# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6119 | 0 | 1.0000 | Effects of osmolytes on salt resistance of Halomonas socia CKY01 and identification of osmolytes-related genes by genome sequencing. Bacteria from the genus Halomonas hold promise in biotechnology as sources of salt-tolerant enzymes, biosurfactants, biopolymers, osmolytes, and as actors in bioremediation processes. In a previous work, we have identified Halomonas socia strain CKY01 having various hydrolase activities. Here, we aimed to study the survival strategies of marine bacteria. A deep genome sequencing study of H. socia CKY01 has revealed 4627 genes reaching 4,753,299 bp with 64 % of GC content. This strain produced polyhydroxybutyrate (PHB) having one gene clusters having phaC and phasin, and it has several genes responsible for the uptake, synthesis, and transport of the osmolytes such as betaine, choline, ectoine, carnitine, and proline in the bacterial genome. The addition of 60 mM glutamate, 60 mM proline and 60 mM ectoine enhanced growth 300.8 %, 294.2 % and 235.0 %, respectively, under 10 % saline conditions. In particular, ectoine and proline increased salt resistance and allowed cells to survive in more than 15 % NaCl. By combining experimental and genome sequencing data, we have investigated the importance of osmolytes on the survival of this Halomonas strain. | 2020 | 32653639 |
| 6236 | 1 | 0.9990 | NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes. Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain. | 2021 | 33148940 |
| 160 | 2 | 0.9989 | A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas. Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria. | 2024 | 38817968 |
| 158 | 3 | 0.9988 | Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq. In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry. | 2021 | 33945164 |
| 8680 | 4 | 0.9988 | Environmental pH affects transcriptional responses to cadmium toxicity in Escherichia coli K-12 (MG1655). It has been widely reported that pH mediates cadmium toxicity to bacteria. We used a tripartite approach to investigate mechanisms by which pH affects cadmium toxicity that included analyses of: (1) growth kinetics, (2) global gene expression, and (3) cadmium speciation. Cadmium extended the lag phase at pH 7, but not at pH 5. DNA microarray analysis revealed that stress response genes including hdeA, otsA, and yjbJ were more highly expressed at pH 5 than at pH 7 after only 5 min of exposure to cadmium, suggesting that acidic pH more rapidly induced genes that confer cadmium resistance. In addition, genes involved in transport and many hypothetical genes were more highly expressed at pH 5 than at pH 7 in the presence of cadmium. Concentrations of two cadmium species, including one previously implicated in the mechanism by which pH mediates cadmium toxicity (CdOH+), increased with pH. Our data demonstrate that transcriptional responses of Escherichia coli to cadmium are substantially affected by pH and suggest that several stress response, transport, and hypothetical genes play roles in the mechanism by which pH mediates cadmium toxicity. | 2009 | 19220470 |
| 6207 | 5 | 0.9988 | The tellurite resistance gene cluster of pathogenic bacteria and its effect on oxidative stress response. Tellurite resistance gene clusters have been identified in numerous pathogenic bacteria, including clinical isolates of Escherichia coli. The rareness of tellurium in host organisms and the noncontaminated environment raises a question about the true functionality of tellurite resistance gene clusters in pathogenesis and their possible contribution to bacterial fitness. The study aims to point out the beneficial effects of the tellurite resistance gene cluster of pathogenic bacteria to survive in ROS-rich environments. Here, we analysed the bacterial response to oxidative stress conditions with and without tellurite resistance gene clusters, which are composed of terWY1XY2Y3 and terZABCDEF genes. By measuring the levels of protein carbonylation, lipid peroxidation, and expression changes of oxidative stress genes upon oxidative stress, we propose a tellurite resistance gene cluster contribution to the elimination of oxidative damage, potentially increasing fitness and resistance to reactive oxygen species during macrophage attack. We have shown a different beneficial effect of various truncated versions of the tellurite resistance gene cluster on cell survival. The terBCDEF genes increased the survival of E. coli strain MC4100 by 13.21%, terW and terZABCDEF by 10.09%, and terWY1XY2Y3 and terZABCDEF by 25.57%, respectively. The ability to survive tellurite treatment is the most significant at 44.8% in wild clinical strain KL53 compared to laboratory strain E. coli MC4100 due to a complete wild-type plasmid presence. | 2024 | 38261148 |
| 8879 | 6 | 0.9988 | Global metabolic regulation in Vibrio parahaemolyticus under polymyxin B stimulation. Vibrio parahaemolyticus is responsible for infection diseases of people who consume the contaminated seafood, but its metabolic regulation profile in response to colistin, the last treatment option for multidrug-resistant Gram-negative bacteria, remains unclear. In this study, the metabolic regulation profile of V. parahaemolyticus ATCC33846 under polymyxin B stimulation has been investigated. V. parahaemolyticus exposed to polymyxin B resulted in 4597 differentially transcribed genes, including 673 significantly up-regulated genes and 569 significantly down-regulated genes. In V. parahaemolyticus under polymyxin B stimulation, the cellular antioxidant systems to prevent bacteria from oxidant stress was activated, the synthesis of some nonessential macromolecules was reduced, and the assembly and modification of lipopolysaccharide and peptidoglycan to resist the attack from other antibiotics were promoted. These findings provide new insights into polymyxin B-related stress response in V. parahaemolyticus which should be useful for developing novel drugs for infection. | 2021 | 34688850 |
| 683 | 7 | 0.9987 | Integrative Multiomics Analysis of the Heat Stress Response of Enterococcus faecium. A continuous heat-adaptation test was conducted for one Enterococcus faecium (E. faecium) strain wild-type (WT) RS047 to obtain a high-temperature-resistant strain. After domestication, the strain was screened with a significantly higher ability of heat resistance. which is named RS047-wl. Then a multi-omics analysis of transcriptomics and metabolomics was used to analyze the mechanism of the heat resistance of the mutant. A total of 98 differentially expressed genes (DEGs) and 115 differential metabolites covering multiple metabolic processes were detected in the mutant, which indicated that the tolerance of heat resistance was regulated by multiple mechanisms. The changes in AgrB, AgrC, and AgrA gene expressions were involved in quorum-sensing (QS) system pathways, which regulate biofilm formation. Second, highly soluble osmotic substances such as putrescine, spermidine, glycine betaine (GB), and trehalose-6P were accumulated for the membrane transport system. Third, organic acids metabolism and purine metabolism were down-regulated. The findings can provide target genes for subsequent genetic modification of E. faecium, and provide indications for screening heat-resistant bacteria, so as to improve the heat-resistant ability of E. faecium for production. | 2023 | 36979372 |
| 8456 | 8 | 0.9987 | Identification of genes required by Bacillus thuringiensis for survival in soil by transposon-directed insertion site sequencing. Transposon-directed insertion site sequencing was used to identify genes required by Bacillus thuringiensis to survive in non-axenic plant/soil microcosms. A total of 516 genetic loci fulfilled the criteria as conferring survival characteristics. Of these, 127 (24.6 %) were associated with uptake and transport systems; 227 loci (44.0 %) coded for enzymatic properties; 49 (9.5 %) were gene regulation or sensory loci; 40 (7.8 %) were structural proteins found in the cell envelope or had enzymatic activities related to it and 24 (4.7 %) were involved in the production of antibiotics or resistance to them. Eighty-three (16.1 %) encoded hypothetical proteins or those of unknown function. The ability to form spores was a key survival characteristic in the microcosms: bacteria, inoculated in either spore or vegetative form, were able to multiply and colonise the soil, whereas a sporulation-deficient mutant was not. The presence of grass seedlings was critical to colonisation. Bacteria labelled with green fluorescent protein were observed to adhere to plant roots. The sporulation-specific promoter of spo0A, the key regulator of sporulation, was strongly activated in the rhizosphere. In contrast, the vegetative-specific promoters of spo0A and PlcR, a pleiotropic regulator of genes with diverse activities, were only very weakly activated. | 2014 | 24310935 |
| 6293 | 9 | 0.9987 | Gentamicin resistance to Escherichia coli related to fatty acid metabolism based on transcriptome analysis. Antibiotic overuse and misuse have promoted the emergence and spread of antibiotic-resistant bacteria. Increasing bacterial resistance to antibiotics is a major healthcare problem, necessitating elucidation of antibiotic resistance mechanisms. In this study, we explored the mechanism of gentamicin resistance by comparing the transcriptomes of antibiotic-sensitive and -resistant Escherichia coli. A total of 410 differentially expressed genes were identified, of which 233 (56.83%) were up-regulated and 177 (43.17%) were down-regulated in the resistant strain compared with the sensitive strain. Gene Ontology (GO) analysis classifies differential gene expression into three main categories: biological processes, cellular components, and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the up-regulated genes were enriched in eight metabolic pathways, including fatty acid metabolism, which suggests that fatty acid metabolism may be involved in the development of gentamicin resistance in E. coli. This was demonstrated by measuring the acetyl-CoA carboxylase activity, plays a fundamental role in fatty acid metabolism, was increased in gentamicin-resistant E. coli. Treatment of fatty acid synthesis inhibitor, triclosan, promoted gentamicin-mediated killing efficacy to antibiotic-resistant bacteria. We also found that exogenous addition of oleic acid, which involved in fatty acid metabolism, reduced E. coli sensitivity to gentamicin. Overall, our results provide insight into the molecular mechanism of gentamicin resistance development in E. coli. | 2023 | 37224563 |
| 6125 | 10 | 0.9987 | Complete Genome Sequence Analysis of Brevibacillus laterosporus Bl-zj Reflects its Potential Algicidal Response. We analyzed the complete genome of the bacteria Brevibacillus laterosporus Bl-zj. Its genome has a total length of 5,202,546 bp with 4594 annotated genes. The functional groups included transporters, pathogen-host interaction factors, antibiotic resistance genes, virulence factor, and secreted proteins were predicted, and carbon and nitrogen metabolism and transporters were mapped. A total of 34 genes possibly involved in algae-lysing processes were further screened, including 8 virulence factors, 18 secreted proteases, and 8 antibiotic-resistant genes, which could be playing important roles in host identification, invasion, and the destruction of algal cells. This study will provide a theoretical framework for the algicidal mechanism of algae-lysing bacteria and possible application to algal control. | 2021 | 33649996 |
| 8686 | 11 | 0.9987 | Improving Cadmium Resistance in Escherichia coli Through Continuous Genome Evolution. Cadmium (Cd) is a heavy metal that is extremely toxic to many organisms; however, microbes are highly adaptable to extreme conditions, including heavy metal contamination. Bacteria can evolve in the natural environment, generating resistant strains that can be studied to understand heavy-metal resistance mechanisms, but obtaining such adaptive strains usually takes a long time. In this study, the genome replication engineering assisted continuous evolution (GREACE) method was used to accelerate the evolutionary rate of the Escherichia coli genome to screen for E. coli mutants with high resistance to cadmium. As a result, a mutant (8mM-CRAA) with a minimum inhibitory concentration (MIC) of 8 mM cadmium was generated; this MIC value was approximately eightfold higher than that of the E. coli BL21(DE3) wild-type strain. Sequencing revealed 329 single nucleotide polymorphisms (SNPs) in the genome of the E. coli mutant 8mM-CRAA. These SNPs as well as RNA-Seq data on gene expression induced by cadmium were used to analyze the genes related to cadmium resistance. Overexpression, knockout and mutation of the htpX (which encodes an integral membrane heat shock protein) and gor (which encodes glutathione reductase) genes revealed that these two genes contribute positively to cadmium resistance in E. coli. Therefore, in addition to the previously identified cadmium resistance genes zntA and capB, many other genes are also involved in bacterial cadmium resistance. This study assists us in understanding the mechanism of microbial cadmium resistance and facilitating the application of heavy-metal remediation. | 2019 | 30842762 |
| 4714 | 12 | 0.9987 | Screening and genome analysis of heat-resistant and antioxidant lactic acid bacteria from Holstein cow milk. BACKGROUND: Heat stress significantly impacts dairy cows, primarily through oxidative stress, which undermines their health. The problem is exacerbated by the ongoing global warming trend. Lactic acid bacteria (LAB) are safe, economical, and readily accessible options for enhancing the host's antioxidant defenses and preventing oxidative damage. They have been proven effective in alleviating heat stress-related damage, making them an excellent choice for protecting dairy cows from the adverse effects of heat stress. METHOD: In this study, five strains of LAB from Holstein cow milk (Lactobacillus plantarum L5, L14, L17, L19, L20) were evaluated for their heat resistance and antioxidant capacity by evaluating the growth characteristics and tolerance of the strains under high-temperature conditions, as well as their H(2)O(2) tolerance, free radical scavenging ability (DPPH, OH(-), ABTS), reducing ability, and EPS production ability. Furthermore, we employed Caco-2 cells to assess the adhesion rate of the strain, thereby confirming its ability to successfully colonize the host's intestinal tract and ensuring the effective execution of its probiotic functions. The strain with excellent heat resistance and antioxidant capacity was then subjected to genomic analysis to gain insight into the molecular mechanisms behind their heat resistance, antioxidant capacity, and safety. RESULTS: Among the two strains, Lactobacillus plantarum L19 emerges as a highly promising candidate. The strain exhibits robust growth even at high temperatures at 40°C and maintains a survival rate of 16.42% at the extreme temperature of 65°C. Furthermore, it demonstrates superior tolerance to hydrogen peroxide (27.3%), and possesses a notably higher free radical scavenging capacity with a high adhesion rate to Caco-2 cell (22.19%) compared to the other four strains tested. Genomic analysis revealed its' genome has 17 genes related to antioxidants and three genes related to heat resistance. Importantly, L19 lacks any resistance genes, ensuring its safety as a probiotic. CONCLUSION: The results imply that Lactobacillus plantarum L19 has the potential to serve as an effective food additive in mitigating damages associated with heat stress. This research offers a valuable reference for the prevention and management of heat stress in dairy cows, while also expanding the scope of applications for LAB derived from cow milk. | 2024 | 39611093 |
| 6112 | 13 | 0.9987 | Analysis of heavy metal tolerance and genomics in an indigenous Kurthia strain from Kulik River reveals multi-metal resistance and dominance of selection pressure on codon usage patterns. Heavy metal(loid) contamination poses significant risks to biological entities and the ecosystem. Many metal(loid)-resistant bacteria have been isolated from different environmental sites, but still no work has described multi-metal resistant Kurthia sp. In this study, an indigenous Kurthia strain isolated from the surface water of River Kulik was studied to determine its level of tolerance to various metal(loid)s. This study aimed to isolate, characterize and determine the growth kinetics and efficiency of Kurthia gibsonii strain M6 to remove and bioaccumulate As(V), Ni and Pb in vitro. This study also aimed to sequence the whole genome of the bacterium, identify metal resistance genes and analyze the codon usage patterns and factors that affect the codon usage bias of these genes. The bacterium showed elevated resistance to As(V), Pb, Ni and Zn. Under metal(loid) stressed conditions, live cells of Kurthia strain M6 bioaccumulated 212.74, 91.51 and 40.38 mg g(-1) of As(V), Pb and Ni, respectively. The removal efficiency was 97%, 69.15% and 25.88% for Pb, Ni and As(V), respectively. Genome analysis revealed the existence of different genes conferring heavy metal resistance. A comprehensive analysis of codon usage patterns for metal resistance genes depicted the predominance of selection pressure as a prime force influencing codon usage patterns. This is the first time a multi-metal resistant K. gibsonii strain has been systematically studied regarding its heavy metal resistance biology. These findings will provide insights into the metal resistance mechanisms of the genus Kurthia and assist in devising new strategies for the bioremediation of metal-polluted environments. | 2025 | 39945867 |
| 8683 | 14 | 0.9987 | Responses to copper stress in the metal-resistant bacterium Cupriavidus gilardii CR3: a whole-transcriptome analysis. Microbial metal-resistance mechanisms are the basis for the application of microorganisms in metal bioremediation. Despite the available studies of bacterial molecular mechanisms to resistance metals ions (particularly copper), the understanding of bacterial metal resistance is very limited from the transcriptome perspective. Here, responses of the transcriptome (RNA-Seq) was investigated in Cupriavidus gilardii CR3 exposed to 0.5 mM copper, because strain CR3 had a bioremoval capacity of 38.5% for 0.5 mM copper. More than 24 million clean reads were obtained from six libraries and were aligned against the C. gilardii CR3 genome. A total of 310 genes in strain CR3 were significantly differentially expressed under copper stress. Apart from the routine copper resistance operons cus and cop known in previous studies, Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed genes indicated that the adenosine triphosphate-binding cassette transporter, amino acid metabolism, and negative chemotaxis collectively contribute to the copper-resistant process. More interestingly, we found that the genes associated with the type III secretion system were induced under copper stress. No such results were reordered in bacteria to date. Overall, this comprehensive network of copper responses is useful for further studies of the molecular mechanisms underlying responses to copper stress in bacteria. | 2019 | 30900763 |
| 6138 | 15 | 0.9987 | Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals. Five strains of Cupriavidus plantarum, a metal-resistant, plant-associated bacterium, were selected for genome sequencing through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) Phase IV project at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE). The genome of the strains was in the size range of 6.2-6.4 Mbp and encoded 5605-5834 proteins; 16.9-23.7% of these genes could not be assigned to a COG-associated functional category. The G + C content was 65.83-65.99%, and the genomes encoded 59-67 stable RNAs. The strains were resistant in vitro to arsenite, arsenate, cobalt, chromium, copper, nickel and zinc, and their genomes possessed the resistance genes for these metals. The genomes also encoded the biosynthesis of potential antimicrobial compounds, such as terpenes, phosphonates, bacteriocins, betalactones, nonribosomal peptides, phenazine and siderophores, as well as the biosynthesis of cellulose and enzymes such as chitinase and trehalase. The average nucleotide identity (ANI) and DNA-DNA in silico hybridization of the genomes confirmed that C. plantarum is a single species. Moreover, the strains cluster within a single group upon multilocus sequence analyses with eight genes and a phylogenomic analyses. Noteworthy, the ability of the species to tolerate high concentrations of different metals might prove useful for bioremediation of naturally contaminated environments. | 2020 | 32405446 |
| 157 | 16 | 0.9986 | Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation. | 2008 | 17920150 |
| 8684 | 17 | 0.9986 | Multiple Transcriptional Mechanisms Collectively Mediate Copper Resistance in Cupriavidus gilardii CR3. Bacteria resist copper (Cu) stress by implementing several metabolic mechanisms. However, these mechanisms are not fully understood. We investigated the mechanism of Cu resistance in Cupriavidus gilardii CR3, a Cu-resistant bacterium with a fully sequenced, annotated genome. The growth of CR3 was inhibited by higher Cu concentrations (≥1.0 mM) but not by lower ones (≤0.5 mM). CR3 accumulated Cu intracellularly (ratios of intercellular to extracellular Cu were 11.6, 4.24, and 3.9 in 0.1, 0.5, and 1.5 mM Cu treatments, respectively). A comparative transcriptome analysis of CR3 respectively revealed 310 and 413 differentially expressed genes under 0.5 and 1.5 mM Cu stress, most of which were up-regulated under Cu treatment. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses uncovered several genotype-specific biological processes related to Cu stress. Besides revealing known Cu resistance-related genes, our global transcriptomics approach indicated that sulfur metabolism, iron-sulfur cluster, and cell secretion systems are involved in mediating Cu resistance in strain CR3. These results suggest that bacteria collectively use multiple systems to cope with Cu stress. Our findings concerning the global transcriptome response to Cu stress in CR3 provide new information for understanding the intricate regulatory network of Cu homeostasis in prokaryotes. | 2019 | 30920814 |
| 189 | 18 | 0.9986 | Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Pseudomonas sp. strain As-1, obtained from an electroplating industrial effluent, was capable of growing aerobically in growth medium supplemented with up to 65 mM arsenate (As (V)), significantly higher concentrations than those tolerated by other reference arsenic resistant bacteria. The majority of the arsenic was detected in culture supernatants as arsenite (As (III)) and X-ray absorbance spectroscopy suggested that 30% of this cell-bound arsenic was As (V), 65% As (III) and 5% of arsenic was associated with sulphur. PCR analysis using primers designed against arsenic resistance genes of other Gram-negative bacteria confirmed the presence of an arsenic resistance operon comprising of three genes, arsR, arsB and arsC in order of predicted transcription, and consistent with a role in intracellular reduction of As (V) and efflux of As (III). In addition to this classical arsenic resistance mechanism, other biochemical responses to arsenic were implicated. Novel arsenic-binding proteins were purified from cellular fractions, while proteomic analysis of arsenic-induced cultures identified the upregulation of additional proteins not normally associated with the metabolism of arsenic. Cross-talk with a network of proteins involved in phosphate metabolism was suggested by these studies, consistent with the similarity between the phosphate and arsenate anions. | 2007 | 17160678 |
| 6035 | 19 | 0.9986 | Developing Gut-Healthy Strains for Pets: Probiotic Potential and Genomic Insights of Canine-Derived Lactobacillus acidophilus GLA09. Probiotics are widely used to improve pet health and welfare due to their significant biological activity and health benefits. Lactobacillus acidophilus GLA09 was derived from the intestinal tract of healthy beagles. The safety and suitability evaluation of GLA09 was completed through a combination of whole genome sequence and phenotypic analyses, including tests for the inhibition of harmful bacteria, acid resistance, bile salt tolerance, adhesion, and amine-producing substance content. The findings revealed that GLA09 has good gastrointestinal tolerance, inhibits the growth of pathogenic bacteria, and does not produce toxic biogenic amines. The genome of GLA09 comprises one chromosome and one plasmid, with a genome size of 2.10 M and a Guanine + Cytosine content of 38.71%. It encodes a total of 2208 genes, including 10 prophages, and 1 CRISPR sequence. Moreover, 56 carbohydrate-encoding genes were identified in the CAZy database, along with 11 genes for cold and heat stress tolerance, 5 genes for bile salt tolerance, 12 genes for acid tolerance, and 14 predicted antioxidant genes. Furthermore, GLA09 has one lincosamide resistance gene, but there is no risk of transfer. GLA09 harbors a cluster of Helveticin J and Enterolysin A genes linked to antimicrobial activity. Genomic analysis validated the probiotic attributes of GLA09, indicating its potential utility as a significant probiotic in the pet food industry. In summary, L. acidophilus GLA09 has the potential to be used as a probiotic in pet food and can effectively combat intestinal health in pets. | 2025 | 40005717 |