence that intensive streptomycin usage in agricultural habitats favors the development of resistance to tetracycline, an antibiotic also registered for disease control on plants. The detection of Tn5393 in bacteria with no prior exposure to streptomycin suggests that this transposon is indigenous to both phylloplane and soil microbial communities. | 1995 | 7585356 |
| 3595 | 11 | 0.9975 | Antibiotic Susceptibility, Resistance Gene Determinants and Corresponding Genomic Regions in Lactobacillus amylovorus Isolates Derived from Wild Boars and Domestic Pigs. Restrictions on the use of antibiotics in pigs lead to the continuous search for new probiotics serving as an alternative to antibiotics. One of the key parameters for probiotic bacteria selection is the absence of horizontally transmissible resistance genes. The aim of our study was to determine antibiotic susceptibility profiles in 28 Lactobacillus amylovorus isolates derived from the digestive tract of wild boars and farm pigs by means of the broth microdilution method and whole genome sequencing (WGS). We revealed genetic resistance determinants and examined sequences flanking resistance genes in these strains. Our findings indicate that L. amylovorus strains from domestic pigs are predominantly resistant to tetracycline, erythromycin and ampicillin. WGS analysis of horizontally transmissible genes revealed only three genetic determinants (tetW, ermB and aadE) of which all tetW and ermB genes were present only in strains derived from domestic pigs. Sequence analysis of coding sequences (CDS) in the neighborhood of the tetW gene revealed the presence of site-specific recombinase (xerC/D), site-specific DNA recombinase (spoIVCA) or DNA-binding transcriptional regulator (xre), usually directly downstream of the tetW gene. In the case of ermB, CDS for omega transcriptional repressor or mobilization protein were detected upstream of the ermB gene. | 2022 | 36677394 |
| 4500 | 12 | 0.9975 | Mosaic tetracycline resistance genes encoding ribosomal protection proteins. First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria. | 2016 | 27494928 |
| 3738 | 13 | 0.9975 | In Silico Prediction of Antibiotic Resistance in Mycobacterium ulcerans Agy99 through Whole Genome Sequence Analysis. Buruli ulcer is an emerging infectious disease caused by Mycobacterium ulcerans that has been reported from 33 countries. Antimicrobial agents either alone or in combination with surgery have been proved to be clinically relevant and therapeutic strategies have been deduced mainly from the empirical experience. The genome sequences of M. ulcerans strain AGY99, M. ulcerans ecovar liflandii, and three Mycobacterium marinum strains were analyzed to predict resistance in these bacteria. Fourteen putative antibiotic resistance genes from different antibiotics classes were predicted in M. ulcerans and mutation in katG (R431G) and pncA (T47A, V125I) genes were detected, that confer resistance to isoniazid and pyrazinamide, respectively. No mutations were detected in rpoB, gyrA, gyrB, rpsL, rrs, emb, ethA, 23S ribosomal RNA genes and promoter region of inhA and ahpC genes associated with resistance. Our results reemphasize the usefulness of in silico analysis for the prediction of antibiotic resistance in fastidious bacteria. | 2017 | 28749770 |
| 6142 | 14 | 0.9975 | Genome analysis of lactic acid bacterial strains selected as potential starters for traditional Slovakian bryndza cheese. Genomes of 21 strains of lactic acid bacteria isolated from Slovakian traditional cheeses were sequenced on an Illumina MiSeq platform. Subsequently, they were analysed regarding taxonomic classification, presence of genes encoding defence systems, antibiotic resistance and production of biogenic amines. Thirteen strains were found to carry genes encoding at least one bacteriocin, 18 carried genes encoding at least one restriction-modification system, all strains carried 1-6 prophages and 9 strains had CRISPR-Cas systems. CRISPR-Cas type II-A was the most common, containing 0-24 spacers. Only 10% spacers were found to be homological to known bacteriophage or plasmid sequences in databases. Two Enterococcus faecium strains and a Lactococcus lactis strain carried antibiotic resistance genes. Genes encoding for ornithine decarboxylase were detected in four strains and genes encoding for agmatine deiminase were detected in four strains. Lactobacillus paraplantarum 251 L appeared to be the most interesting strain, as it contained genes encoding for two bacteriocins, a restriction-modification system, two CRISPR-Cas systems, four prophages and no genes connected with antibiotic resistance or production of biogenic amines. | 2018 | 30346516 |
| 3593 | 15 | 0.9975 | Genes homologous to glycopeptide resistance vanA are widespread in soil microbial communities. The occurrence of d-Ala : d-Lac ligase genes homologous to glycopeptide resistance vanA was studied in samples of agricultural (n=9) and garden (n=3) soil by culture-independent methods. Cloning and sequencing of nested degenerate PCR products obtained from soil DNA revealed the occurrence of d-Ala : d-Ala ligase genes unrelated to vanA. In order to enhance detection of vanA-homologous genes, a third PCR step was added using primers targeting vanA in soil Paenibacillus. Sequencing of 25 clones obtained by this method allowed recovery of 23 novel sequences having 86-100% identity with vanA in enterococci. Such sequences were recovered from all agricultural samples as well as from two garden samples with no history of organic fertilization. The results indicated that soil is a rich and assorted reservoir of genes closely related to those conferring glycopeptide resistance in clinical bacteria. | 2006 | 16734783 |
| 5899 | 16 | 0.9975 | Identification of strA-strB Genes in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 2 Strains Isolated in Korea. Bacterial canker is a devastating disease of kiwifruit caused by the bacterium Pseudomonas syringe pv. actinidiae. Canker disease of kiwifruit in Korea has been controlled using streptomycin for more than two decades. Four streptomycin-resistant strains, belonging to biovar 2, which are found only in Korea, were collected between 2013 and 2014 from different orchards located in Jeju, Korea. The genetic background for streptomycin resistance among P. syringe pv. actinidiae strains were determined by examining the presence of strA-strB or aadA, which are genes frequently found in streptomycin-resistant bacteria, and a point mutation at codon 43 in the rpsL gene. All four streptomycin-resistant strains of P. syringe pv. actinidiae investigated in this study contained strA-strB as a resistant determinant. The presence of the aadA gene and a mutation in codon 43 of the rpsL gene was not identified. | 2021 | 34847635 |
| 6065 | 17 | 0.9975 | Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. The inhibitory activity of 122 out of 426 Enterococcus strains of geographically widespread origin and from different sources (food and feed, animal isolates, clinical and nonclinical human isolates) was tested against a wide range of indicator bacteria. Seventy-two strains, mainly belonging to the species Enterococcus faecium and Enterococcus faecalis were bacteriocinogenic. A remarkable variation of inhibitory spectra occurred among the strains tested, including inhibition of, for instance, only closely related enterococci, other lactic acid bacteria (LAB), food spoilage and pathogenic bacteria. No correlation could be found between the origin of the strains and the type of inhibitory spectrum, although a clustering of human isolates from both fecal and clinical origin was observed in the group of strains inhibiting lactic acid bacteria, Listeria, and either Staphylococcus or Clostridium. No relationship could be established between the presence of enterocin structural genes and the origin of the strain either, and hence no correlation seemed to exist between the presence of known enterocin genes and the activity spectra of these enterococci. The structural gene of enterocin A was widely distributed among E. faecium strains, whereas that of enterocin B only occurred in the presence of enterocin A. The vancomycin resistance phenotype as well as the presence of vancomycin resistance genes was also investigated. The vanA gene only occurred among E. faecium strains. The incidence of beta-hemolysis was not restricted to E. faecalis strains, but among the E. faecium strains the structural genes of cytolysin were not detected. beta-Hemolysis occurred in strains both from food and nonfood origin. It has been concluded that bacteriocin-producing E. faecium strains lacking hemolytic activity and not carrying cytolysin nor vancomycin resistance genes may be useful as starter cultures, cocultures, or probiotics. | 2003 | 12810293 |
| 5969 | 18 | 0.9975 | Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. A disposable microarray was developed for detection of up to 90 antibiotic resistance genes in gram-positive bacteria by hybridization. Each antibiotic resistance gene is represented by two specific oligonucleotides chosen from consensus sequences of gene families, except for nine genes for which only one specific oligonucleotide could be developed. A total of 137 oligonucleotides (26 to 33 nucleotides in length with similar physicochemical parameters) were spotted onto the microarray. The microarrays (ArrayTubes) were hybridized with 36 strains carrying specific antibiotic resistance genes that allowed testing of the sensitivity and specificity of 125 oligonucleotides. Among these were well-characterized multidrug-resistant strains of Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis and an avirulent strain of Bacillus anthracis harboring the broad-host-range resistance plasmid pRE25. Analysis of two multidrug-resistant field strains allowed the detection of 12 different antibiotic resistance genes in a Staphylococcus haemolyticus strain isolated from mastitis milk and 6 resistance genes in a Clostridium perfringens strain isolated from a calf. In both cases, the microarray genotyping corresponded to the phenotype of the strains. The ArrayTube platform presents the advantage of rapidly screening bacteria for the presence of antibiotic resistance genes known in gram-positive bacteria. This technology has a large potential for applications in basic research, food safety, and surveillance programs for antimicrobial resistance. | 2005 | 15872258 |
| 3051 | 19 | 0.9975 | Nucleotide sequence of the bacterial streptothricin resistance gene sat3. The nucleotide sequence of the sat3 gene which encodes resistance of enteric bacteria to the antibiotic streptothricin is reported. A protein with a molecular mass of about 23 kDa is expressed from this gene. The sat3 gene is not obviously related to any one of the streptothricin resistance determinants identified so far among Gram-negative or Gram-positive bacteria. | 1995 | 7640311 |