Limosilactobacillus fermentum ING8, a Potential Multifunctional Non-Starter Strain with Relevant Technological Properties and Antimicrobial Activity. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
604201.0000Limosilactobacillus fermentum ING8, a Potential Multifunctional Non-Starter Strain with Relevant Technological Properties and Antimicrobial Activity. Lactic acid bacteria (LAB) have gained particular attention among different exopolysaccharide-producing microorganisms due to their safety status and effects on human health and food production. Exopolysaccharide-producing LAB play a crucial role in different ways, such as improving texture, mouthfeel, controlling viscosity, and for low-calorie food production. In this study, we isolated a multifunctional strain with good exopolysaccharide production properties. Limosilactobacillus fermentum ING8 was isolated from an Indian traditional fermented milk (Dahi) and evaluated for its safety, enzymatic activity, NaCl resistance and temperature tolerance, milk coagulation, and storage stability. Finally, the complete genome of this strain was sequenced and subjected to safety in silico evaluation and genomic analysis. The results revealed that L. fermentum ING8 possesses relevant technological properties, such as exopolysaccharide production, antimicrobial activity, and galactose utilization. Besides, this strain showed very high stability to storage conditions at refrigeration temperature. In addition, the genomic analysis did not evidence any possible deleterious elements, such as acquired antibiotic resistance genes, virulence genes, or hemolysis-related genes. However, all structural genes related to the galactose operon and EPS production were detected. Therefore, L. fermentum ING8 can be considered a promising multifunctional bacterium to be proposed as non-starter in different types of dairy productions.202235267336
846710.9996The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects.202235456875
604420.9995Phenotypic and Genetic Characterization and Production Abilities of Lacticaseibacillus rhamnosus Strain 484-A New Probiotic Strain Isolated From Human Breast Milk. Recent studies suggest that human breast milk (HBM) is a promising source of probiotic bacteria with potential applications in both medicine and the food industry. Probiotic bacteria, particularly species of the genus Lactobacillus, are classified as lactic acid bacteria (LAB). However, probiotic properties are strain-specific, as not all Lactobacillus strains exhibit health benefits or inhibit pathogens. This study evaluated the probiotic potential of a newly isolated strain, Lacticaseibacillus rhamnosus strain 484, derived from human milk. Phenotypic and genomic analyses were performed, with L. rhamnosus 1.0320 serving as a reference genome. We focused on strain safety for human use and potential health benefits. Strain 484 underwent probiotic characterization and demonstrated strong auto- and co-aggregation abilities, contributing to effective pathogenic bacteria inhibition. The strain also showed bile tolerance, antibiotic sensitivity, and lacked hemolytic and catalase activity, indicating safety and suitability profiles for oral administration. Its resistance to low pH and bile salts indicated survival during gastrointestinal transit and intestinal colonization. Notably, cell surface hydrophobicity (CSH) exceeded that of the well-known L. rhamnosus GG strain, potentially enhancing adhesion to intestinal epithelial cells. Genomic analysis confirmed no antibiotic resistance genes (ARGs) and plasmids, suggesting genetic stability. Overall, L. rhamnosus 484 appears to be a safe and promising probiotic candidate with potential applications in both medical and food-related fields, particularly for oral use in preventing and controlling common pathogens.202541019172
846630.9995Genomic Characterization of Lactiplantibacillus plantarum Strains: Potential Probiotics from Ethiopian Traditional Fermented Cottage Cheese. BACKGROUND: Lactiplantibacillus plantarum is a species found in a wide range of ecological niches, including vegetables and dairy products, and it may occur naturally in the human gastrointestinal tract. The precise mechanisms underlying the beneficial properties of these microbes to their host remain obscure. Although Lactic acid bacteria are generally regarded as safe, there are rare cases of the emergence of infections and antibiotic resistance by certain probiotics. OBJECTIVE: An in silico whole genome sequence analysis of putative probiotic bacteria was set up to identify strains, predict desirable functional properties, and identify potentially detrimental antibiotic resistance and virulence genes. METHODS: We characterized the genomes of three L. plantarum strains (54B, 54C, and 55A) isolated from Ethiopian traditional cottage cheese. Whole-genome sequencing was performed using Illumina MiSeq sequencing. The completeness and quality of the genome of L. plantarum strains were assessed through CheckM. RESULTS: Analyses results showed that L. plantarum 54B and 54C are closely related but different strains. The genomes studied did not harbor resistance and virulence factors. They had five classes of carbohydrate-active enzymes with several important functions. Cyclic lactone autoinducer, terpenes, Type III polyketide synthases, ribosomally synthesized and post-translationally modified peptides-like gene clusters, sactipeptides, and all genes required for riboflavin biosynthesis were identified, evidencing their promising probiotic properties. Six bacteriocin-like structures encoding genes were found in the genome of L. plantarum 55A. CONCLUSIONS: The lack of resistome and virulome and their previous functional capabilities suggest the potential applicability of these strains in food industries as bio-preservatives and in the prevention and/or treatment of infectious diseases. The results also provide insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates.202439596588
472940.9994Newly isolated lactic acid bacteria from silage targeting biofilms of foodborne pathogens during milk fermentation. BACKGROUND: Raw milk, meat and plant materials are subjected to high risks of contamination by various pathogenic bacteria and thus their growth prevention is a great challenge in the food industry. Food fermentation by lactic acid bacteria (LAB) besides changing its organoleptic characteristics also helps to eliminate unfavorable microflora and represses growth of pathogens. To the date only few LABs has been reported to exhibit activity against bacteria embedded in the biofilms characterized by extreme resistance to antimicrobials, high exchange rate with resistance genes and represent high risk factor for foodborne disease development. RESULTS: Six novel LAB strains isolated from the clover silage exhibited pronounced antibacterial activity against biofilm embedded pathogens. We show explicitly that these strains demonstrate high acidification rate, completely repress the growth of E. coli, S. aureus and to a lesser extent P. aeruginosa as well as exhibit appropriate probiotic and milk-fermenting properties. Moreover, in contrast to the approved probiotic strain Lactobacillus plantarum 8PA3, the new isolates were able to efficiently eradicate preformed biofilms of these pathogens and prevent bacterial spreading originating from the biofilm. We suggest these strains as potential additives to the pre-cultures of conventional LAB strains as efficient tools targeting foodborne pathogens in order to prevent food contamination from either seeded raw material or biofilm-fouled equipment. CONCLUSIONS: The AG10 strain identified as L. plantarum demonstrate attractive probiotic and milk fermentation properties as well as high resistance to simulated gastric conditions thus appearing perspective as a starter culture for the prevention of bacterial contamination originating from fouled equipment during milk fermentation.201931703621
604150.9994Gut commensal bacteria show beneficial properties as wildlife probiotics. Probiotics are noninvasive, environmentally friendly alternatives for reducing infectious diseases in wildlife species. Our aim in the present study was to evaluate the potential of gut commensals such as lactic acid bacteria (LAB) as wildlife probiotics. The LAB selected for our analyses were isolated from European badgers (Meles meles), a wildlife reservoir of bovine tuberculosis, and comprised four different genera: Enterococcus, Weissella, Pediococcus, and Lactobacillus. The enterococci displayed a phenotype and genotype that included the production of antibacterial peptides and stimulation of antiviral responses, as well as the presence of virulence and antibiotic resistance genes; Weissella showed antimycobacterial activity owing to their ability to produce lactate and ethanol; and lactobacilli and pediococci modulated proinflammatory phagocytic responses that associate with protection against pathogens, responses that coincide with the presence of immunomodulatory markers in their genomes. Although both lactobacilli and pediococci showed resistance to antibiotics, this was naturally acquired, and almost all isolates demonstrated a phylogenetic relationship with isolates from food and healthy animals. Our results show that LAB display probiotic benefits that depend on the genus, and that lactobacilli and pediococci are probably the most obvious candidates as probiotics against infectious diseases in wildlife because of their food-grade status and ability to modulate protective innate immune responses.202032026493
846860.9994Development and validation of a species-independent functional gene microarray that targets lactic acid bacteria. During the last few years, genome-related information has become available for many microorganisms, including important food-related bacteria. Lactic acid bacteria (LAB) are important industrially in the production of fermented foods such as dairy products, sausages, sourdoughs, and vegetables. Despite their limited metabolic capacity, LAB contribute considerably to important characteristics of fermented foods, such as flavor and texture. In the present study, a species-independent functional gene microarray was developed that targets 406 genes that play key roles in the production of sugar catabolites, bacteriocins, exopolysaccharides, and aromas, in probiotic and biosafety characteristics, and in the stress response. Also, genes linked to negative traits, such as antibiotic resistance and virulence, are represented. As LAB ecosystems contain a variety of species, there was a more global focus on these specific functional properties. Thus, an algorithm was used to design gene-specific oligonucleotides that preferably hybridize with multiple LAB species, thereby allowing controlled cross-hybridization. For proof of concept, the microarray composed of 2,269 30-mer oligonucleotides focused on LAB species that are prevalent in sourdough ecosystems. Validation hybridizations using DNA and RNA from 18 LAB strains, covering 86% of all the oligonucleotides, showed that there were wide ranges in intensity and high reproducibility between microarrays.200919684161
604370.9994Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. AIMS: This study was designed to select lactic acid bacteria with histamine- and cholesterol-reducing abilities to be used as potential probiotics. METHODS AND RESULTS: Thirty strains of lactic acid bacteria isolated from an artisanal raw milk cheese were screened for their abilities to degrade histamine, reduce cholesterol and hydrolyse bile salts. Strains were also screened for safety and probiotic traits, such as resistance to gastrointestinal conditions, adhesion to Caco-2 cells, resistance to antibiotics and presence of virulence genes. Two Lactobacillus paracasei strains presented high cholesterol- and histamine-lowering abilities, tested negative for the presence of virulence genes and showed susceptibility to most important antibiotics. These strains were also shown to possess desirable in vitro probiotic properties, revealed by tolerance to gastrointestinal conditions and high adhesion to intestinal cells. CONCLUSIONS: Among the screened strains, Lb. paracasei L3C21M6 revealed the best cholesterol and histamine reducing abilities together with desirable probiotic and safety features to be used in food applications. SIGNIFICANCE AND IMPACT OF THE STUDY: The strain L3C21M6 is a good candidate for use as a probiotic with histamine-degrading activity and cholesterol lowering effect. In addition, this strain could be use in dairy foods to prevent histamine food poisoning.202032500572
846480.9994Comparative genomics of 40 Weissella paramesenteroides strains. Weissella strains are often detected in spontaneously fermented foods. Because of their abilities to produce lactic acid and functional exopolysaccharides as well as their probiotic traits, Weissella spp. improve not only the sensorial properties but also nutritional values of the fermented food products. However, some Weissella species have been associated with human and animal diseases. In the era of vast genomic sequencing, new genomic/genome data are becoming available to the public on daily pace. Detailed genomic analyses are due to provide a full understanding of individual Weissella species. In this study, the genomes of six Weissella paramesenteroides strains were de novo sequenced. The genomes of 42 W. paramesenteroides strains were compared to discover their metabolic and functional potentials in food fermentation. Comparative genomics and metabolic pathway reconstructions revealed that W. paramesenteroides is a compact group of heterofermentative bacteria with good capacity of producing secondary metabolites and vitamin Bs. Since the strains rarely harbored plasmid DNA, they did not commonly possess the genes associated with bacteriocin production. All 42 strains were shown to bear vanT gene from the glycopeptide resistance gene cluster vanG. Yet none of the strains carried virulence genes.202337065164
422090.9994Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation.202335694810
4714100.9994Screening and genome analysis of heat-resistant and antioxidant lactic acid bacteria from Holstein cow milk. BACKGROUND: Heat stress significantly impacts dairy cows, primarily through oxidative stress, which undermines their health. The problem is exacerbated by the ongoing global warming trend. Lactic acid bacteria (LAB) are safe, economical, and readily accessible options for enhancing the host's antioxidant defenses and preventing oxidative damage. They have been proven effective in alleviating heat stress-related damage, making them an excellent choice for protecting dairy cows from the adverse effects of heat stress. METHOD: In this study, five strains of LAB from Holstein cow milk (Lactobacillus plantarum L5, L14, L17, L19, L20) were evaluated for their heat resistance and antioxidant capacity by evaluating the growth characteristics and tolerance of the strains under high-temperature conditions, as well as their H(2)O(2) tolerance, free radical scavenging ability (DPPH, OH(-), ABTS), reducing ability, and EPS production ability. Furthermore, we employed Caco-2 cells to assess the adhesion rate of the strain, thereby confirming its ability to successfully colonize the host's intestinal tract and ensuring the effective execution of its probiotic functions. The strain with excellent heat resistance and antioxidant capacity was then subjected to genomic analysis to gain insight into the molecular mechanisms behind their heat resistance, antioxidant capacity, and safety. RESULTS: Among the two strains, Lactobacillus plantarum L19 emerges as a highly promising candidate. The strain exhibits robust growth even at high temperatures at 40°C and maintains a survival rate of 16.42% at the extreme temperature of 65°C. Furthermore, it demonstrates superior tolerance to hydrogen peroxide (27.3%), and possesses a notably higher free radical scavenging capacity with a high adhesion rate to Caco-2 cell (22.19%) compared to the other four strains tested. Genomic analysis revealed its' genome has 17 genes related to antioxidants and three genes related to heat resistance. Importantly, L19 lacks any resistance genes, ensuring its safety as a probiotic. CONCLUSION: The results imply that Lactobacillus plantarum L19 has the potential to serve as an effective food additive in mitigating damages associated with heat stress. This research offers a valuable reference for the prevention and management of heat stress in dairy cows, while also expanding the scope of applications for LAB derived from cow milk.202439611093
159110.9994Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. Decarboxylation pathways are widespread among lactic acid bacteria; their physiological role is related to acid resistance through the regulation of the intracellular pH and to the production of metabolic energy via the generation of a proton motive force and its conversion into ATP. These pathways include, among others, biogenic amine (BA) production pathways. BA accumulation in foodstuffs is a health risk; thus, the study of the factors involved in their production is of major concern. The analysis of several lactic acid bacterial strains isolated from different environments, including fermented foods and beverages, revealed that the genes encoding these pathways are clustered on the chromosome, which suggests that these genes are part of a genetic hotspot related to acid stress resistance. Further attention was devoted to the ornithine decarboxylase pathway, which affords putrescine from ornithine. Studies were performed on three lactic acid bacteria belonging to different species. The ODC pathway was always shown to be involved in cytosolic pH alkalinisation and acid shock survival, which were observed to occur with a concomitant increase in putrescine production.201424495587
4775120.9994Safety assessment of dairy microorganisms: the Lactobacillus genus. Lactobacilli are Gram positive rods belonging to the Lactic Acid Bacteria (LAB) group. Their phenotypic traits, such as each species' obligate/facultative, homo/heterofermentation abilities play a crucial role in souring raw milk and in the production of fermented dairy products such as cheese, yoghurt and fermented milk (including probiotics). An up to date safety analysis of these lactobacilli is needed to ensure consumer safety. Lactobacillus genus is a heterogeneous microbial group containing some 135 species and 27 subspecies, whose classification is constantly being reshuffled. With the recent use of advanced molecular methods it has been suggested that the extreme diversity of the Lactobacillus genomes would justify recognition of new subgeneric divisions. A combination of genotypic and phenotypic tests, for example DNA-based techniques and conventional carbohydrate tests, is required to determine species. Pulsed-Field gel Electrophoresis (PFGE) has been successfully applied to strains of dairy origin and is the most discriminatory and reproducible method for differentiating Lactobacillus strains. The bibliographical data support the hypothesis that the ingestion of Lactobacillus is not at all hazardous since lactobacillemia induced by food, particularly fermented dairy products, is extremely rare and only occurs in predisposed patients. Some metabolic features such as the possible production of biogenic amines in fermented products could generate undesirable adverse effects. A minority of starter and adjunct cultures and probiotic Lactobacillus strains may exceptionally show transferable antibiotic resistance. However, this may be underestimated as transferability studies are not systematic. We consider that transferable antibiotic resistance is the only relevant cause for caution and justifies performing antibiotic-susceptibility assays as these strains have the potential to serve as hosts of antibiotic-resistance genes, with the risk of transferring these genes to other bacteria. However, as a general rule, lactobacilli have a high natural resistance to many antibiotics, especially vancomycin, that is not transferable. Safety assessment requirements for Lactobacillus strains of technological interest should be limited to an antibiotic profile and a study to determine whether any antibiotic resistance(s) of medical interest detected is (or are) transferable. This agrees with the recent EFSA proposal suggesting attribution of a QPS status for 32 selected species of lactobacilli.200817889388
6074130.9993Beneficial properties of lactic acid bacteria naturally present in dairy production. BACKGROUND: Consumers are increasingly demanding for natural and beneficial foods, in order to improve their health and well-being. Probiotics play an important role in such demand, and dairy foods are commonly used as vehicles for such bacteria, represented predominantly by lactic acid bacteria. Due to consumers demand, food industry is constantly looking for novel bacterial strains, leading to studies that aims the isolation and characterization of their beneficial features. This study aimed to characterize the naturally occurring lactic acid bacteria obtained from a dairy environment, in order to assess their potential use as probiotics. RESULTS: Preliminary screening and PCR analysis, based on 16S rRNA sequencing, were applied to select and identify 15 LAB strains from the genera Lactobacillus (n = 11), Pediococcus (n = 2) and Weissella (n = 2). All strains showed resistance to low pH and the evaluated bile salt concentrations in vitro. The API ZYM test characterized the enzymatic activity of the strains, and a high β-galactosidase activity was observed in 13 strains. All strains presented resistance to simulated gastric (3 h) and intestinal (4 h) conditions in vitro, the ability to auto- and co-aggregate with indicator microorganisms and a high cell surface hydrophobicity. Most of the strains were positive for map and EFTu beneficial genes. All strains exhibited strong deconjugation of bile salts in vitro and all assimilated lactose. CONCLUSIONS: The phenotypes exhibited in vitro and the presence of beneficial genes revealed the beneficial potential of the studied strains, demanding further analyses in a food matrix and in vivo to allow the development of a functional product, with health-related properties.201830567551
4636140.9993Functional screening of antibiotic resistance genes from a representative metagenomic library of food fermenting microbiota. Lactic acid bacteria (LAB) represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR) determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive microbial isolation techniques. We turned therefore to construction of a metagenomic library containing microbial DNA extracted directly from the food matrix. To maximize yield and purity and to ensure that genomic complexity of the library was representative of the original bacterial population, we defined a suitable protocol for total DNA extraction from cheese which can also be applied to other lipid-rich foods. Functional library screening on different antibiotics allowed recovery of ampicillin and kanamycin resistant clones originating from Streptococcus salivarius subsp. thermophilus and Lactobacillus helveticus genomes. We report molecular characterization of the cloned inserts, which were fully sequenced and shown to confer AR phenotype to recipient bacteria. We also show that metagenomics can be applied to food microbiota to identify underrepresented species carrying specific genes of interest.201425243126
9508150.9993Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteria. Food safety has been an important issue globally due to increasing foodborne diseases and change in food habits. To inactivate foodborne pathogens, various novel technologies such as biopreservation systems have been studied. Bacteriocins are ribosomally synthesized peptides or proteins with antimicrobial activity produced by different groups of bacteria, but the bacteriocins produced by many lactic acid bacteria offer potential applications in food preservation. The use of bacteriocins in the food industry can help reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods that are more naturally preserved. However, the development of highly tolerant and/or resistant strains may decrease the efficiency of bacteriocins as biopreservatives. Several mechanisms of bacteriocin resistance development have been proposed among various foodborne pathogens. The acquiring of resistance to bacteriocins can significantly affect physiological activity profile of bacteria, alter cell-envelope lipid composition, and also modify the antibiotic susceptibility/resistance profile of bacteria. This article presents a brief review on the scientific research about the various possible mechanisms involved in the development of resistance to nisin and Class IIa bacteriocins among the foodborne pathogens.201121417775
4222160.9993Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp. Lactic acid bacteria (LAB) are a heterogeneous group of bacteria which are Gram-positive, facultative anaerobes and non-motile, non-spore forming, with varied shapes from cocci to coccobacilli and bacilli. Lactobacillus is the largest and most widely used bacterial species amongst LAB in fermented foods and beverages. The genus is a common member of human gut microbiome. Several species are known to provide benefits to the human gut via synergistic interactions with the gut microbiome and their ability to survive the gut environment. This ability to confer positive health effects provide them a status of generally recognized as safe (GRAS) microorganisms. Due to their various beneficial characteristics, other factors such as their resistance acquisition were overlooked. Overuse of antibiotics has made certain bacteria develop resistance against these drugs. Antibiotic resistance was found to be acquired mainly through conjugation which is a type of lateral gene transfer. Several in vitro methods of conjugation have been discussed previously depending on their success to transfer resistance. In this review, we have addressed methods that are employed to study the transfer of resistance genes using the conjugation phenomenon in lactobacilli.202134076710
4715170.9993Genomic and stress resistance characterization of Lactiplantibacillus plantarum GX17, a potential probiotic for animal feed applications. Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of Lactiplantibacillus plantarum (L. plantarum) strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted. Based on the entire genome sequence analysis, 50 stress resistance genes and seven virulence factors were identified. The results of the phenotypic experiments showed that the strain had good resistance to high temperature, low temperature, acid, alkali, salt, artificial gastrointestinal fluid, and strong antioxidant capacity. Additionally, transcriptomic analysis confirmed that under stress conditions, the expression levels of key genes were significantly upregulated. Therefore, the phenotypic characteristics of L. plantarum GX17 align well with its genotypic features, demonstrating promising probiotic properties. This strain holds great potential as a probiotic candidate, and further investigation into its beneficial effects on human health is warranted. IMPORTANCE: In humans, Lactiplantibacillus plantarum may synergize with host microbiota to ameliorate dysbiosis-related pathologies, enhance immunomodulation, and facilitate micronutrient bioavailability. For livestock, its application could improve feed conversion ratios, suppress enteric pathogens through competitive exclusion, and mitigate antibiotic overuse, "a critical strategy in One Health frameworks." Further investigations into strain-specific mechanisms (e.g., postbiotic metabolites, quorum sensing regulation) are warranted to translate these genomic-phenotypic advantages into sustainable health solutions across species.202540919934
4221180.9993Antibiotic resistance in probiotic bacteria. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.201323882264
6039190.9993Genome Characterization and Probiotic Potential of Corynebacterium amycolatum Human Vaginal Isolates. The vaginal microbiome of healthy women contains nondiphtheria corynebacteria. The role and functions of nondiphtheria corynebacteria in the vaginal biotope are still under study. We sequenced and analysed the genomes of three vaginal C. amycolatum strains isolated from healthy women. Previous studies have shown that these strains produced metabolites that significantly increased the antagonistic activity of peroxide-producing lactic acid bacteria against pathogenic and opportunistic microorganisms and had strong antimicrobial activity against opportunistic pathogens. Analysis of the C. amycolatum genomes revealed the genes responsible for adaptation and survival in the vaginal environment, including acid and oxidative stress resistance genes. The genes responsible for the production of H(2)O(2) and the synthesis of secondary metabolites, essential amino acids and vitamins were identified. A cluster of genes encoding the synthesis of bacteriocin was revealed in one of the annotated genomes. The obtained results allow us to consider the studied strains as potential probiotics that are capable of preventing the growth of pathogenic microorganisms and supporting colonisation resistance in the vaginal biotope.202235208706