Investigating human-derived lactic acid bacteria for alcohol resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
601601.0000Investigating human-derived lactic acid bacteria for alcohol resistance. BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations.202438659044
604410.9990Phenotypic and Genetic Characterization and Production Abilities of Lacticaseibacillus rhamnosus Strain 484-A New Probiotic Strain Isolated From Human Breast Milk. Recent studies suggest that human breast milk (HBM) is a promising source of probiotic bacteria with potential applications in both medicine and the food industry. Probiotic bacteria, particularly species of the genus Lactobacillus, are classified as lactic acid bacteria (LAB). However, probiotic properties are strain-specific, as not all Lactobacillus strains exhibit health benefits or inhibit pathogens. This study evaluated the probiotic potential of a newly isolated strain, Lacticaseibacillus rhamnosus strain 484, derived from human milk. Phenotypic and genomic analyses were performed, with L. rhamnosus 1.0320 serving as a reference genome. We focused on strain safety for human use and potential health benefits. Strain 484 underwent probiotic characterization and demonstrated strong auto- and co-aggregation abilities, contributing to effective pathogenic bacteria inhibition. The strain also showed bile tolerance, antibiotic sensitivity, and lacked hemolytic and catalase activity, indicating safety and suitability profiles for oral administration. Its resistance to low pH and bile salts indicated survival during gastrointestinal transit and intestinal colonization. Notably, cell surface hydrophobicity (CSH) exceeded that of the well-known L. rhamnosus GG strain, potentially enhancing adhesion to intestinal epithelial cells. Genomic analysis confirmed no antibiotic resistance genes (ARGs) and plasmids, suggesting genetic stability. Overall, L. rhamnosus 484 appears to be a safe and promising probiotic candidate with potential applications in both medical and food-related fields, particularly for oral use in preventing and controlling common pathogens.202541019172
604220.9989Limosilactobacillus fermentum ING8, a Potential Multifunctional Non-Starter Strain with Relevant Technological Properties and Antimicrobial Activity. Lactic acid bacteria (LAB) have gained particular attention among different exopolysaccharide-producing microorganisms due to their safety status and effects on human health and food production. Exopolysaccharide-producing LAB play a crucial role in different ways, such as improving texture, mouthfeel, controlling viscosity, and for low-calorie food production. In this study, we isolated a multifunctional strain with good exopolysaccharide production properties. Limosilactobacillus fermentum ING8 was isolated from an Indian traditional fermented milk (Dahi) and evaluated for its safety, enzymatic activity, NaCl resistance and temperature tolerance, milk coagulation, and storage stability. Finally, the complete genome of this strain was sequenced and subjected to safety in silico evaluation and genomic analysis. The results revealed that L. fermentum ING8 possesses relevant technological properties, such as exopolysaccharide production, antimicrobial activity, and galactose utilization. Besides, this strain showed very high stability to storage conditions at refrigeration temperature. In addition, the genomic analysis did not evidence any possible deleterious elements, such as acquired antibiotic resistance genes, virulence genes, or hemolysis-related genes. However, all structural genes related to the galactose operon and EPS production were detected. Therefore, L. fermentum ING8 can be considered a promising multifunctional bacterium to be proposed as non-starter in different types of dairy productions.202235267336
471430.9989Screening and genome analysis of heat-resistant and antioxidant lactic acid bacteria from Holstein cow milk. BACKGROUND: Heat stress significantly impacts dairy cows, primarily through oxidative stress, which undermines their health. The problem is exacerbated by the ongoing global warming trend. Lactic acid bacteria (LAB) are safe, economical, and readily accessible options for enhancing the host's antioxidant defenses and preventing oxidative damage. They have been proven effective in alleviating heat stress-related damage, making them an excellent choice for protecting dairy cows from the adverse effects of heat stress. METHOD: In this study, five strains of LAB from Holstein cow milk (Lactobacillus plantarum L5, L14, L17, L19, L20) were evaluated for their heat resistance and antioxidant capacity by evaluating the growth characteristics and tolerance of the strains under high-temperature conditions, as well as their H(2)O(2) tolerance, free radical scavenging ability (DPPH, OH(-), ABTS), reducing ability, and EPS production ability. Furthermore, we employed Caco-2 cells to assess the adhesion rate of the strain, thereby confirming its ability to successfully colonize the host's intestinal tract and ensuring the effective execution of its probiotic functions. The strain with excellent heat resistance and antioxidant capacity was then subjected to genomic analysis to gain insight into the molecular mechanisms behind their heat resistance, antioxidant capacity, and safety. RESULTS: Among the two strains, Lactobacillus plantarum L19 emerges as a highly promising candidate. The strain exhibits robust growth even at high temperatures at 40°C and maintains a survival rate of 16.42% at the extreme temperature of 65°C. Furthermore, it demonstrates superior tolerance to hydrogen peroxide (27.3%), and possesses a notably higher free radical scavenging capacity with a high adhesion rate to Caco-2 cell (22.19%) compared to the other four strains tested. Genomic analysis revealed its' genome has 17 genes related to antioxidants and three genes related to heat resistance. Importantly, L19 lacks any resistance genes, ensuring its safety as a probiotic. CONCLUSION: The results imply that Lactobacillus plantarum L19 has the potential to serve as an effective food additive in mitigating damages associated with heat stress. This research offers a valuable reference for the prevention and management of heat stress in dairy cows, while also expanding the scope of applications for LAB derived from cow milk.202439611093
603440.9989Isolation and Characterization of Lactic Acid Bacteria With Probiotic Attributes From Different Parts of the Gastrointestinal Tract of Free-living Wild Boars in Hungary. Lactic acid bacteria (LAB) in the microbiota play an important role in human and animal health and, when used as probiotics, can contribute to an increased growth performance in livestock management. Animals living in their native habitat can serve as natural sources of microorganisms, so isolation of LAB strains from wild boars could provide the opportunity to develop effective probiotics to improve production in swine industry. In this study, the probiotic potential of 56 LAB isolates, originated from the ileum, colon, caecum and faeces of 5 wild boars, were assessed in vitro in details. Their taxonomic identity at species level and their antibacterial activity against four representative strains of potentially pathogenic bacteria were determined. The ability to tolerate low pH and bile salt, antibiotic susceptibility, bile salt hydrolase activity and lack of hemolysis were tested. Draft genome sequences of ten Limosilactobacillus mucosae and three Leuconostoc suionicum strains were determined. Bioinformatic analysis excluded the presence of any known acquired antibiotic resistance genes. Three genes, encoding mesentericin B105 and two different bacteriocin-IIc class proteins, as well as two genes with possible involvement in mesentericin secretion (mesE) and transport (mesD) were identified in two L. suionicum strains. Lam29 protein, a component of an ABC transporter with proved function as mucin- and epithelial cell-adhesion factor, and a bile salt hydrolase gene were found in all ten L. mucosae genomes. Comprehensive reconsideration of all data helps to select candidate strains to assess their probiotic potential further in animal experiments.202437353593
604350.9988Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. AIMS: This study was designed to select lactic acid bacteria with histamine- and cholesterol-reducing abilities to be used as potential probiotics. METHODS AND RESULTS: Thirty strains of lactic acid bacteria isolated from an artisanal raw milk cheese were screened for their abilities to degrade histamine, reduce cholesterol and hydrolyse bile salts. Strains were also screened for safety and probiotic traits, such as resistance to gastrointestinal conditions, adhesion to Caco-2 cells, resistance to antibiotics and presence of virulence genes. Two Lactobacillus paracasei strains presented high cholesterol- and histamine-lowering abilities, tested negative for the presence of virulence genes and showed susceptibility to most important antibiotics. These strains were also shown to possess desirable in vitro probiotic properties, revealed by tolerance to gastrointestinal conditions and high adhesion to intestinal cells. CONCLUSIONS: Among the screened strains, Lb. paracasei L3C21M6 revealed the best cholesterol and histamine reducing abilities together with desirable probiotic and safety features to be used in food applications. SIGNIFICANCE AND IMPACT OF THE STUDY: The strain L3C21M6 is a good candidate for use as a probiotic with histamine-degrading activity and cholesterol lowering effect. In addition, this strain could be use in dairy foods to prevent histamine food poisoning.202032500572
602660.9988Probiotic Characteristics and Whole Genome Analysis of Lactiplantibacillus plantarum PM8 from Giant Panda (Ailuropoda melanoleuca) Milk. Milk is a rich source of probiotics, particularly lactic acid bacteria (LAB), which have been shown to promote gut health, support the immune system, enhance digestion, and prevent pathogen colonization. This study aimed to isolate and identify LAB strains from giant panda (Ailuropoda melanoleuca) milk, evaluate their probiotic properties, and analyze the genomic characteristics of a promising strain. Thirteen LAB strains were isolated from 12 samples of giant panda milk. Among all LAB strains, Lactiplantibacillus plantarum PM8 (PM8) demonstrated probiotic properties and safety features. It exhibited strong growth performance, high antipathogenic activity against four pathogens, and strong survival rates under simulated gastrointestinal conditions. PM8 also showed excellent adhesion capabilities to Caco-2 cells. Additionally, safety assessment revealed no hemolysin production and minimal antibiotic resistance, making it a promising candidate for probiotic applications. The genome of PM8 consists of 3,227,035 bp with a GC content of 44.60% and contains 3171 coding sequences, including 113 carbohydrate-active enzyme genes and genes related to exopolysaccharides synthesis, vitamin B biosynthesis, adhesion, antioxidant activity, and bile salt hydrolysis. Notably, it contains genes involved in nonribosomally synthesized secondary metabolite and bacteriocin production. The genomic safety analysis confirmed that PM8 lacks the capacity to transmit bacterial antimicrobial resistance and is non-pathogenic to both humans and animals. These findings suggest that PM8 holds considerable potential for enhancing gut health and supporting the development of safe probiotic products.202539900880
471570.9987Genomic and stress resistance characterization of Lactiplantibacillus plantarum GX17, a potential probiotic for animal feed applications. Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of Lactiplantibacillus plantarum (L. plantarum) strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted. Based on the entire genome sequence analysis, 50 stress resistance genes and seven virulence factors were identified. The results of the phenotypic experiments showed that the strain had good resistance to high temperature, low temperature, acid, alkali, salt, artificial gastrointestinal fluid, and strong antioxidant capacity. Additionally, transcriptomic analysis confirmed that under stress conditions, the expression levels of key genes were significantly upregulated. Therefore, the phenotypic characteristics of L. plantarum GX17 align well with its genotypic features, demonstrating promising probiotic properties. This strain holds great potential as a probiotic candidate, and further investigation into its beneficial effects on human health is warranted. IMPORTANCE: In humans, Lactiplantibacillus plantarum may synergize with host microbiota to ameliorate dysbiosis-related pathologies, enhance immunomodulation, and facilitate micronutrient bioavailability. For livestock, its application could improve feed conversion ratios, suppress enteric pathogens through competitive exclusion, and mitigate antibiotic overuse, "a critical strategy in One Health frameworks." Further investigations into strain-specific mechanisms (e.g., postbiotic metabolites, quorum sensing regulation) are warranted to translate these genomic-phenotypic advantages into sustainable health solutions across species.202540919934
603880.9987Genomic Comparison of Lactobacillus helveticus Strains Highlights Probiotic Potential. Lactobacillus helveticus belongs to the large group of lactic acid bacteria (LAB), which are the major players in the fermentation of a wide range of foods. LAB are also present in the human gut, which has often been exploited as a reservoir of potential novel probiotic strains, but several parameters need to be assessed before establishing their safety and potential use for human consumption. In the present study, six L. helveticus strains isolated from natural whey cultures were analyzed for their phenotype and genotype in exopolysaccharide (EPS) production, low pH and bile salt tolerance, bile salt hydrolase (BSH) activity, and antibiotic resistance profile. In addition, a comparative genomic investigation was performed between the six newly sequenced strains and the 51 publicly available genomes of L. helveticus to define the pangenome structure. The results indicate that the newly sequenced strain UC1267 and the deposited strain DSM 20075 can be considered good candidates for gut-adapted strains due to their ability to survive in the presence of 0.2% glycocholic acid (GCA) and 1% taurocholic and taurodeoxycholic acid (TDCA). Moreover, these strains had the highest bile salt deconjugation activity among the tested L. helveticus strains. Considering the safety profile, none of these strains presented antibiotic resistance phenotypically and/or at the genome level. The pangenome analysis revealed genes specific to the new isolates, such as enzymes related to folate biosynthesis in strains UC1266 and UC1267 and an integrated phage in strain UC1035. Finally, the presence of maltose-degrading enzymes and multiple copies of 6-phospho-β-glucosidase genes in our strains indicates the capability to metabolize sugars other than lactose, which is related solely to dairy niches.201931293536
846790.9987The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects.202235456875
156100.9986Bacterial Acid Resistance Toward Organic Weak Acid Revealed by RNA-Seq Transcriptomic Analysis in Acetobacter pasteurianus. Under extreme acidic environments, bacteria exploit several acid resistance (AR) mechanisms for enhancing their survival, which is concerned with several aspects, such as issues in human health and fermentation for acidic products. Currently, knowledge of bacterial AR mainly comes from the strong acid (such as hydrochloric acid) stresses, whereas AR mechanisms against organic weak acids (such as acetic acid), which are indeed encountered by bacteria, are less understood. Acetic acid bacteria (AAB), with the ability to produce acetic acid up to 20 g/100 mL, possess outstanding acetic acid tolerance, which is conferred by their unique AR mechanisms, including pyrroloquinoline quinine-dependent alcohol dehydrogenase, acetic acid assimilation and molecular chaperons. The distinguished AR of AAB toward acetic acid may provide a paradigm for research in bacterial AR against weak organic acids. In order to understand AAB's AR mechanism more holistically, omics approaches have been employed in the corresponding field. However, the currently reported transcriptomic study was processed under a low-acidity (1 g/100 mL) environment, which could not reflect the general conditions that AAB are usually faced with. This study performed RNA-Seq transcriptomic analysis investigating AR mechanisms in Acetobacter pasteurianus CGMCC 1.41, a widely used vinegar-brewing AAB strain, at different stages of fermentation, namely, under different acetic acid concentrations (from 0.6 to 6.03 g/100 mL). The results demonstrated the even and clustered genomic distribution of up- and down-regulated genes, respectively. Difference in AR between AAB and other microorganisms was supported by the down-regulation of urea degradation and trehalose synthesis-related genes in response to acetic acid. Detailed analysis reflected the role of ethanol respiration as the main energy source and the limited effect of acetic acid assimilation on AR during fermentation as well as the competition between ethanol respiratory chain and NADH, succinate dehydrogenase-based common respiratory chain. Molecular chaperons contribute to AR, too, but their regulatory mechanisms require further investigation. Moreover, pathways of glucose catabolism and fatty acid biosynthesis are also related to AR. Finally, 2-methylcitrate cycle was proposed as an AR mechanism in AAB for the first time. This study provides new insight into AR mechanisms of AAB, and it also indicates the existence of numerous undiscovered AR mechanisms.201931447789
6036110.9986Comprehensive Phenotypic Characterization and Genomic Analysis Unveil the Probiotic Potential of Bacillus velezensis K12. Bacillus spp. have emerged as pivotal sources of probiotic preparations, garnering considerable attention in recent years owing to their vigorous bacteriostatic activity and antimicrobial resistance. This study aimed to investigate these probiotic characteristics in depth and verify the safety of Bacillus velezensis K12, a strain isolated from broiler intestine. The K12 strain was identified as Bacillus velezensis based on its morphology and 16S rDNA sequence homology analysis. Subsequently, B. velezensis K12 was evaluated for acid resistance, bile salt resistance, gastrointestinal tolerance, drug sensitivity, and antimicrobial activity. Additionally, whole-genome sequencing technology was employed to dissect its genomic components further, aiming to explore its potential applications as a probiotic strain. B. velezensis K12 was sensitive to six antibiotics and had acid tolerance. Furthermore, it showed potent antimicrobial activity against a wide range of pathogenic bacteria, including Escherichia coli (E. coli), Staphylococcus aureus, Salmonella, Clostridium perfringens, Bacillus cereus, and Vibrio parahaemolyticus. The complete genome sequencing of B. velezensis K12 revealed a genomic length of 3,973,105 base pairs containing 4123 coding genes, among which 3973 genes were functionally annotated. The genomic analysis identified genes associated with acid and bile tolerance, adhesion, antioxidants, and secondary metabolite production, whereas no functional genes related to enterotoxins or transferable antibiotic resistance were detected, thereby confirming the probiotic properties of B. velezensis K12. B. velezensis K12 exhibits broad-spectrum bacteriostatic activity and in vitro safety, positioning it as a potential candidate strain for developing probiotic Bacillus preparations.202540150327
6018120.9986Effect of Trehalose and Lactose Treatments on the Freeze-Drying Resistance of Lactic Acid Bacteria in High-Density Culture. Freeze-drying is a commonly used method in commercial preparations of lactic acid bacteria. However, some bacteria are killed during the freeze-drying process. To overcome this, trehalose and lactose are often used as protective agents. Moreover, high-density culture is an efficient way to grow bacterial strains but creates a hypertonic growth environment. We evaluated the effects of trehalose and lactose, as a primary carbon source or as an additive in fermentation, on the freeze-drying survival of Lactobacillus fermentum FXJCJ6-1, Lactobacillus brevis 173-1-2, and Lactobacillus reuteri CCFM1040. Our results showed that L. fermentum FXJCJ6-1 accumulated but did not use intracellular trehalose in a hypertonic environment, which enhanced its freeze-drying resistance. Furthermore, genes that could transport trehalose were identified in this bacterium. In addition, both the lactose addition and lactose culture improved the freeze-drying survival of the bacterium. Further studies revealed that the added lactose might exert its protective effect by attaching to the cell surface, whereas lactose culture acted by reducing extracellular polysaccharide production and promoting the binding of the protectant to the cell membrane. The different mechanisms of lactose and trehalose in enhancing the freeze-drying resistance of bacteria identified in this study will help to elucidate the anti-freeze-drying mechanisms of other sugars in subsequent investigations.202236677339
6041130.9986Gut commensal bacteria show beneficial properties as wildlife probiotics. Probiotics are noninvasive, environmentally friendly alternatives for reducing infectious diseases in wildlife species. Our aim in the present study was to evaluate the potential of gut commensals such as lactic acid bacteria (LAB) as wildlife probiotics. The LAB selected for our analyses were isolated from European badgers (Meles meles), a wildlife reservoir of bovine tuberculosis, and comprised four different genera: Enterococcus, Weissella, Pediococcus, and Lactobacillus. The enterococci displayed a phenotype and genotype that included the production of antibacterial peptides and stimulation of antiviral responses, as well as the presence of virulence and antibiotic resistance genes; Weissella showed antimycobacterial activity owing to their ability to produce lactate and ethanol; and lactobacilli and pediococci modulated proinflammatory phagocytic responses that associate with protection against pathogens, responses that coincide with the presence of immunomodulatory markers in their genomes. Although both lactobacilli and pediococci showed resistance to antibiotics, this was naturally acquired, and almost all isolates demonstrated a phylogenetic relationship with isolates from food and healthy animals. Our results show that LAB display probiotic benefits that depend on the genus, and that lactobacilli and pediococci are probably the most obvious candidates as probiotics against infectious diseases in wildlife because of their food-grade status and ability to modulate protective innate immune responses.202032026493
6028140.9986Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces. Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines.202337484003
154150.9986Classification of acetic acid bacteria and their acid resistant mechanism. Acetic acid bacteria (AAB) are obligate aerobic Gram-negative bacteria that are commonly used in vinegar fermentation because of their strong capacity for ethanol oxidation and acetic acid synthesis as well as their acid resistance. However, low biomass and low production rate due to acid stress are still major challenges that must be overcome in industrial processes. Although acid resistance in AAB is important to the production of high acidity vinegar, the acid resistance mechanisms of AAB have yet to be fully elucidated. In this study, we discuss the classification of AAB species and their metabolic processes and review potential acid resistance factors and acid resistance mechanisms in various strains. In addition, we analyze the quorum sensing systems of Komagataeibacter and Gluconacetobacter to provide new ideas for investigation of acid resistance mechanisms in AAB in the form of signaling pathways. The results presented herein will serve as an important reference for selective breeding of high acid resistance AAB and optimization of acetic acid fermentation processes.202133595734
8466160.9986Genomic Characterization of Lactiplantibacillus plantarum Strains: Potential Probiotics from Ethiopian Traditional Fermented Cottage Cheese. BACKGROUND: Lactiplantibacillus plantarum is a species found in a wide range of ecological niches, including vegetables and dairy products, and it may occur naturally in the human gastrointestinal tract. The precise mechanisms underlying the beneficial properties of these microbes to their host remain obscure. Although Lactic acid bacteria are generally regarded as safe, there are rare cases of the emergence of infections and antibiotic resistance by certain probiotics. OBJECTIVE: An in silico whole genome sequence analysis of putative probiotic bacteria was set up to identify strains, predict desirable functional properties, and identify potentially detrimental antibiotic resistance and virulence genes. METHODS: We characterized the genomes of three L. plantarum strains (54B, 54C, and 55A) isolated from Ethiopian traditional cottage cheese. Whole-genome sequencing was performed using Illumina MiSeq sequencing. The completeness and quality of the genome of L. plantarum strains were assessed through CheckM. RESULTS: Analyses results showed that L. plantarum 54B and 54C are closely related but different strains. The genomes studied did not harbor resistance and virulence factors. They had five classes of carbohydrate-active enzymes with several important functions. Cyclic lactone autoinducer, terpenes, Type III polyketide synthases, ribosomally synthesized and post-translationally modified peptides-like gene clusters, sactipeptides, and all genes required for riboflavin biosynthesis were identified, evidencing their promising probiotic properties. Six bacteriocin-like structures encoding genes were found in the genome of L. plantarum 55A. CONCLUSIONS: The lack of resistome and virulome and their previous functional capabilities suggest the potential applicability of these strains in food industries as bio-preservatives and in the prevention and/or treatment of infectious diseases. The results also provide insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates.202439596588
8464170.9986Comparative genomics of 40 Weissella paramesenteroides strains. Weissella strains are often detected in spontaneously fermented foods. Because of their abilities to produce lactic acid and functional exopolysaccharides as well as their probiotic traits, Weissella spp. improve not only the sensorial properties but also nutritional values of the fermented food products. However, some Weissella species have been associated with human and animal diseases. In the era of vast genomic sequencing, new genomic/genome data are becoming available to the public on daily pace. Detailed genomic analyses are due to provide a full understanding of individual Weissella species. In this study, the genomes of six Weissella paramesenteroides strains were de novo sequenced. The genomes of 42 W. paramesenteroides strains were compared to discover their metabolic and functional potentials in food fermentation. Comparative genomics and metabolic pathway reconstructions revealed that W. paramesenteroides is a compact group of heterofermentative bacteria with good capacity of producing secondary metabolites and vitamin Bs. Since the strains rarely harbored plasmid DNA, they did not commonly possess the genes associated with bacteriocin production. All 42 strains were shown to bear vanT gene from the glycopeptide resistance gene cluster vanG. Yet none of the strains carried virulence genes.202337065164
158180.9986Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq. In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry.202133945164
8463190.9986Safety assessment of five candidate probiotic lactobacilli using comparative genome analysis. Micro-organisms belonging to the Lactobacillus genus complex are often used for oral consumption and are generally considered safe but can exhibit pathogenicity in rare and specific cases. Therefore, screening and understanding genetic factors that may contribute to pathogenicity can yield valuable insights regarding probiotic safety. Limosilactobacillus mucosae LM1, Lactiplantibacillus plantarum SK151, Lactiplantibacillus plantarum BS25, Limosilactobacillus fermentum SK152 and Lactobacillus johnsonii PF01 are current probiotics of interest; however, their safety profiles have not been explored. The genome sequences of LM1, SK151, SK152 and PF01 were downloaded from the NCBI GenBank, while that of L. plantarum BS25 was newly sequenced. These genomes were then annotated using the Rapid Annotation using Subsystem Technology tool kit pipeline. Subsequently, a command line blast was performed against the Virulence Factor Database (VFDB) and the Comprehensive Antibiotic Resistance Database (CARD) to identify potential virulence factors and antibiotic resistance (AR) genes. Furthermore, ResFinder was used to detect acquired AR genes. The query against the VFDB identified genes that have a role in bacterial survivability, platelet aggregation, surface adhesion, biofilm formation and immunoregulation; and no acquired AR genes were detected using CARD and ResFinder. The study shows that the query strains exhibit genes identical to those present in pathogenic bacteria with the genes matched primarily having roles related to survival and surface adherence. Our results contribute to the overall strategies that can be employed in pre-clinical safety assessments of potential probiotics. Gene mining using whole-genome data, coupled with experimental validation, can be implemented in future probiotic safety assessment strategies.202438361650