# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6013 | 0 | 1.0000 | Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria. | 2011 | 21478643 |
| 3608 | 1 | 0.9972 | Natural antibiotic resistance of bacteria isolated from larvae of the oil fly, Helaeomyia petrolei. Helaeomyia petrolei (oil fly) larvae inhabit the asphalt seeps of Rancho La Brea in Los Angeles, Calif. The culturable microbial gut contents of larvae collected from the viscous oil were recently examined, and the majority (9 of 14) of the strains were identified as Providencia spp. Subsequently, 12 of the bacterial strains isolated were tested for their resistance or sensitivity to 23 commonly used antibiotics. All nine strains classified as Providencia rettgeri exhibited dramatic resistance to tetracycline, vancomycin, bacitracin, erythromycin, novobiocin, polymyxin, colistin, and nitrofurantoin. Eight of nine Providencia strains showed resistance to spectinomycin, six of nine showed resistance to chloramphenicol, and five of nine showed resistance to neomycin. All 12 isolates were sensitive to nalidixic acid, streptomycin, norfloxacin, aztreonam, cipericillin, pipericillin, and cefotaxime, and all but OF008 (Morganella morganii) were sensitive to ampicillin and cefoxitin. The oil fly bacteria were not resistant to multiple antibiotics due to an elevated mutation rate. For each bacterium, the number of resistant mutants per 10(8) cells was determined separately on rifampin, nalidixic acid, and spectinomycin. In each case, the average frequencies of resistant colonies were at least 50-fold lower than those established for known mutator strain ECOR 48. In addition, the oil fly bacteria do not appear to excrete antimicrobial agents. When tested, none of the oil fly bacteria produced detectable zones of inhibition on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, or Candida albicans cultures. Furthermore, the resistance properties of oil fly bacteria extended to organic solvents as well as antibiotics. When pre-exposed to 20 microg of tetracycline per ml, seven of nine oil fly bacteria tolerated overlays of 100% cyclohexane, six of nine tolerated 10% xylene, benzene, or toluene (10:90 in cyclohexane), and three of nine (OF007, OF010, and OF011) tolerated overlays of 50% xylene-50% cyclohexane. The observed correlation between antibiotic resistance and organic solvent tolerance is likely explained by an active efflux pump that is maintained in oil fly bacteria by the constant selective pressure of La Brea's solvent-rich environment. We suggest that the oil fly bacteria and their genes for solvent tolerance may provide a microbial reservoir of antibiotic resistance genes. | 2000 | 11055901 |
| 2092 | 2 | 0.9970 | Antibacterial activities of multi drug resistant Myroides odoratimimus bacteria isolated from adult flesh flies (Diptera: sarcophagidae) are independent of metallo beta-lactamase gene. Sarcophagidae) are well known cause of myiasis and their gut bacteria have never been studied for antimicrobial activity against bacteria. Antimicrobial studies of Myroides spp. are restricted to nosocomial strains. A Gram-negative bacterium, Myroides sp., was isolated from the gut of adult flesh flies (Sarcophaga sp.) and submitted to evaluation of nutritional parameters using Biolog GN, 16S rRNA gene sequencing, susceptibility to various antimicrobials by disc diffusion method and detection of metallo β-lactamase genes (TUS/MUS). The antagonistic effects were tested on Gram-negative and Gram-positive bacteria isolated from human clinical specimens, environmental samples and insect mid gut. Bacterial species included were Aeromonas hydrophila, A. culicicola, Morganella morganii subsp. sibonii, Ochrobactrum anthropi, Weissella confusa, Escherichia coli, Ochrobactrum sp., Serratia sp., Kestersia sp., Ignatzschineria sp., Bacillus sp. The Myroides sp. strain was resistant to penicillin-G, erythromycin, streptomycin, amikacin, kanamycin, gentamycin, ampicillin, trimethoprim and tobramycin. These strain showed antibacterial action against all bacterial strains except W. confusa, Ignatzschineria sp., A. hydrophila and M. morganii subsp. sibonii. The multidrug resistance of the strain was similar to the resistance of clinical isolates, inhibiting growth of bacteria from clinical, environmental and insect gut samples. The metallo β-lactamase (TUS/MUS) genes were absent, and resistance due to these genes was ruled out, indicating involvement of other secretion machinery. | 2008 | 24031236 |
| 5848 | 3 | 0.9968 | Plasmid and chromosomal basis of tolerance to cadmium and resistance to antibiotics in normal bovine duodenal bacterial flora. Cadmium (Cd) tolerance and antibiotic resistance was studied in duodenal flora of 20 normal bovine samples. Twelve bacterial isolates (5 Staphylococcus spp, 4 Enterococcus faecalis, 2 Bacillus spp, and a Pseudomonas sp) were grown in Luria broth containing 0.05 to 0.8 mM of cadmium chloride (CdCl). All isolates displayed multiple antibiotic resistance, with 2 Enterococcus strains and Pseudomonas pickettii demonstrating resistance to 12/17 antibiotics tested. With the exception of Staphylococcus sp, all contained plasmid DNA. Curing to remove plasmid DNA determined if Cd tolerance and/or antibiotic resistance was plasmid or chromosomally mediated. None of the bacteria became sensitive to CdCl after curing, suggesting that tolerance was not plasmid-mediated. Six bacteria became sensitive to antibiotics after curing indicating that antibiotic2 resistance was plasmid mediated. Two of these bacteria became sensitive to multiple antibiotics; a Staphylococcus sp became sensitive to ampicillin, ceftiofur and cephalothin, and a Enterococcus strain became sensitive to neomycin, oxacillin, and tiamulin. All of the isolates were probed for the presence of known Cd-resistance genes (cadA, cadC, and cadD). DNA-DNA hybridization revealed cadA- and cadC-related sequences in chromosomal DNA of a Staphylococcus sp, an Enterococcus strain, and in plasmid DNA of another Staphylococcus sp. No cadD-related sequences were detected in any of the 12 isolates even under reduced stringency of hybridization. | 2001 | 11383651 |
| 5899 | 4 | 0.9967 | Identification of strA-strB Genes in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 2 Strains Isolated in Korea. Bacterial canker is a devastating disease of kiwifruit caused by the bacterium Pseudomonas syringe pv. actinidiae. Canker disease of kiwifruit in Korea has been controlled using streptomycin for more than two decades. Four streptomycin-resistant strains, belonging to biovar 2, which are found only in Korea, were collected between 2013 and 2014 from different orchards located in Jeju, Korea. The genetic background for streptomycin resistance among P. syringe pv. actinidiae strains were determined by examining the presence of strA-strB or aadA, which are genes frequently found in streptomycin-resistant bacteria, and a point mutation at codon 43 in the rpsL gene. All four streptomycin-resistant strains of P. syringe pv. actinidiae investigated in this study contained strA-strB as a resistant determinant. The presence of the aadA gene and a mutation in codon 43 of the rpsL gene was not identified. | 2021 | 34847635 |
| 456 | 5 | 0.9967 | Cloning and nucleotide sequences of the topoisomerase IV parC and parE genes of Mycoplasma hominis. The topoisomerase IV parC and parE genes from the wall-less organism Mycoplasma hominis PG21 were cloned and sequenced. The coupled genes are located far from the DNA gyrase genes gyrA and gyrB. They encode proteins of 639 and 866 amino acids, respectively. As expected, the encoded ParE and ParC proteins exhibit higher homologies with the topoisomerase IV subunits of the gram-positive bacteria Staphylococcus aureus and Streptococcus pneumoniae than with their Escherichia coli counterparts. The conserved regions include the Tyr residue of the active site and the region involved in quinolone resistance (quinolone resistance-determining region [QRDR]) in ParC and the ATP-binding site and the QRDR in ParE. | 1998 | 9687401 |
| 394 | 6 | 0.9967 | Introduction of bacteriophage Mu into bacteria of various genera and intergeneric gene transfer by RP4::Mu. The host range of coliphage Mu was greatly expanded to various genera of gram-negative bacteria by using the hybrid plasmic RP4::Mu cts, which is temperature sensitive and which confers resistance to ampicillin, kanamycin, and tetracycline. These drug resistance genes were transferred from Escherichia coli to members of the general Klebsiella, Enterobacter, Citrobacter, Salmonella, Proteus, Erwinia, Serratia, Alcaligenes, Agrobacterium, Rhizobium, Pseudomonas, Acetobacter, and Bacillus. Mu phage was produced by thermal induction from the lysogens of all these drug-resistant bacteria except Bacillus. Mu phage and RP4 or the RP4::Mu plasmid were used to create intergeneric recombinant strains by transfer of some genes, including the arylsulfatase gene, between Klebsiella aerogenes and E. coli. Thus, genetic analysis and intergeneric gene transfer are possible in these RP4::Mu-sensitive bacteria. | 1981 | 6450749 |
| 5970 | 7 | 0.9966 | DNA microarray for detection of macrolide resistance genes. A DNA microarray was developed to detect bacterial genes conferring resistance to macrolides and related antibiotics. A database containing 65 nonredundant genes selected from publicly available DNA sequences was constructed and used to design 100 oligonucleotide probes that could specifically detect and discriminate all 65 genes. Probes were spotted on a glass slide, and the array was reacted with DNA templates extracted from 20 reference strains of eight different bacterial species (Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Staphylococcus haemolyticus, Escherichia coli, and Bacteroides fragilis) known to harbor 29 different macrolide resistance genes. Hybridization results showed that probes reacted with, and only with, the expected DNA templates and allowed discovery of three unexpected genes, including msr(SA) in B. fragilis, an efflux gene that has not yet been described for gram-negative bacteria. | 2006 | 16723563 |
| 5963 | 8 | 0.9966 | Expression of the mphB gene for macrolide 2'-phosphotransferase II from Escherichia coli in Staphylococcus aureus. The genes mphA and mphB encode macrolide 2'-phosphotransferases I and II, respectively, and they confer resistance to macrolide antibiotics in Escherichia coli. To study the expression of these genes in Gram-positive bacteria, we constructed recombinant plasmids that consisted of an mph gene and the pUB110 vector in Bacillus subtilis. When these plasmids were introduced into Staphylococcus aureus, the mphB gene was active and macrolide 2'-phosphotransferase II was produced. The gene endowed S. aureus with high-level resistance to spiramycin, a macrolide antibiotic with a 16-membered ring. Moreover, transcription of the mphB gene in S. aureus began at the promoter that was active in E. coli. | 1998 | 9503630 |
| 6051 | 9 | 0.9966 | Antibiotic susceptibility of different lactic acid bacteria strains. Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes. | 2011 | 22146692 |
| 2282 | 10 | 0.9966 | Cross resistance of quinolone derivatives in gram-negative bacteria. A total of 127 Gram-negative bacteria resistant to nalidixic acid were isolated from as many patients affected by urinary tract infections and hospitalized in the first Clinic of Infectious Diseases, University of Naples. Enterobacteria were identified by Enterotube system (Roche) and API 20 system (Ayerst). Non-fermentative bacteria were identified by OXI/FERM system (Roche). The following bacteria were collected: Escherichia coli 50, Proteus spp. 35, Enterobacter agglomerans 12, Serratia sp. 5, Pseudomonas aeruginosa 25. The in vitro antibacterial activity of nalidixic acid and three other quinoline derivatives (pipemidic acid, oxolinic acid and ciprofloxacin) were studied by determining the MICs by a miniaturized dilution broth method. The MICs were compared to evaluate the eventual cross resistance to the drugs under examination within each bacterial species. The results showed that 23% of bacteria were resistant to nalidixic acid, pipemidic acid and oxolinic acid; 49.6% to nalidixic and pipemidic acid and 0.7% to nalidixic acid and oxolinic acid. On the other hand none of the bacteria were resistant to ciprofloxacin. The last showed very low MICs against all the bacteria under examination, including Pseudomonas and Serratia. The high antibacterial activity of ciprofloxacin even against bacteria highly resistant to the other quinolines could be due to a greater affinity of the target sites or to the better permeability of resistant strains to the newer drug or because it is unaffected until now by mutations of genes responsible for cross resistance. | 1985 | 3159488 |
| 3752 | 11 | 0.9966 | Aeromonas allosaccharophila Strain AE59-TE2 Is Highly Antagonistic towards Multidrug-Resistant Human Pathogens, What Does Its Genome Tell Us? Multidrug-resistant bacteria are of critical importance and a problem for human health and food preservation; the discovery of new antimicrobial substances to control their proliferation is part of the solution. This work reports on 57 antagonistic Aeromonas strains, of which 38 strains were antagonistic towards problematic human pathogens. The genome of the most antagonistic strain was sequenced and identified as Aeromonas allosaccharophila. Its genome was fully annotated and mined for genes that might explain that activity. Strain AE59-TE was antagonistic toward clinically relevant gram-negative and gram-positive multidrug-resistant bacteria, including Klebsiella pneumoniae KPC, Escherichia coli ESBL, Salmonella typhimurium, and Staphylococcus aureus MRSA. Strain AE59-TE2 was identified by multilocus sequence analysis. Genome mining identified four genes homologous to the bacteriocin, zoocin A from Streptococcus equi and a gene 98% similar to cvpA linked to colicin V production. A. allosaccharophila strain AE59-TE2 produced antimicrobial activity against a broad range of bacteria, including important gram-negative bacteria, not typically targeted by bacteriocins. Herewere described novel zoocin genes that are promising for industrial applications in the food and health sectors. Interesting and important antagonistic activity is described combined with the first detailed genomic analysis of the species Aeromonas allosaccharophila. | 2022 | 36294926 |
| 5981 | 12 | 0.9966 | Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. A 4.2-kb DNA fragment conferring quinolone resistance was cloned from a quinolone-resistant clinical isolate of Staphylococcus aureus and was shown to possess a part of the grlB gene and a mutated grlA gene. S-80-->F and E-84-->K mutations in the grlA gene product were responsible for the quinolone resistance. The mutated grlA genes responsible for quinolone resistance were dominant over the wild-type allele, irrespective of gene dosage in a transformation experiment with the grlA gene alone. However, dominance by mutated grlA genes depended on gene dosage when bacteria were transformed with the grlA and grlB genes in combination. Quinolone-resistant gyrA mutants were easily isolated from a strain, S. aureus RN4220, carrying a plasmid with the mutated grlA gene, though this was not the case for other S. aureus strains lacking the plasmid. The elimination of this plasmid from such quinolone-resistant gyrA mutants resulted in marked increases in quinolone susceptibility. These results suggest that both DNA gyrase and DNA topoisomerase IV may be targets of quinolones and that the quinolone susceptibility of organisms may be determined by which of these enzymes is most quinolone sensitive. | 1996 | 8723458 |
| 5929 | 13 | 0.9966 | Characterization of biocide-tolerant bacteria isolated from cheese and dairy small-medium enterprises. A collection of 120 bacterial isolates from small medium enterprises involved in the production of cow milk and the manufacture of goat cheese were screened for sensitivity to biocides benzalkonium chloride (BC), cetrimide (CT), hexadecylpyridinium chloride (HDP), triclosan (TC), hexachlorophene (CF) and poly-(hexamethylen guanidinium) hydrochloride (PHMG). Nineteen isolates were selected according to biocide tolerance and identified by 16S rDNA sequencing as Lactococcus sp. (6) Enterococcus sp. (1), Lactobacillus sp. (4), Bacillus sp. (1) Escherichia sp. (5), Enterobacter sp. (1) and Helicobacter sp. (1). These were further characterised regarding antimicrobial resistance phenotype and genotype. Several isolates were multiply (3 or more) tolerant to biocides or resistant to antibiotics, but only two Escherichia sp. isolates and Enterobacter sp. were multiply resistant to biocides and antibiotics. Statistical analysis of biocide tolerance and antibiotic resistance revealed significant positive correlations between different biocides and between biocides and antibiotics. The biocide tolerance genes most frequently found were qacEΔ1 and qacA/B. The sulfonamide resistance gene sul1 was found in two Escherichia sp. isolates and in Enterobacter sp., all of which also carried qacEΔ1. Beta-lactam (bla(CTX-M), bla(PSE)) and tetracycline resistance genes [tet(A), tet(C) and tet(D)] were detected. Efflux pump genes acrB and mdfA were found in most Gram-negative isolates. Results from the study suggest that exposure to biocides can indirectly select for antibiotic resistance. | 2017 | 27889169 |
| 487 | 14 | 0.9966 | Chromosome-encoded inducible copper resistance in Pseudomonas strains. Nine Pseudomonas strains were selected by their high copper tolerance from a population of bacteria isolated from heavy-metal polluted zones. Copper resistance (Cu(r)) was inducible by previous exposure of cultures to subinhibitory amounts of copper sulfate. All nine strains possessed large plasmids, but transformation and curing results suggest that Cu(r) is conferred by chromosomal genes. Plasmid-less Pseudomonas aeruginosa PAO-derived strains showed the same level of Cu(r) as environmental isolates and their resistance to copper was also inducible. Total DNA from the environmental Pseudomonas, as well as from P. aeruginosa PAO strains, showed homology to a Cu(r) P. syringae cop probe at low-stringency conditions but failed to hybridize at high-stringency conditions. | 1995 | 8572680 |
| 5850 | 15 | 0.9965 | Gram-positive merA gene in gram-negative oral and urine bacteria. Clinical mercury resistant (Hg(r)) Gram-negative bacteria carrying Gram-positive mercury reductase (merA)-like genes were characterized using DNA-DNA hybridization, PCR and sequencing. A PCR assay was developed which discriminated between the merA genes related to Staphylococcus and those related to the Bacillus/Streptococcus merA genes by the difference in size of the PCR product. DNA sequence analysis correlated with the PCR assay. The merA genes from Acinetobacter junii, Enterobacter cloacae and Escherichia coli were sequenced and shared 98-99% identical nucleotide (nt) and 99.6-100% amino acid identity with the Staphylococcus aureus MerA protein. A fourth merA gene, from Pantoeae agglomerans, was partially sequenced (60%) and had 99% identical nt and 100% amino acid identity with the Streptococcus oralis MerA protein. All the Hg(r) Gram-negative bacteria transferred their Gram-positive merA genes to a Gram-positive Enterococcus faecalis recipient with the resulting transconjugants expressing mercury resistance. These Gram-positive merA genes join Gram-positive tetracycline resistance and Gram-positive macrolide resistance genes in their association with mobile elements which are able to transfer and express in Gram-negative bacteria. | 2004 | 15358427 |
| 6138 | 16 | 0.9965 | Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals. Five strains of Cupriavidus plantarum, a metal-resistant, plant-associated bacterium, were selected for genome sequencing through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) Phase IV project at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE). The genome of the strains was in the size range of 6.2-6.4 Mbp and encoded 5605-5834 proteins; 16.9-23.7% of these genes could not be assigned to a COG-associated functional category. The G + C content was 65.83-65.99%, and the genomes encoded 59-67 stable RNAs. The strains were resistant in vitro to arsenite, arsenate, cobalt, chromium, copper, nickel and zinc, and their genomes possessed the resistance genes for these metals. The genomes also encoded the biosynthesis of potential antimicrobial compounds, such as terpenes, phosphonates, bacteriocins, betalactones, nonribosomal peptides, phenazine and siderophores, as well as the biosynthesis of cellulose and enzymes such as chitinase and trehalase. The average nucleotide identity (ANI) and DNA-DNA in silico hybridization of the genomes confirmed that C. plantarum is a single species. Moreover, the strains cluster within a single group upon multilocus sequence analyses with eight genes and a phylogenomic analyses. Noteworthy, the ability of the species to tolerate high concentrations of different metals might prove useful for bioremediation of naturally contaminated environments. | 2020 | 32405446 |
| 5849 | 17 | 0.9965 | Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. A total of 110 staphylococcal isolates from human skin were found to express a novel type of erythromycin resistance. The bacteria were resistant to 14-membered ring macrolides (MIC 32-128 mg/l) but were sensitive to 16-membered ring macrolides and lincosamides. Resistance to type B streptogramins was inducible by erythromycin. A similar phenotype, designated MS resistance, was previously described in clinical isolates of coagulase-negative staphylococci from the USA. In the UK, MS resistance is widely distributed in coagulase-negative staphylococci but was not detected in 100 erythromycin resistant clinical isolates of Staphylococcus aureus. Tests for susceptibility to a further 16 antibiotics failed to reveal any other selectable marker associated with the MS phenotype. Plasmid pattern analysis of 48 MS isolates showed considerable variability between strains and no common locus for the resistance determinant. In one strain of S. epidermidis co-resistance to tetracycline, penicillin and erythromycin (MS) was associated with a 31.5 kb plasmid, pUL5050 which replicated and expressed all three resistances when transformed into S. aureus RN4220. The MS resistance determinant was localised to a 1.9 kb fragment which was cloned on to the high-copy-number vector, pSK265. A constitutive mutant of S. aureus RN4220 containing the 1.9 kb fragment remained sensitive to clindamycin. This observation, together with the concentration-dependent induction (optimum 5 mg/l of erythromycin) of virginiamycin S resistance suggests that the MS phenotype is not due to altered expression of MLS resistance determinants (erm genes) but probably occurs via a different mechanism. | 1989 | 2559912 |
| 5979 | 18 | 0.9965 | Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. Mutations in the genes for the subunits GyrA and ParC of the target enzymes DNA gyrase and topoisomerase IV are important mechanisms of resistance in quinolone-resistant bacteria, including Neisseria gonorrhoeae. The target enzymes also consist of the subunits GyrB and ParE, respectively, though their role in quinolone-resistance has not been fully investigated. We sequenced the quinolone-resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE in 25 ciprofloxacin-resistant strains from Bangladesh (MIC 4-->32 mg/l) and 5 susceptible strains of N. gonorrhoeae. All the resistant strains had three or four mutations. Two of these were at positions 91 and 95 of gyrA. Fourteen strains had an additional mutation in parC at position 91, and 17 strains had an additional mutation in parE in position 439. No alterations were found in gyrB. The five susceptible strains had identical DNA sequences. Data indicate that the mutations detected in the QRDR of gyrA and parC may be important in the development of quinolone resistance. According to transformation experiments we assume that the alteration in parE is not related to a high degree of quinolone resistance. There was no correlation between ciprofloxacin MICs and pattern or number of mutations in the target genes. | 2002 | 12529019 |
| 6184 | 19 | 0.9965 | Active efflux as a mechanism of resistance to ciprofloxacin in Streptococcus pneumoniae. The accumulation of fluoroquinolones (FQs) was studied in a FQ-susceptible laboratory strain of Streptococcus pneumoniae (strain R6). Uptake of FQs was not saturable, was rapidly reversible, and appeared to occur by passive diffusion. In the presence of glucose, which energizes bacteria, the uptake of FQs decreased. Inhibitors of the proton motive force and ATP synthesis increased the uptake of FQs in previously energized bacteria. Similar results were observed with the various FQs tested and may be explained to be a consequence simply of the pH gradient that exists across the cytoplasmic membrane. From a clinical susceptible strain (strain SPn5907) we isolated in vitro on ciprofloxacin an FQ-resistant mutant (strain SPn5929) for which the MICs of hydrophilic molecules were greater than those of hydrophobic molecules, and the mutant was resistant to acriflavine, cetrimide, and ethidium bromide. Strain SPn5929 showed a significantly decreased uptake of ciprofloxacin, and its determinant of resistance to ciprofloxacin was transferred by transformation to susceptible laboratory strain R6 (strain R6tr5929). No mutations in the quinolone resistance-determining regions of the gyrA and parC genes were found. In the presence of arsenate or carbonyl cyanide m-chlorophenylhydrazone, the levels of uptake of ciprofloxacin by the two resistant strains, SPn5929 and R6tr5929, reached the levels of uptake of their susceptible parents. These results suggest an active efflux of ciprofloxacin in strain SPn5929. | 1997 | 9303396 |