Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
60001.0000Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger. Protein mistranslation causes growth arrest in bacteria, mitochondrial dysfunction in yeast, and neurodegeneration in mammals. It remains poorly understood how mistranslated proteins cause such cellular defects. Here we demonstrate that streptomycin, a bactericidal aminoglycoside that increases ribosomal mistranslation, induces transient protein aggregation in wild-type Escherichia coli. We further determined the aggregated proteome using label-free quantitative mass spectrometry. To identify genes that reduce cellular mistranslation toxicity, we selected from an overexpression library protein products that increased resistance against streptomycin and kanamycin. The selected proteins were significantly enriched in members of the oxidation-reduction pathway. Overexpressing one of these proteins, alkyl hydroperoxide reductase subunit F (a protein defending bacteria against hydrogen peroxide), but not its inactive mutant suppressed aggregated protein formation upon streptomycin treatment and increased aminoglycoside resistance. This work provides in-depth analyses of an aggregated proteome caused by streptomycin and suggests that cellular defense against hydrogen peroxide lowers the toxicity of mistranslation.201223122414
59710.9994Pyruvate-associated acid resistance in bacteria. Glucose confers acid resistance on exponentially growing bacteria by repressing formation of the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and consequently activating acid resistance genes. Therefore, in a glucose-rich growth environment, bacteria are capable of resisting acidic stresses due to low levels of cAMP-CRP. Here we reveal a second mechanism for glucose-conferred acid resistance. We show that glucose induces acid resistance in exponentially growing bacteria through pyruvate, the glycolysis product. Pyruvate and/or the downstream metabolites induce expression of the small noncoding RNA (sncRNA) Spot42, and the sncRNA, in turn, activates expression of the master regulator of acid resistance, RpoS. In contrast to glucose, pyruvate has little effect on levels of the cAMP-CRP complex and does not require the complex for its effects on acid resistance. Another important difference between glucose and pyruvate is that pyruvate can be produced by bacteria. This means that bacteria have the potential to protect themselves from acidic stresses by controlling glucose-derived generation of pyruvate, pyruvate-acetate efflux, or reversion from acetate to pyruvate. We tested this possibility by shutting down pyruvate-acetate efflux and found that the resulting accumulation of pyruvate elevated acid resistance. Many sugars can be broken into glucose, and the subsequent glycolysis generates pyruvate. Therefore, pyruvate-associated acid resistance is not confined to glucose-grown bacteria but is functional in bacteria grown on various sugars.201424795365
72120.9994Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.201222381957
72730.9994Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics.201626901131
59940.9993RNase III participates in control of quorum sensing, pigmentation and oxidative stress resistance in Rhodobacter sphaeroides. RNase III is a dsRNA-specific endoribonuclease, highly conserved in bacteria and eukarya. In this study, we analysed the effects of inactivation of RNase III on the transcriptome and the phenotype of the facultative phototrophic α-proteobacterium Rhodobacter sphaeroides. RNA-seq revealed an unexpectedly high amount of genes with increased expression located directly downstream to the rRNA operons. Chromosomal insertion of additional transcription terminators restored wild type-like expression of the downstream genes, indicating that RNase III may modulate the rRNA transcription termination in R. sphaeroides. Furthermore, we identified RNase III as a major regulator of quorum-sensing autoinducer synthesis in R. sphaeroides. It negatively controls the expression of the autoinducer synthase CerI by reducing cerI mRNA stability. In addition, RNase III inactivation caused altered resistance against oxidative stress and impaired formation of photosynthetically active pigment-protein complexes. We also observed an increase in the CcsR small RNAs that were previously shown to promote resistance to oxidative stress. Taken together, our data present interesting insights into RNase III-mediated regulation and expand the knowledge on the function of this important enzyme in bacteria.202337823424
72250.9993Evolution of Escherichia coli for maximum HOCl resistance through constitutive expression of the OxyR regulon. Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.201424899627
59860.9993Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction. Bacteria respond to nutritional stress by producing (p)ppGpp, which triggers a stringent response resulting in growth arrest and expression of resistance genes. In Escherichia coli, RelA produces (p)ppGpp upon amino acid starvation by detecting stalled ribosomes. The SpoT enzyme responds to various other types of starvation by unknown mechanisms. We previously described an interaction between SpoT and the central cofactor of lipid synthesis, acyl carrier protein (ACP), which is involved in detecting starvation signals in lipid metabolism and triggering SpoT-dependent (p)ppGpp accumulation. However, most bacteria possess a unique protein homologous to RelA/SpoT (Rsh) that is able to synthesize and degrade (p)ppGpp and is therefore more closely related to SpoT function. In this study, we asked if the ACP-SpoT interaction is specific for bacteria containing two RelA and SpoT enzymes or if it is a general feature that is conserved in Rsh enzymes. By testing various combinations of SpoT, RelA, and Rsh enzymes and ACPs of E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Streptococcus pneumoniae, we found that the interaction between (p)ppGpp synthases and ACP seemed to be restricted to SpoT proteins of bacteria containing the two RelA and SpoT proteins and to ACP proteins encoded by genes located in fatty acid synthesis operons. When Rsh enzymes from B. subtilis and S. pneumoniae are produced in E. coli, the behavior of these enzymes is different from the behavior of both RelA and SpoT proteins with respect to (p)ppGpp synthesis. This suggests that bacteria have evolved several different modes of (p)ppGpp regulation in order to respond to nutrient starvation.200918996989
815270.9993Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. Plant glutathione S-transferases (GSTs) are ubiquitous and multifunctional enzymes encoded by large gene families. A characteristic feature of GST genes is their high inducibility by a wide range of stress conditions including biotic stress. Early studies on the role of GSTs in plant biotic stress showed that certain GST genes are specifically up-regulated by microbial infections. Later numerous transcriptome-wide investigations proved that distinct groups of GSTs are markedly induced in the early phase of bacterial, fungal and viral infections. Proteomic investigations also confirmed the accumulation of multiple GST proteins in infected plants. Furthermore, functional studies revealed that overexpression or silencing of specific GSTs can markedly modify disease symptoms and also pathogen multiplication rates. However, very limited information is available about the exact metabolic functions of disease-induced GST isoenzymes and about their endogenous substrates. The already recognized roles of GSTs are the detoxification of toxic substances by their conjugation with glutathione, the attenuation of oxidative stress and the participation in hormone transport. Some GSTs display glutathione peroxidase activity and these GSTs can detoxify toxic lipid hydroperoxides that accumulate during infections. GSTs can also possess ligandin functions and participate in the intracellular transport of auxins. Notably, the expression of multiple GSTs is massively activated by salicylic acid and some GST enzymes were demonstrated to be receptor proteins of salicylic acid. Furthermore, induction of GST genes or elevated GST activities have often been observed in plants treated with beneficial microbes (bacteria and fungi) that induce a systemic resistance response (ISR) to subsequent pathogen infections. Further research is needed to reveal the exact metabolic functions of GST isoenzymes in infected plants and to understand their contribution to disease resistance.201830622544
71280.9993Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. Dps, the DNA-binding protein from starved cells, is capable of providing protection to cells during exposure to severe environmental assaults; including oxidative stress and nutritional deprivation. The structure and function of Dps have been the subject of numerous studies and have been examined in several bacteria that possess Dps or a structural/functional homologue of the protein. Additionally, the involvement of Dps in stress resistance has been researched extensively as well. The ability of Dps to provide multifaceted protection is based on three intrinsic properties of the protein: DNA binding, iron sequestration, and its ferroxidase activity. These properties also make Dps extremely important in iron and hydrogen peroxide detoxification and acid resistance as well. Regulation of Dps expression in E. coli is complex and partially dependent on the physiological state of the cell. Furthermore, it is proposed that Dps itself plays a role in gene regulation during starvation, ultimately making the cell more resistant to cytotoxic assaults by controlling the expression of genes necessary for (or deleterious to) stress resistance. The current review focuses on the aforementioned properties of Dps in E. coli, its prototypic organism. The consequences of elucidating the protective mechanisms of this protein are far-reaching, as Dps homologues have been identified in over 1000 distantly related bacteria and Archaea. Moreover, the prevalence of Dps and Dps-like proteins in bacteria suggests that protection involving DNA and iron sequestration is crucial and widespread in prokaryotes.201121143355
71390.9993OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis. Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). In order to further the understanding of V. cholerae's transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells) protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis.201728151956
719100.9993Polyamines are critical for the induction of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli. As part of our studies on the biological functions of polyamines, we have used a mutant of Escherichia coli that lacks all the genes for polyamine biosynthesis for a global transcriptional analysis on the effect of added polyamines. The most striking early response to the polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR) that is important for the survival of the bacteria when passing through the acid environment of the stomach. Not only were the two genes for glutamate decarboxylases (gadA and gadB) and the gene for glutamate-γ-aminobutyrate antiporter (gadC) induced by the polyamine addition, but the various genes involved in the regulation of this system were also induced. We confirmed the importance of polyamines for the induction of the GDAR system by direct measurement of glutamate decarboxylase activity and acid survival. The effect of deletions of the regulatory genes on the GDAR system and the effects of overproduction of two of these genes were also studied. Strikingly, overproduction of the alternative σ factor rpoS and of the regulatory gene gadE resulted in very high levels of glutamate decarboxylase and almost complete protection against acid stress even in the absence of any polyamines. Thus, these data show that a major function of polyamines in E. coli is protection against acid stress by increasing the synthesis of glutamate decarboxylase, presumably by increasing the levels of the rpoS and gadE regulators.201324097985
710110.9993The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Expression of amino acid biosynthesis genes in bacteria is often repressed when abundant supplies of the cognate amino acid are available. Repression of the Bacillus subtilis lysC gene by lysine was previously shown to occur at the level of premature termination of transcription. In this study we show that lysine directly promotes transcription termination during in vitro transcription with B. subtilis RNA polymerase and causes a structural shift in the lysC leader RNA. We find that B. subtilis lysC is a member of a large family of bacterial lysine biosynthesis genes that contain similar leader RNA elements. By analogy with related regulatory systems, we designate this leader RNA pattern the "L box." Genes in the L box family from Gram-negative bacteria appear to be regulated at the level of translation initiation rather than transcription termination. Mutations of B. subtilis lysC that disrupt conserved leader features result in loss of lysine repression in vivo and loss of lysine-dependent transcription termination in vitro. The identification of the L box pattern also provides an explanation for previously described mutations in both B. subtilis and Escherichia coli lysC that result in lysC overexpression and resistance to the lysine analog aminoethylcysteine. The L box regulatory system represents an example of gene regulation using an RNA element that directly senses the intracellular concentration of a small molecule.200314523230
718120.9993Roles of rpoS-activating small RNAs in pathways leading to acid resistance of Escherichia coli. Escherichia coli and related enteric bacteria can survive under extreme acid stress condition at least for several hours. RpoS is a key factor for acid stress management in many enterobacteria. Although three rpoS-activating sRNAs, DsrA, RprA, and ArcZ, have been identified in E. coli, it remains unclear how these small RNA molecules participate in pathways leading to acid resistance (AR). Here, we showed that overexpression of ArcZ, DsrA, or RprA enhances AR in a RpoS-dependent manner. Mutant strains with deletion of any of three sRNA genes showed lowered AR, and deleting all three sRNA genes led to more severe defects in protecting against acid stress. Overexpression of any of the three sRNAs fully rescued the acid tolerance defects of the mutant strain lacking all three genes, suggesting that all three sRNAs perform the same function in activating RpoS required for AR. Notably, acid stress led to the induction of DsrA and RprA but not ArcZ.201424319011
8144130.9993Fungal Priming: Prepare or Perish. Priming (also referred to as acclimation, acquired stress resistance, adaptive response, or cross-protection) is defined as an exposure of an organism to mild stress that leads to the development of a subsequent stronger and more protective response. This memory of a previously encountered stress likely provides a strong survival advantage in a rapidly shifting environment. Priming has been identified in animals, plants, fungi, and bacteria. Examples include innate immune priming and transgenerational epigenetic inheritance in animals and biotic and abiotic stress priming in plants, fungi, and bacteria. Priming mechanisms are diverse and include alterations in the levels of specific mRNAs, proteins, metabolites, and epigenetic changes such as DNA methylation and histone acetylation of target genes.202235628704
8352140.9993Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria. The toxin complex (tc) genes of bacteria comprise a large and growing family whose mode of action remains obscure. In the insect pathogen Photorhabdus, tc genes encode high molecular weight insecticidal toxins with oral activity against caterpillar pests. One protein, TcdA, has recently been expressed in transgenic plants and shown to confer insect resistance. These toxins therefore represent alternatives to toxins from Bacillus thuringiensis (Bt) for deployment in transgenic crops. Levels of TcdA expression in transgenic plants were, however, low and the full toxicity associated with the native toxin was not reconstituted. Here we show that increased activity of the toxin TcdA1 requires potentiation by either of two pairs of gene products, TcdB1 and TccC1 or TcdB2 and TccC3. Moreover, these same pairs of proteins can also cross-potentiate a second toxin, TcaA1B1. To elucidate the likely functional domains present in these large proteins, we expressed fragments of each 'toxin' or 'potentiator' gene within mammalian cells. Several domains produced abnormal cellular morphologies leading to cell death, while others showed specific phenotypes such as nuclear translocation. Our results prove that the Tc toxins are complex proteins with multiple functional domains. They also show that both toxin genes and their potentiator pairs will need to be expressed to reconstitute full activity in insect-resistant transgenic plants. Moreover, they suggest that the same potentiator pair will be able to cross-potentiate more than one toxin in a single plant.200515679840
687150.9993RpoS-Regulated Genes and Phenotypes in the Phytopathogenic Bacterium Pectobacterium atrosepticum. The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed.202338139177
595160.9992Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. Survival in aerobic conditions is critical to the pathogenicity of many bacteria. To investigate the means of aerotolerance and resistance to oxidative stress in the catalase-negative organism Streptococcus pyogenes, we used a genomics-based approach to identify and inactivate homologues of two peroxidase genes, encoding alkyl hydroperoxidase (ahpC) and glutathione peroxidase (gpoA). Single and double mutants survived as well as the wild type under aerobic conditions. However, they were more susceptible than the wild type to growth suppression by paraquat and cumene hydroperoxide. In addition, we show that S. pyogenes demonstrates an inducible peroxide resistance response when treated with sublethal doses of peroxide. This resistance response was intact in ahpC and gpoA mutants but not in mutants lacking PerR, a repressor of several genes including ahpC and catalase (katA) in Bacillus subtilis. Because our data indicate that these peroxidase genes are not essential for aerotolerance or induced resistance to peroxide stress in S. pyogenes, genes for a novel mechanism of managing peroxide stress may be regulated by PerR in streptococci.200010986229
293170.9992Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resistance determinants in Gram-negative bacteria. The resistance protein TetA, a membrane-spanning H+-[tc.M]+ antiporter, must be sensitively regulated because its expression is harmful in the absence of tc, yet it has to be expressed before the drugs' concentration reaches cytoplasmic levels inhibitory for protein synthesis. Consequently, TetR shows highly specific tetO binding to reduce basal expression and high affinity to tc to ensure sensitive induction. Tc can cross biological membranes by diffusion enabling this inducer to penetrate the majority of cells. These regulatory and pharmacological properties are the basis for application of TetR to selectively control the expression of single genes in lower and higher eukaryotes. TetR can be used for that purpose in some organisms without further modifications. In mammals and in a large variety of other organisms, however, eukaryotic transcriptional activator or repressor domains are fused to TetR to turn it into an efficient regulator. Mechanistic understanding and the ability to engineer and screen for mutants with specific properties allow tailoring of the DNA recognition specificity, the response to inducer tc and the dimerization specificity of TetR-based eukaryotic regulators. This review provides an overview of the TetR properties as they evolved in bacteria, the functional modifications necessary to transform it into a convenient, specific and efficient regulator for use in eukaryotes and how the interplay between structure--function studies in bacteria and specific requirements of particular applications in eukaryotes have made it a versatile and highly adaptable regulatory system.200312869186
591180.9992Muramyl Endopeptidase Spr Contributes to Intrinsic Vancomycin Resistance in Salmonella enterica Serovar Typhimurium. The impermeability barrier provided by the outer membrane of enteric bacteria, a feature lacking in Gram-positive bacteria, plays a major role in maintaining resistance to numerous antimicrobial compounds and antibiotics. Here we demonstrate that mutational inactivation of spr, coding for a muramyl endopeptidase, significantly sensitizes Salmonella enterica serovar Typhimurium to vancomycin without any accompanying apparent growth defect or outer membrane destabilization. A similar phenotype was not achieved by deleting the genes coding for muramyl endopeptidases MepA, PbpG, NlpC, YedA, or YhdO. The spr mutant showed increased autolytic behavior in response to not only vancomycin, but also to penicillin G, an antibiotic for which the mutant displayed a wild-type MIC. A screen for suppressor mutations of the spr mutant phenotype revealed that deletion of tsp (prc), encoding a periplasmic carboxypeptidase involved in processing Spr and PBP3, restored intrinsic resistance to vancomycin and reversed the autolytic phenotype of the spr mutant. Our data suggest that Spr contributes to intrinsic antibiotic resistance in S. Typhimurium without directly affecting the outer membrane permeability barrier. Furthermore, our data suggests that compounds targeting specific cell wall endopeptidases might have the potential to expand the activity spectrum of traditional Gram-positive antibiotics.201830619108
604190.9992Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon--a review. The soxRS regulon of Escherichia coli coordinates the induction of at least twelve genes in response to superoxide or nitric oxide. This review describes recent progress in understanding the signal transduction and transcriptional control mechanisms that activate the soxRS regulon, and some aspects of the physiological functions of this system. The SoxS protein represents a growing family of transcription activators that stimulate genes for resistance to oxidative stress and antibiotics. SoxR is an unusual transcription factor whose activity in vitro can be switched off by the removal of [2Fe-2S] centers, and activated by their reinsertion. The activated form of SoxR remodels the structure of the soxS promoter to activate transcription. When the soxRS system is activated, bacteria gain resistance to oxidants, antibiotics and immune cells that generate nitric oxide. The latter features could increase the success (virulence) of some bacterial infections.19968955629