# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6075 | 0 | 1.0000 | Molecular screening of beneficial and safety determinants from bacteriocinogenic lactic acid bacteria isolated from Brazilian artisanal calabresa. Despite of the beneficial relevance of several lactic acid bacteria (LAB) in the food industry, micro-organisms belonging to this group can determine spoilage in food products and carry a number of virulence and antibiotic resistance-related genes. This study aimed on the characterization of beneficial and safety aspects of five bacteriocinogenic LAB strains (Lactobacillus curvatus 12-named L. curvatus UFV-NPAC1), L. curvatus 36, Weissela viridescens 23, W. viridescens 31 and Lactococcus garvieae 36) isolated from an artisanal Brazilian calabresa, a traditional meat sausage. Regarding their beneficial aspects, all tested isolates were positive for mub, while EF226-cbp, EF1249-fbp and EF2380-maz were detected in at least one tested strain; none of the isolates presented map, EFTu or prgB. However, evaluated strains presented a variable pattern of virulence-related genes, but none of the strains presented gelE, cylA, efsA, cpd, int-Tn or sprE. Moreover, other virulence-related genes evaluated in this study were detected at different frequencies. L. curvatus 12 was generated positive results for ace, ccf, int, ermC, tetL, aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, bcrB, vanB and vanC2; L. curvatus 36: hyl, asa1, esp, int, ermC, tetK, aph(3')-IIIa, aph(2'')-Ic and vanC2; L. garvieae 32: asa1, ant(4')-Ia, aph(2'')-Ib, catA, vanA and vanC1; W. viridescens 23: esp, cob, ermB, aph(3')-IIIa, aph(2'')-Ic, vanA, vanB and vanC2; W. viridescens 31: hyl, esp, ermC, aph(3')-IIIa, aph(2'')-Ib, aph(2'')-Ic, catA, vanA and vanB. Despite presenting some beneficial aspects, the presence of virulence and antibiotic resistance genes jeopardize their utilization as starter or biopreservatives cultures in food products. Considering the inhibitory potential of these strains, an alternative would be the use of their bacteriocins as semi-purified or pure technological preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: The food industry has a particular interest in using bacteriocinogenic lactic acid bacteria (LAB) as starter, probiotics and/or biopreservatives in different food products. Characterization of additional beneficial features is important to identify new, multifunctional potential probiotic strains. However, these strains can only be applied in food products only after being properly characterized according their potential negative aspects, such as virulence and antibiotic resistance genes. A wide characterization of beneficial and safety aspects of bacteriocinogenic LAB is determinant to guide the proper utilization of these strains, or their purified bacteriocins, by the food industry. | 2019 | 31250457 |
| 2435 | 1 | 0.9994 | Genotypic and Technological Characterization of Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Sucuk: A Preliminary Screening of Potential Starter Cultures. This study aimed to characterize lactic acid bacteria (LAB) and coagulase-negative staphylococci (CoNS) isolated from traditionally produced sucuk for their potential use in starter culture development and food safety applications in fermented meat products. A total of 145 isolates (95 LAB and 50 CoNS) were analyzed through genetic identification, phylogenetic analysis, and assessments of technological properties. Antagonistic activity against Listeria monocytogenes and Staphylococcus aureus was also evaluated, along with antibiotic sensitivity. Among LAB, Lactiplantibacillus plantarum was the most prevalent species (60 isolates), while Staphylococcus xylosus was the predominant CoNS species (24 isolates). The isolates exhibited diverse technological properties and varying levels of antagonistic activity against the tested pathogens. Antibiotic sensitivity tests indicated that 15 selected isolates were negative for antibiotic resistance genes. Overall, this comprehensive characterization provides valuable insights for the development of starter cultures and for enhancing food safety in fermented meat products. | 2025 | 41154032 |
| 6056 | 2 | 0.9994 | Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. The present study aimed to investigate the virulence, antibiotic resistance and biogenic amine production in bacteriocinogenic lactococci and enterococci isolated from goat milk in order to evaluate their safety. Twenty-nine bacteriocinogenic lactic acid bacteria (LAB: 11 Lactococcus spp., and 18 Enterococcus spp.) isolated from raw goat milk were selected and subjected to PCR to identify gelE, cylA, hyl, asa1, esp, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc genes. The expression of virulence factors (gelatinase, hemolysis, lipase, DNAse, tyramine, histamine, putrescine) in different incubation temperatures was assessed by phenotypic methods, as well as the resistance to vancomycin, gentamicin, chloramphenicol, ampicillin and rifampicin (using Etest®). The tested isolates presented distinct combinations of virulence related genes, but not necessarily the expression of such factors. The relevance of identifying virulence-related genes in bacteriocinogenic LAB was highlighted, demanding for care in their usage as starter cultures or biopreservatives due to the possibility of horizontal gene transfer to other bacteria in food systems. | 2014 | 24960293 |
| 2432 | 3 | 0.9993 | Antimicrobial resistance, virulence characteristics and genotypes of Bacillus spp. from probiotic products of diverse origins. Spore-forming probiotic Bacillus spp. have received extensively increasing scientific and commercial interest, but raised the concerns in the potential risks and pathogenesis. In this study, 50 commercial probiotic products were collected from all over the country and Bacillus spp. isolated from products were evaluated for the safety on the aspects of hemolytic activity, contamination profiles, toxin genes, cytotoxicity, antimicrobial resistance, and genotyping. 34 probiotic products (68%) exhibited hemolysis, including 19 human probiotics, 9 animal probiotics, and 6 plant probiotics. 28 products (56%) contained other bacteria not labeled in the ingredients. 48 strains in Bacillus spp. including 17 B. subtilis group isolates, 28 B. cereus, and 3 other Bacillus spp. were isolated from human, food animal, and plant probiotic products. Detection rates of enterotoxin genes, nheABC and hblCDA, and cytotoxin cytK2 in 48 Bacillus spp. isolates were 58%, 31%, and 46%, respectively. Also, one isolate B. cereus 34b from an animal probiotic product was positive for ces, encoding cereulide. 28 of 48 Bacillus spp. isolates were cytotoxic. 19 of 28 B. cereus isolates maintained to exhibit hemolysis after heat treatment. All 48 Bacillus spp. isolates exhibited resistance to lincomycin, and 5 were resistant to tetracycline. The genotyping of commercial probiotic Bacillus spp. reported in this study showed that ces existed in B. cereus 34b with the specific sequence type (ST1066). These findings support the hypothesis that probiotic products were frequently contaminated and that some commercial probiotics consisted of Bacillus spp. may possess toxicity and antimicrobial resistance genes. Thus, the further efforts are needed in regarding the surveillance of virulence factors, toxins, and antibiotic resistance determinants in probiotic Bacillus spp. | 2021 | 33509502 |
| 5390 | 4 | 0.9993 | Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance. | 2012 | 22644346 |
| 2430 | 5 | 0.9992 | Characterization of bacteriocinogenic Enterococcus isolates from wild and laboratory rabbits for the selection of autochthonous probiotic strains in Tunisia. AIM: The objective of this study was to characterize lactic acid bacteria (LAB) from rabbits to be used as potential autochthonous probiotic. METHODS AND RESULTS: Fifteen faecal samples were collected from wild and laboratory rabbits. One hundred and eight isolates were collected and tested for their inhibitory power against eight pathogenic bacteria. Among them, 43 Enterococcus isolates were able to inhibit at least one pathogen. Enterocine genes entA, entB and entP were detected in 14, 17 and 22 isolates, respectively. These isolates were tested for their antibiotic susceptibility and genes encoding virulence factors. Relevant phenotypes of antibiotic resistance were observed especially for ampicillin, vancomycin and linezolid. The following virulence genes were detected (number of positive isolates): hyl (5), esp (8), gelE (30), agg (2), ace (21), efa (6), CylL(L/s) (5), cob (26), cpd (32) and ccf (33). Five isolates were considered as safe and showed tolerance to both acid and bile salt. CONCLUSION: Bacteriocinogenic enterococci isolates from rabbits may show relevant resistance phenotypes and virulence factors. In addition, one Enterococcus durans isolate presents promising autochthonous probiotic candidate. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reveals interesting properties for E. durans isolate and supports their utilization as autochthonous probiotic in rabbit husbandry. | 2021 | 33629433 |
| 2431 | 6 | 0.9992 | Bacteriocin production, antibiotic susceptibility and prevalence of haemolytic and gelatinase activity in faecal lactic acid bacteria isolated from healthy Ethiopian infants. The objective of this study was to characterise lactic acid bacteria (LAB) isolated from faecal samples of healthy Ethiopian infants, with emphasis on bacteriocin production and antibiotic susceptibility. One hundred fifty LAB were obtained from 28 healthy Ethiopian infants. The isolates belonged to Lactobacillus (81/150), Enterococcus (54/150) and Streptococcus (15/150) genera. Lactobacillus species were more abundant in the breast-fed infants while Enterococcus dominated the mixed-fed population. Bacteriocin-producing LAB species were isolated from eight of the infants. Many different bacteriocins were identified, including one new bacteriocin from Streptococcus salivarius, avicin A (class IIa) from Enterococcus avium, one class IIa bacteriocin from Enterococcus faecalis strains, one unknown bacteriocin from E. faecalis and two unknown bacteriocins from Lactobacillus fermentum strains and the two-peptide gassericin T from Lactobacillus gasseri isolate. Susceptibility tests performed for nine antibiotics suggest that some lactobacilli might have acquired resistance to erythromycin (3 %) and tetracycline (4 %) only. The streptococci were generally antibiotic sensitive except for penicillin, to which they showed intermediate resistance. All enterococci were susceptible to ampicillin while 13 % showed penicillin resistance. Only one E. faecalis isolate was vancomycin-resistant. Tetracycline (51 %) and erythromycin (26 %) resistance was prevalent among the enterococci, but multidrug resistance was confined to E. faecalis (47 %) and Enterococcus faecium (33 %). Screening of enterococcal virulence traits revealed that 2 % were β-haemolytic. The structural genes of cytolysin were detected in 28 % of the isolates in five enterococcal species, the majority being E. faecalis and Enterococcus raffinosus. This study shows that bacteriocin production and antibiotic resistance is a common trait of faecal LAB of Ethiopian infants while virulence factors occur at low levels. | 2013 | 23184155 |
| 2436 | 7 | 0.9992 | Lactic Acid Bacteria as Biological Control of Staphylococcus aureus in Coalho Goat Cheese. The aim of this study is to investigate the bacterial population in coalho goat cheese produced in the semi-arid northeast region of Brazil, to analyse the antibiotic resistance profiles of the identified pathogenic bacteria, to detect the staphylococcal enterotoxin genes and to evaluate the addition of autochthonous lactic acid bacteria (LAB) with technofunctional properties for the control of Staphylococcus aureus growth. In the analysed samples, strains of Escherichia coli (N=11), Salmonella spp. (N=18), Listeria spp. (N=6) and S. aureus (N=9) were classified as multidrug resistant (MDR). The most commonly isolated pathogen from the studied coalho goat cheese was S. aureus. Its isolates were positive for the genes encoding enterotoxins A (sea), B (seb), C (sec) and D (sed). The autochthonous LAB with the potential to inhibit S. aureus were identified as Enterococcus faecium. These strains were selected for in vitro tests of protective, safety, technological and functional properties. In the coalho goat cheese food matrix, these selected autochthonous LAB were able to reduce the enterotoxigenic MDR S. aureus load by approx. 3 log units. | 2018 | 30510486 |
| 5395 | 8 | 0.9992 | Assessment of Antibiotic Susceptibility within Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Hunan Smoked Pork, a Naturally Fermented Meat Product in China. The aim of this study was to evaluate the antibiotic susceptibility of lactic acid bacteria (LAB) and coagulase-negative staphylococci (CNS) strains isolated from naturally fermented smoked pork produced in Hunan, China. A total of 48 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (23), Lactobacillus plantarum (12), Lactobacillus brevis (10), Lactobacillus sakei (1), Weissella confusa (1), and Weissella cibaria (1). All strains were typed by RAPD-PCR, and their susceptibility to 15 antibiotics was determined and expressed as the minimum inhibitory concentration (MIC) using agar dilution method. High resistance to penicillin G, streptomycin, gentamycin, vancomycin, chloramphenicol, norfloxacin, ciprofloxacin, kanamycin, and neomycin was found among the isolates. All the strains were sensitive to ampicillin, while the susceptibility to tetracycline, oxytetracycline, erythromycin, lincomycin, and roxithromycin varied. The presence of relevant resistance genes was investigated by PCR and sequencing, with the following genes detected: str(A), str(B), tet(O), tet(M), ere(A), and catA. Eleven strains, including 3 S. carnosus, 6 L. plantarum, and 2 L. brevis, harbored more than 3 antibiotic resistance genes. Overall, multiple antibiotic resistance patterns were widely observed in LAB and S. carnosus strains isolated from Hunan smoked pork. Risk assessment should be carried out with regard to the safe use of LAB and CNS in food production. PRACTICAL APPLICATION: We evaluated the antibiotic resistance of lactic acid bacteria and coagulase-negative staphylococci strains isolated from Chinese naturally fermented smoked pork. Our results may provide important data on establishing breakpoint standards for LAB and CNS and evaluating the safety risk of these strains for commercial use. | 2018 | 29786847 |
| 6057 | 9 | 0.9992 | Incidence of virulence determinants and antibiotic resistance in lactic acid bacteria isolated from food products. Background: Lactic acid bacteria (LAB) confer beneficial health effects in humans. However, the safety of these bacteria and their potential to spread resistance in the environment must be evaluated. Materials & methods: Fifty-three LAB were isolated from different food samples and assessed for the prevalence of virulence determinants and antibiotic resistance profile. Results: Multiple resistance was reported for Lactobacillus brevis MIM04, having revealed phenotypic resistance to vancomycin (MIC >128 μg/ml), ampicillin, cefotaxime, oxacillin and gentamicin. Virulence traits (cylA, gelE, esp and agg) were detected using specific primers. Enterococcus faecium CHE32, Lactobacillus plantarum CHE37 and E. faecium MLK68 lack virulence genes, possess antimicrobial activity and survive in low pH and bile salt conditions. Conclusion: Isolated LAB revealed probiotic properties. | 2022 | 35172602 |
| 2403 | 10 | 0.9992 | Characterization of coagulase-negative staphylococci and macrococci isolated from cheese in Germany. Cheese, especially ripened varieties, harbor a very complex and heterogeneous microbiota. In addition to the desired microorganisms (starter cultures) added during cheese production, potentially harmful bacteria may also enter the production chain. Regarding the latter, the focus of this study was on coagulase-negative staphylococci (CNS) and Macrococcuscaseolyticus. Both are known to harbor a variety of genes coding for antibiotic resistance, including mecA, mecB, mecC, and mecD. Coagulase-negative staphylococci or macrococci carrying such genes or other virulence factors should not be present in cheese. Cheese samples (101 in total) were collected from retail sources. Coagulase-negative staphylococci and M. caseolyticus were isolated utilizing selective agars, and species were identified by phenotypical tests and partial sequencing of the sodA gene. The results allowed identification of 53 CNS strains and 19 M. caseolyticus strains. Among the CNS, 11 isolates of Staphylococcus saprophyticus and one Staphylococcus epidermidis isolate were obtained. Both species are potential human pathogens and may thus adversely affect the safety of these food products. Screening for antimicrobial resistance was performed by application of disc diffusion tests, a gradient strip-test, and 14 different PCR tests. Evidence for methicillin resistance (by either positive disc diffusion assay for cefoxitin or by mec PCR) was found in CNS isolates and M. caseolyticus (9 isolates each). Regarding other virulence factors, no genetic determinants for coagulase or the most common staphylococcal enterotoxins sea, seb, sec, sed, and see were detected in any of the CNS or M. caseolyticus isolates by PCR testing. In conclusion, the presence of facultatively pathogenic CNS and carriers of genes for antibiotic resistance in both groups of microorganisms, especially mec genes, and the respective food safety issues need further evaluation and surveillance. | 2022 | 35965117 |
| 5392 | 11 | 0.9992 | Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. The study provides phenotypic and molecular analyses of the antibiotic resistance in lactic acid bacteria (LAB) from fermented foods in Xi'an, China. LAB strains (n = 84) belonging to 16 species of Lactobacillus (n = 73), and Streptococcus thermophilus (n = 11) were isolated and identified by sequencing their 16S rRNA gene. All strains were susceptible to ampicillin, bacitracin, and cefsulodin, and intrinsically resistant to nalidixic acid, kanamycin, and vancomycin (except L. bulgaricus, L. acidophilus, and S. thermophilus, which were susceptible to vancomycin). Some strains had acquired resistance for penicillin (n = 2), erythromycin (n = 9), clindamycin (n = 5), and tetracycline (n = 14), while resistance to gentamycin, ciprofloxacin, streptomycin, and chloramphenicol was species dependent. Minimum inhibitory concentrations presented in this study will help to review microbiological breakpoints for some of the species of Lactobacillus. The erm(B) gene was detected from two strains of each of L. fermentum and L. vaginalis, and one strain of each of L. plantarum, L. salivarius, L. acidophilus, L. animalis, and S. thermophilus. The tet genes were identified from 12 strains of lactobacilli from traditional foods. This is the first time, the authors identified tet(S) gene from L. brevis and L. kefiri. The erm(B) gene from L. fermentum NWL24 and L. salivarius NWL33, and tet(M) gene from L. plantarum NWL22 and L. brevis NWL59 were successfully transferred to Enterococcus faecalis 181 by filter mating. It was concluded that acquired antibiotic resistance is well dispersed in fermented food products in Xi'an, China and its transferability to other genera should be monitored closely. | 2011 | 21212956 |
| 6051 | 12 | 0.9992 | Antibiotic susceptibility of different lactic acid bacteria strains. Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes. | 2011 | 22146692 |
| 6061 | 13 | 0.9992 | Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Screening for lactic acid bacteria (LAB) from fresh shrimp samples (Penaeus vannamei) collected from retail seafood markets in the Tunisian's coast, resulted in the isolation of an Enterococcus strain termed Q1. This strain was selected for its antagonistic activity against pathogenic bacteria such as Listeria monocytogenes, Pseudomonas aeruginosa, Lactococcus garvieae and against fungi (Aspergillus niger and Fusarium equiseti). The Q1 strain was characterised using standard morphological and biochemical tests, growth assays at different temperatures, pH and salinity. 16S rRNA, rpoA and pheS gene sequencing, as well as the 16S-23S rRNA intergenic spacer analyses, were combined to identify strain Q1 as a strain of Enterococcus lactis. The bacteriocin produced by E. lactis Q1 is thermostable, active in the pH range from 4.0 to 9.0 and has a bactericidal mode of action. The enterocin P structural gene was detected by specific PCR in strain E. lactis Q1, which is in good agreement with SDS-PAGE data of the purified bacteriocin. A lack of significant antibiotic resistance genes and virulence determinants was confirmed by specific PCRs. This work provides the first description of an enterocin P producer E. lactis strain isolated from a fresh shrimp. Based on its safety properties (absence of haemolytic activity, virulence factors and antibiotic resistance genes), this strain has the potential to be used as a natural additive or adjunct protective culture in food biopreservation and/or probiotic culture. | 2017 | 28265787 |
| 5904 | 14 | 0.9992 | Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. OBJECTIVES: To determine MICs of 16 antimicrobials representing all major classes for 473 taxonomically well-characterized isolates of lactic acid bacteria (LAB) encompassing the genera Lactobacillus, Pediococcus and Lactococcus. To propose tentative epidemiological cut-off (ECOFF) values for recognizing intrinsic and acquired antimicrobial resistances in numerically dominant species. METHODS: On the basis of depositors' information, LAB were grouped in categories of probiotic, nutritional, probiotic or nutritional research, human and animal isolates and tested for their antibiotic susceptibilities by broth microdilution using LAB susceptibility test medium (LSM). Tentative ECOFFs were defined according to the recommendations of the European Committee on Antimicrobial Susceptibility Testing. Isolates showing acquired antimicrobial resistance(s) were selected for PCR-based detection of resistance gene(s) and in vitro conjugative transfer experiments. RESULTS: Tentative ECOFF values of 13 antibiotics were determined for up to 12 LAB species. Generally, LAB were susceptible to penicillin, ampicillin, ampicillin/sulbactam, quinupristin/dalfopristin, chloramphenicol and linezolid. LAB exhibited broad or partly species-dependent MIC profiles of trimethoprim, trimethoprim/sulfamethoxazole, vancomycin, teicoplanin and fusidic acid. Three probiotic Lactobacillus strains were highly resistant to streptomycin. Although erythromycin, clindamycin and oxytetracycline possessed high antimicrobial activities, 17 Lactobacillus isolates were resistant to one or more of these antibiotics. Eight of them, including six probiotic and nutritional cultures, possessed erm(B) and/or tet(W), tet(M) or unidentified members of the tet(M) group. In vitro intra- and interspecies filter-mating experiments failed to show transfer of resistance determinants. CONCLUSIONS: Finding of acquired resistance genes in isolates intended for probiotic or nutritional use highlights the importance of antimicrobial susceptibility testing in documenting the safety of commercial LAB. | 2007 | 17369278 |
| 5391 | 15 | 0.9992 | Antibiotic Resistance of Lactobacillus spp. and Streptococcus thermophilus Isolated from Chinese Fermented Milk Products. The aim of the present study was to investigate the phenotypic and genotypic antimicrobial resistance and the transferability of resistance markers in 87 lactic acid bacterial strains recovered from fermented milk products obtained from different areas of China. The isolates were identified as 21 Lactobacillus bulgaricus, 8 Lactobacillus casei, 6 Lactobacillus rhamnosus, 3 Lactobacillus paracasei, 2 Lactobacillus acidophilus, and 47 Streptococcus thermophilus strains. High levels of intrinsic resistance were revealed among the tested species. The following resistance genes were detected in strains isolated from fermented milk products: tet(M) in two L. bulgaricus and two S. thermophilus isolates, strA and strB in nine and seven S. thermophilus isolates, respectively; sul1 in six L. bulgaricus and seven S. thermophilus isolates, sul2 in one S. thermophilus isolate, aac(6')-aph(2″) in two L. bulgaricus isolates, and aph(3″)-II and aph(3″)-III in one S. thermophilus and two L. bulgaricus isolates, respectively. Transfer of the monitored antibiotic resistance genes was not observed in the filter mating assays of this study. To our knowledge, the strA, strB, sul1, sul2, and aph(3″)-II genes in S. thermophilus, and the sul1 and aac(6')-aph(2″) genes in L. bulgaricus were identified for the first time. These results indicate the potential risks posed by lactic acid bacteria (LAB) in fermented milk products in expanding the antibiotic resistance gene reservoir and transferring antibiotic resistance genes among bacteria. Further investigations are required to identify the potential sources of contamination and the dissemination routes of antibiotic resistance genes among LAB in fermented milk products. | 2019 | 30481059 |
| 2424 | 16 | 0.9992 | Antimicrobial-Resistance Genetic Markers in Potentially Pathogenic Gram Positive Cocci Isolated from Brazilian Soft Cheese. Although most Brazilian dairy products meet high technological standards, there are quality issues regarding milk production, which may reduce the final product quality. Several microbial species may contaminate milk during manufacture and handling. If antimicrobial usage remains uncontrolled in dairy cattle, the horizontal transfer of antimicrobial resistance genes in foodstuffs may be of particular concern for both food producers and dairy industry. This study focused on the evaluation of putative Gram positive cocci in Minas cheese and of antimicrobial and biocide resistance genes among the isolated bacteria. Representative samples of 7 different industrially trademarked Minas cheeses (n = 35) were processed for selective culture and isolation of Gram positive cocci. All isolated bacteria were identified by DNA sequencing of the 16S rRNA gene. Antimicrobial resistance genes were screened by PCR. Overall, 208 strains were isolated and identified as follows: Enterococcus faecalis (47.6%), Macrococcus caseolyticus (18.3%), Enterococcus faecium (11.5%), Enterococcus caseliflavus (7.7%), Staphylococcus haemolyticus (7.2%), Staphylococcus aureus (4.3%), Staphylococcus epidermidis (2.9%), and Enterococcus hirae (0.5%). The genetic markers mecA (78.0%) and smr (71.4%) were the most prevalent, but others were also detected, such as blaZ (65.2%), msrA (60.9%), msrB (46.6%), linA (54.7%), and aacA-aphD (47.6%). The occurrence of opportunist pathogenic bacteria harboring antimicrobial resistance markers in the cheese samples are of special concern, since these bacteria are not considered harmful contaminating agents according to the Brazilian sanitary regulations. However, they are potentially pathogenic bacteria and the cheese may be considered a reservoir for antimicrobial resistance genes available for horizontal transfer through the food chain, manufacturing personnel and consumers. | 2018 | 29337343 |
| 6064 | 17 | 0.9992 | Evaluation of marine bacteriocinogenic enterococci strains with inhibitory activity against fish-pathogenic Gram-negative bacteria. Use of lactic acid bacteria (LAB) as probiotics may provide an alternative to the use of antibiotics in aquaculture. LAB strains isolated from wild fish viscera and skin were evaluated for bacteriocin production and safety aspects (lack of antibiotic resistance, production of virulence factors). 16S rRNA gene sequences revealed the presence of Enterococcus faecium (13 isolates) and Lactococcus lactis (3 isolates) from fish samples. Pulsed-field gel electrophoresis analyses of the 13 enterococci isolates showed that they were all clustered, with greater than 95% similarity. However, RAPD analysis revealed significant molecular diversity between enterococci strains. Six enterococci strains were chosen and evaluated for their antibacterial activities. These strains produced a bacteriocin-like substance and exhibited a broad spectrum of inhibition against pathogenic bacteria isolated from diseased fish, including Streptococcus parauberis, Vagococcus spp., and Carnobacterium maltaromaticum, and in particular against the Gram-negative bacteria Flavobacterium frigidarium, Vibrio pectenicida, V. penaeicida, and Photobacterium damselae. The inhibition activity towards bacterial indicator strains was at a maximum when bacteria were grown at 37°C. However, bacteriocin production was observed at 15°C after 12 h of incubation. Only structural genes of enterocins A and B were detected by PCR in the 6 enterococci strains, suggesting the production of these enterocins. In addition, these strains did not harbor any virulence factors or any significant antibiotic resistance, and they tolerated bile. Our results suggest that enterococci are an important part of the bacterial flora of fish and that some strains have the potential to be used as probiotics. | 2016 | 26865233 |
| 5863 | 18 | 0.9992 | Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. The likelihood that products prepared from raw meat and milk may act as vehicles for antibiotic-resistant bacteria is currently of great concern in food safety issues. In this study, a collection of 94 tetracycline-resistant (Tc(r)) lactic acid bacteria recovered from nine different fermented dry sausage types were subjected to a polyphasic molecular study with the aim of characterizing the host organisms and the tet genes, conferring tetracycline resistance, that they carry. With the (GTG)(5)-PCR DNA fingerprinting technique, the Tc(r) lactic acid bacterial isolates were identified as Lactobacillus plantarum, L. sakei subsp. carnosus, L. sakei subsp. sakei, L. curvatus, and L. alimentarius and typed to the intraspecies level. For a selection of 24 Tc(r) lactic acid bacterial isolates displaying unique (GTG)(5)-PCR fingerprints, tet genes were determined by means of PCR, and only tet(M) was detected. Restriction enzyme analysis with AccI and ScaI revealed two different tet(M) allele types. This grouping was confirmed by partial sequencing of the tet(M) open reading frame, which indicated that the two allele types displayed high sequence similarities (>99.6%) with tet(M) genes previously reported in Staphylococcus aureus MRSA 101 and in Neisseria meningitidis, respectively. Southern hybridization with plasmid profiles revealed that the isolates contained tet(M)-carrying plasmids. In addition to the tet(M) gene, one isolate also contained an erm(B) gene on a different plasmid from the one encoding the tetracycline resistance. Furthermore, it was also shown by PCR that the tet(M) genes were not located on transposons of the Tn916/Tn1545 family. To our knowledge, this is the first detailed molecular study demonstrating that taxonomically and genotypically diverse Lactobacillus strains from different types of fermented meat products can be a host for plasmid-borne tet genes. | 2003 | 12571056 |
| 5397 | 19 | 0.9991 | Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea. In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use. | 2023 | 36746921 |