Probiotic bacteria of wild boar origin intended for piglets - An in vitro study. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
607001.0000Probiotic bacteria of wild boar origin intended for piglets - An in vitro study. Using probiotics represents a potential solution to post-weaning diarrheal diseases in piglets on commercial farms. The gastrointestinal tract of wild boars serves as a promising reservoir of novel lactic acid bacteria with suitable probiotic characteristics. In this study, we isolated eight bacterial strains from the intestinal content of wild boars identified as representatives of the species Bifidobacterium apri, Lactobacillus amylovorus, and Ligilactobacillus salivarius. These isolates underwent in vitro analysis and characterisation to assess their biological safety and probiotic properties. Analysis of their full genome sequences revealed the absence of horizontally transferrable genes for antibiotic resistance. However, seven out of eight isolates harboured genes encoding various types of bacteriocins in their genomes, and bacteriocin production was further confirmed by mass spectrometry analysis. Most of the tested strains demonstrated the ability to inhibit the growth of selected pathogenic bacteria, produce exopolysaccharides, and stimulate the expression of interleukin-10 in porcine macrophages. These characteristics deem the isolates characterised in this study as potential candidates for use as probiotics for piglets during the post-weaning period.202439296628
607410.9998Beneficial properties of lactic acid bacteria naturally present in dairy production. BACKGROUND: Consumers are increasingly demanding for natural and beneficial foods, in order to improve their health and well-being. Probiotics play an important role in such demand, and dairy foods are commonly used as vehicles for such bacteria, represented predominantly by lactic acid bacteria. Due to consumers demand, food industry is constantly looking for novel bacterial strains, leading to studies that aims the isolation and characterization of their beneficial features. This study aimed to characterize the naturally occurring lactic acid bacteria obtained from a dairy environment, in order to assess their potential use as probiotics. RESULTS: Preliminary screening and PCR analysis, based on 16S rRNA sequencing, were applied to select and identify 15 LAB strains from the genera Lactobacillus (n = 11), Pediococcus (n = 2) and Weissella (n = 2). All strains showed resistance to low pH and the evaluated bile salt concentrations in vitro. The API ZYM test characterized the enzymatic activity of the strains, and a high β-galactosidase activity was observed in 13 strains. All strains presented resistance to simulated gastric (3 h) and intestinal (4 h) conditions in vitro, the ability to auto- and co-aggregate with indicator microorganisms and a high cell surface hydrophobicity. Most of the strains were positive for map and EFTu beneficial genes. All strains exhibited strong deconjugation of bile salts in vitro and all assimilated lactose. CONCLUSIONS: The phenotypes exhibited in vitro and the presence of beneficial genes revealed the beneficial potential of the studied strains, demanding further analyses in a food matrix and in vivo to allow the development of a functional product, with health-related properties.201830567551
607320.9998Molecular Assessment and Validation of the Selected Enterococcal Strains as Probiotics. Probiotics are live microorganisms which confer health benefits to the host. Lactic acid bacteria (LAB) are used as probiotics since decades. Enterococci being the member of LAB have proven probiotic strains; therefore, this study was aimed at finding out the potential probiotic candidates from the pool of locally isolated strains. For initial screening, one hundred and twenty-two strains were selected and subjected to different confirmatory and phenotypic tests to choose the best strains that have potential probiotic criteria, i.e., no potential virulence traits, antibiotic resistance, and having tolerance properties. Keeping this criterion, only eleven strains (n = 11) were selected for further assessment. All virulence traits such as production of hemolysin, gelatinase, biofilm, and DNase were performed and not found in the tested strains. The molecular assessment indicates the presence of few virulence-associated genes in Enterococcus faecalis strains with variable frequency. The phenotypic and genotypic assessments of antibiotic resistance profile indicate that the selected strain was susceptible to ten commonly used antibiotics, and there were no transferrable antibiotic resistance genes. The presence of CRISPR-Cas genes also confirmed the absence of antibiotic resistance genes. Various enterocin-producing genes like EntP, EntB, EntA, and EntQ were also identified in the selected strains which make them promising probiotic lead strains. Different tolerance assays like acid, NaCl, and gastric juice tolerance that mimic host conditions was also evaluated by providing artificial conditions. Cellular adhesion and aggregation properties like auto- and co-aggregation were also checked and their results reflect all in the favor of lead probiotic strains.202537731160
607230.9998Bad to the bone? - Genomic analysis of Enterococcus isolates from diverse environments reveals that most are safe and display potential as food fermentation microorganisms. Enterococci comprise a group of lactic acid bacteria (LAB) with considerable potential to serve as food fermentation microorganisms. Unfortunately, enterococci have received a lot of negative attention, due to the occurrence of pathogenic and multidrug resistant strains. In this study, we used genomics to select safe candidates among the forty-four studied enterococcal isolates. The genomes of the forty-four strains were fully sequenced and assessed for presence of virulence and antibiotic resistance genes. Nineteen isolates belonging to the species Enterococcus lactis, Enterococcus faecium, Enterococcus durans, and Enterococcus thailandicus, were deemed safe from the genome analysis. The presence of secondary metabolite gene clusters for bacteriocins was assessed, and twelve candidates were found to secrete antimicrobial compounds effective against Listeria monocytogenes isolated from cheese and Staphylococcus aureus. Physiological characterization revealed nineteen industrial potentials; all strains grew well at 42 °C and acidified 1.5 hours faster than their mesophilic counterpart Lactococcus lactis, with which they share metabolism and flavor forming ability. We conclude that a large fraction of the examined enterococci were safe and could serve as excellent food fermentation microorganisms with inherent bioprotective abilities.202438552381
606640.9998Characterization of functional properties of Enterococcus faecium strains isolated from human gut. The aim of this work was to characterize the functional properties of Enterococcus faecium strains identified after isolation from human faeces. Of these isolates, strain R13 showed the best resistance to low pH, bile salts, and survival in the simulated in vitro digestion assay, and demonstrated an important level of adhesion to hexadecane as a potential probiotic candidate. Analysis of the antibiotic resistance of E. faecium strains indicated that in general these isolates were sensitive to the tested antibiotics and no strain appeared to be resistant to vancomycin. Examination of the virulence determinants for E. faecium strains demonstrated that all strains contained the virulence genes common in gut- and food-originated enterococci, and strain R13 harboured the lowest number of virulence genes. Additionally, no strain contained the genes related to cytolysin metabolism and showed hemolytic activity. The antimicrobial role of E. faecium strains was tested against several pathogens, in which different levels of inhibitory effects were observed, and strain R13 was inhibitory to all tested pathogens. PCR screening of genes encoding enterocin A and B indicated the presence of these genes in E. faecium strains. Preliminary characterization of bacteriocins revealed that their activity was lost after proteolytic enzyme treatments, but no alteration in antimicrobial activity was observed at different pHs (3.5 to 9.5) and after heat treatments. In conclusion, this study revealed the functional characteristics of E. faecium R13 as a gut isolate, and this strain could be developed as a new probiotic after further tests.201526485327
607150.9998Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. In this study 635 lactic acid bacteria of food origin were evaluated for their potential application as protective cultures in foods. A stepwise selection method was used to obtain the most appropriate strains for application as protective cultures in chicken meat. Specifically, all strains were examined for antimicrobial activity against various Gram positive and Gram negative pathogenic and spoilage bacteria. Strains exhibiting anti-bacterial activity were subsequently examined for survival in simulated food processing and gastrointestinal tract conditions, such as high temperatures, low pH, starvation and the presence of NaCl and bile salts. Selected strains where then examined for basic safety properties such as antibiotic resistance and haemolytic potential, while their antimicrobial activity was further investigated by PCR screening for possession of known bacteriocin genes. Two chosen strains were then applied on raw chicken meat to evaluate their protective ability against two common food pathogens, Listeria monocytogenes and Salmonella enteritidis, but also to identify potential spoilage effects by the application of the protective cultures on the food matrix. Antimicrobial activity in vitro was evident against Gram positive indicators, mainly Listeria and Brochothrix spp., while no antibacterial activity was obtained against any of the Gram negative bacteria tested. The antimicrobial activity was of a proteinaceous nature while strains with anti-listerial activity were found to possess one or more bacteriocin genes, mainly enterocins. Strains generally exhibited sensitivity to pH 2.0, but good survival at 45 degrees C, in the presence of bile salts and NaCl as well as during starvation, while variable survival rates were obtained at 55 degrees C. None of the strains was found to be haemolytic while variable antibiotic resistance profiles were obtained. Finally, when the selected strains Enterococcus faecium PCD71 and Lactobacillus fermentum ACA-DC179 were applied as protective cultures in chicken meat against L. monocytogenes and S. enteritidis respectively, a significantly reduced growth of these pathogenic bacteria was observed. In addition, these two strains did not appear to have any detrimental effect on biochemical parameters related to spoilage of the chicken meat.200919249112
604460.9998Phenotypic and Genetic Characterization and Production Abilities of Lacticaseibacillus rhamnosus Strain 484-A New Probiotic Strain Isolated From Human Breast Milk. Recent studies suggest that human breast milk (HBM) is a promising source of probiotic bacteria with potential applications in both medicine and the food industry. Probiotic bacteria, particularly species of the genus Lactobacillus, are classified as lactic acid bacteria (LAB). However, probiotic properties are strain-specific, as not all Lactobacillus strains exhibit health benefits or inhibit pathogens. This study evaluated the probiotic potential of a newly isolated strain, Lacticaseibacillus rhamnosus strain 484, derived from human milk. Phenotypic and genomic analyses were performed, with L. rhamnosus 1.0320 serving as a reference genome. We focused on strain safety for human use and potential health benefits. Strain 484 underwent probiotic characterization and demonstrated strong auto- and co-aggregation abilities, contributing to effective pathogenic bacteria inhibition. The strain also showed bile tolerance, antibiotic sensitivity, and lacked hemolytic and catalase activity, indicating safety and suitability profiles for oral administration. Its resistance to low pH and bile salts indicated survival during gastrointestinal transit and intestinal colonization. Notably, cell surface hydrophobicity (CSH) exceeded that of the well-known L. rhamnosus GG strain, potentially enhancing adhesion to intestinal epithelial cells. Genomic analysis confirmed no antibiotic resistance genes (ARGs) and plasmids, suggesting genetic stability. Overall, L. rhamnosus 484 appears to be a safe and promising probiotic candidate with potential applications in both medical and food-related fields, particularly for oral use in preventing and controlling common pathogens.202541019172
467370.9997Whole-genome analysis of probiotic product isolates reveals the presence of genes related to antimicrobial resistance, virulence factors, and toxic metabolites, posing potential health risks. BACKGROUND: Safety issues of probiotic products have been reported frequently in recent years. Ten bacterial strains isolated from seven commercial probiotic products on market were evaluated for their safety, by whole-genome analysis. RESULTS: We found that the bacterial species of three probiotic products were incorrectly labeled. Furthermore, six probiotic product isolates (PPS) contained genes for the production of toxic metabolites, while another three strains contained virulence genes, which might pose a potential health risk. In addition, three of them have drug-resistance genes, among which two strains potentially displayed multidrug resistance. One isolate has in silico predicted transferable genes responsible for toxic metabolite production, and they could potentially transfer to human gut microflora or environmental bacteria. Isolates of Lactobacillus rhamnosus and Bifidobacterium animalis subsp. lactis are associated with low risk for human consumption. Based on a comparative genome analysis, we found that the isolated Enterococcus faecium TK-P5D clustered with a well-defined probiotic strain, while E. faecalis TK-P4B clustered with a pathogenic strain. CONCLUSIONS: Our work clearly illustrates that whole-genome analysis is a useful method to evaluate the quality and safety of probiotic products. Regulatory quality control and stringent regulations on probiotic products are needed to ensure safe consumption and protect human health.202133761872
589780.9997Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria. AIMS: The aim of this study was to determine the intestinal microbiota of pirarucu (Arapaima gigas) in different growth stages (adult and fingerlings) and to isolate and identify potential probiotic bacteria. METHODS AND RESULTS: High-throughput sequencing analysis of the intestinal contents revealed that the majority of sequences belonged to the Proteobacteria, Fusobacteria and Firmicutes phyla. At the genus level, the greatest number of sequences belonged to Bradyrhizobium in adult fish, while Cetobacterium was the most abundant in juvenile fish. Twenty-three lactic-acid bacteria (LABs) were isolated on MRS agar from healthy juvenile fish. The isolates were tested in vitro for probiotic properties. Two isolates (identified as strains of Lactococcus lactis subsp. lactis and Enterococcus faecium) displayed antagonism against all 10 pathogens tested, were nonhaemolytic and maintained good viability for at least 3 weeks when supplemented to fish diets. The presence of a number of antibiotic resistance genes (ARGs), conferring resistance to erythromycin, tetracycline and chloramphenicol, was investigated by PCR. CONCLUSIONS: The absence of ARGs investigated the potential to antagonize pathogens, and favourable growth and survival characteristics indicate that these autochthonous isolates have the potential to be considered probiotics, which will be studied in future in vivo experiments. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has demonstrated, for the first time, the normal microbiota in the A. gigas intestine during different life stages and the presence of LAB strains. It also demonstrated LAB antibiotic resistance and antagonistic behaviour against pathogens isolated from the same fish.201728833934
463690.9997Functional screening of antibiotic resistance genes from a representative metagenomic library of food fermenting microbiota. Lactic acid bacteria (LAB) represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR) determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive microbial isolation techniques. We turned therefore to construction of a metagenomic library containing microbial DNA extracted directly from the food matrix. To maximize yield and purity and to ensure that genomic complexity of the library was representative of the original bacterial population, we defined a suitable protocol for total DNA extraction from cheese which can also be applied to other lipid-rich foods. Functional library screening on different antibiotics allowed recovery of ampicillin and kanamycin resistant clones originating from Streptococcus salivarius subsp. thermophilus and Lactobacillus helveticus genomes. We report molecular characterization of the cloned inserts, which were fully sequenced and shown to confer AR phenotype to recipient bacteria. We also show that metagenomics can be applied to food microbiota to identify underrepresented species carrying specific genes of interest.201425243126
6065100.9997Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. The inhibitory activity of 122 out of 426 Enterococcus strains of geographically widespread origin and from different sources (food and feed, animal isolates, clinical and nonclinical human isolates) was tested against a wide range of indicator bacteria. Seventy-two strains, mainly belonging to the species Enterococcus faecium and Enterococcus faecalis were bacteriocinogenic. A remarkable variation of inhibitory spectra occurred among the strains tested, including inhibition of, for instance, only closely related enterococci, other lactic acid bacteria (LAB), food spoilage and pathogenic bacteria. No correlation could be found between the origin of the strains and the type of inhibitory spectrum, although a clustering of human isolates from both fecal and clinical origin was observed in the group of strains inhibiting lactic acid bacteria, Listeria, and either Staphylococcus or Clostridium. No relationship could be established between the presence of enterocin structural genes and the origin of the strain either, and hence no correlation seemed to exist between the presence of known enterocin genes and the activity spectra of these enterococci. The structural gene of enterocin A was widely distributed among E. faecium strains, whereas that of enterocin B only occurred in the presence of enterocin A. The vancomycin resistance phenotype as well as the presence of vancomycin resistance genes was also investigated. The vanA gene only occurred among E. faecium strains. The incidence of beta-hemolysis was not restricted to E. faecalis strains, but among the E. faecium strains the structural genes of cytolysin were not detected. beta-Hemolysis occurred in strains both from food and nonfood origin. It has been concluded that bacteriocin-producing E. faecium strains lacking hemolytic activity and not carrying cytolysin nor vancomycin resistance genes may be useful as starter cultures, cocultures, or probiotics.200312810293
6064110.9997Evaluation of marine bacteriocinogenic enterococci strains with inhibitory activity against fish-pathogenic Gram-negative bacteria. Use of lactic acid bacteria (LAB) as probiotics may provide an alternative to the use of antibiotics in aquaculture. LAB strains isolated from wild fish viscera and skin were evaluated for bacteriocin production and safety aspects (lack of antibiotic resistance, production of virulence factors). 16S rRNA gene sequences revealed the presence of Enterococcus faecium (13 isolates) and Lactococcus lactis (3 isolates) from fish samples. Pulsed-field gel electrophoresis analyses of the 13 enterococci isolates showed that they were all clustered, with greater than 95% similarity. However, RAPD analysis revealed significant molecular diversity between enterococci strains. Six enterococci strains were chosen and evaluated for their antibacterial activities. These strains produced a bacteriocin-like substance and exhibited a broad spectrum of inhibition against pathogenic bacteria isolated from diseased fish, including Streptococcus parauberis, Vagococcus spp., and Carnobacterium maltaromaticum, and in particular against the Gram-negative bacteria Flavobacterium frigidarium, Vibrio pectenicida, V. penaeicida, and Photobacterium damselae. The inhibition activity towards bacterial indicator strains was at a maximum when bacteria were grown at 37°C. However, bacteriocin production was observed at 15°C after 12 h of incubation. Only structural genes of enterocins A and B were detected by PCR in the 6 enterococci strains, suggesting the production of these enterocins. In addition, these strains did not harbor any virulence factors or any significant antibiotic resistance, and they tolerated bile. Our results suggest that enterococci are an important part of the bacterial flora of fish and that some strains have the potential to be used as probiotics.201626865233
6063120.9997A potentially probiotic strain of Enterococcus faecalis from human milk that is avirulent, antibiotic sensitive, and nonbreaching of the gut barrier. Human milk is a key source of promising probiotic lactic acid bacteria. The Enterococcus species, because of their dual commensal and pathogenic nature, demand critical safety analysis to establish them as probiotic candidates. In this study, eighteen E. faecalis strains from human milk of mothers living in Pakistan were typed at the strain level by riboprinting. The typed strains were then evaluated in vitro for physiological safety and the presence of transmissible antibiotic resistance genes, adhesion genes, biogenic amines, and virulence factors. Selected strains were then checked for tolerance to gastrointestinal acid and bile as criteria for probiotic efficacy. Molecular typing revealed that the strains fell into five distinct clusters or ribotypes. Testing revealed that they were non-hemolytic; however, all strains had gelatinase activity except NPL-493. The isolates were susceptible to most clinically important antibiotics except streptomycin. Molecular screening for antibiotic resistance genes, adhesion genes, biogenic amines, and virulence factors indicated that none of the strains possessed resistance genes for aminoglycosides, vancomycin, bacitracin, tetracycline, or clindamycin. Most virulence factors were absent except for the genes gelE and efaAs associated with gut adhesion and translocation, which were present in all except NPL-493. Strain NPL-493 was the most promising probiotic candidate demonstrating significant tolerance to the acid, bile, and digestive enzymes in the human GIT and antibacterial activity against multiple pathogens. The study concluded that E. faecalis NPL-493 from human milk was safe among all the strains and could be considered a potential probiotic.202235107663
4677130.9997Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human. Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.201931399643
4635140.9997A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve. Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve-sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island.IMPORTANCEBifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this, because probiotic bacteria are used for human and animal consumption, one of the safety concerns over these bacteria is the presence of antibiotic resistance genes, since the human gut is a densely populated habitat that could favor the transfer of genetic material to potential pathogens. In this study, we analyzed the genetic basis responsible for the erythromycin and clindamycin resistance phenotype of B. breve CECT7263. We were able to identify and characterize a novel gene homologous to rRNA methylase genes which confers erythromycin and clindamycin resistance. This gene seems to be very uncommon in other bifidobacteria and in the gut microbiomes of both adults and infants. Even though conjugation experiments showed the absence of transferability under in vitro conditions, it has been predicted to be located in a putative genomic island recently acquired by specific bifidobacterial strains.201829500262
3594150.9997Directed Recovery and Molecular Characterization of Antibiotic Resistance Plasmids from Cheese Bacteria. Resistance to antimicrobials is a growing problem of worldwide concern. Plasmids are thought to be major drivers of antibiotic resistance spread. The present work reports a simple way to recover replicative plasmids conferring antibiotic resistance from the bacteria in cheese. Purified plasmid DNA from colonies grown in the presence of tetracycline and erythromycin was introduced into plasmid-free strains of Lactococcus lactis, Lactiplantibacillus plantarum and Lacticaseibacillus casei. Following antibiotic selection, the plasmids from resistant transformants were isolated, analyzed by restriction enzyme digestion, and sequenced. Seven patterns were obtained for the tetracycline-resistant colonies, five from L. lactis, and one each from the lactobacilli strains, as well as a single digestion profile for the erythromycin-resistant transformants obtained in L. lactis. Sequence analysis respectively identified tet(S) and ermB in the tetracycline- and erythromycin-resistance plasmids from L. lactis. No dedicated resistance genes were detected in plasmids conferring tetracycline resistance to L. casei and L. plantarum. The present results highlight the usefulness of the proposed methodology for isolating functional plasmids that confer antibiotic resistance to LAB species, widen our knowledge of antibiotic resistance in the bacteria that inhabit cheese, and emphasize the leading role of plasmids in the spread of resistance genes via the food chain.202134360567
8464160.9997Comparative genomics of 40 Weissella paramesenteroides strains. Weissella strains are often detected in spontaneously fermented foods. Because of their abilities to produce lactic acid and functional exopolysaccharides as well as their probiotic traits, Weissella spp. improve not only the sensorial properties but also nutritional values of the fermented food products. However, some Weissella species have been associated with human and animal diseases. In the era of vast genomic sequencing, new genomic/genome data are becoming available to the public on daily pace. Detailed genomic analyses are due to provide a full understanding of individual Weissella species. In this study, the genomes of six Weissella paramesenteroides strains were de novo sequenced. The genomes of 42 W. paramesenteroides strains were compared to discover their metabolic and functional potentials in food fermentation. Comparative genomics and metabolic pathway reconstructions revealed that W. paramesenteroides is a compact group of heterofermentative bacteria with good capacity of producing secondary metabolites and vitamin Bs. Since the strains rarely harbored plasmid DNA, they did not commonly possess the genes associated with bacteriocin production. All 42 strains were shown to bear vanT gene from the glycopeptide resistance gene cluster vanG. Yet none of the strains carried virulence genes.202337065164
6036170.9997Comprehensive Phenotypic Characterization and Genomic Analysis Unveil the Probiotic Potential of Bacillus velezensis K12. Bacillus spp. have emerged as pivotal sources of probiotic preparations, garnering considerable attention in recent years owing to their vigorous bacteriostatic activity and antimicrobial resistance. This study aimed to investigate these probiotic characteristics in depth and verify the safety of Bacillus velezensis K12, a strain isolated from broiler intestine. The K12 strain was identified as Bacillus velezensis based on its morphology and 16S rDNA sequence homology analysis. Subsequently, B. velezensis K12 was evaluated for acid resistance, bile salt resistance, gastrointestinal tolerance, drug sensitivity, and antimicrobial activity. Additionally, whole-genome sequencing technology was employed to dissect its genomic components further, aiming to explore its potential applications as a probiotic strain. B. velezensis K12 was sensitive to six antibiotics and had acid tolerance. Furthermore, it showed potent antimicrobial activity against a wide range of pathogenic bacteria, including Escherichia coli (E. coli), Staphylococcus aureus, Salmonella, Clostridium perfringens, Bacillus cereus, and Vibrio parahaemolyticus. The complete genome sequencing of B. velezensis K12 revealed a genomic length of 3,973,105 base pairs containing 4123 coding genes, among which 3973 genes were functionally annotated. The genomic analysis identified genes associated with acid and bile tolerance, adhesion, antioxidants, and secondary metabolite production, whereas no functional genes related to enterotoxins or transferable antibiotic resistance were detected, thereby confirming the probiotic properties of B. velezensis K12. B. velezensis K12 exhibits broad-spectrum bacteriostatic activity and in vitro safety, positioning it as a potential candidate strain for developing probiotic Bacillus preparations.202540150327
4678180.9996Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus.202134277757
3595190.9996Antibiotic Susceptibility, Resistance Gene Determinants and Corresponding Genomic Regions in Lactobacillus amylovorus Isolates Derived from Wild Boars and Domestic Pigs. Restrictions on the use of antibiotics in pigs lead to the continuous search for new probiotics serving as an alternative to antibiotics. One of the key parameters for probiotic bacteria selection is the absence of horizontally transmissible resistance genes. The aim of our study was to determine antibiotic susceptibility profiles in 28 Lactobacillus amylovorus isolates derived from the digestive tract of wild boars and farm pigs by means of the broth microdilution method and whole genome sequencing (WGS). We revealed genetic resistance determinants and examined sequences flanking resistance genes in these strains. Our findings indicate that L. amylovorus strains from domestic pigs are predominantly resistant to tetracycline, erythromycin and ampicillin. WGS analysis of horizontally transmissible genes revealed only three genetic determinants (tetW, ermB and aadE) of which all tetW and ermB genes were present only in strains derived from domestic pigs. Sequence analysis of coding sequences (CDS) in the neighborhood of the tetW gene revealed the presence of site-specific recombinase (xerC/D), site-specific DNA recombinase (spoIVCA) or DNA-binding transcriptional regulator (xre), usually directly downstream of the tetW gene. In the case of ermB, CDS for omega transcriptional repressor or mobilization protein were detected upstream of the ermB gene.202236677394