Food isolate Listeria monocytogenes harboring tetM gene plasmid-mediated exchangeable to Enterococcus faecalis on the surface of processed cheese. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
599901.0000Food isolate Listeria monocytogenes harboring tetM gene plasmid-mediated exchangeable to Enterococcus faecalis on the surface of processed cheese. The genetic basis of tetracycline resistance in a food isolate Listeria monocytogenes (Lm16) was evaluated. Resistance to tetracycline was associated with the presence of the tetM gene in plasmid DNA. The sequence of tetM showed 100% of similarity with the Enterococcus faecalis sequences found in the EMBL database, suggesting that Lm16 received this gene from E. faecalis. Various size bands were detected in the DNA plasmid analysis, the largest being approximately 54.38 kb. Transferability of the tetM gene was achieved in vitro by agar matings between Lm16 and E. faecalis JH2-2, proving the potential for the spread of tetM by horizontal gene transfer. Furthermore, the conjugation experiments were performed on the surface of processed cheese, confirming the transferability in a food matrix. PCR assays were used to confirm the identity of E. faecalis and to detect the tetM gene in transconjugant bacteria. Additionally, the minimal inhibitory concentration for tetracycline and rifampicin and plasmid profiling were performed. This is the first report of a food isolate L. monocytogenes carrying the tetM gene in plasmid DNA, and it highlights the potential risk of spreading antimicrobial resistance genes between different bacteria.201829580513
599510.9998In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. The ability of 14 Lactobacillus strains, isolated from fermented dry sausages, to transfer tetracycline resistance encoded by tet(M) through conjugation was examined using filter mating experiments. Seven out of 14 tetracycline-resistant Lactobacillus isolates were able to transfer in vitro this resistance to Enterococcus faecalis at frequencies ranging from 10(-4) to 10(-6) transconjugants per recipient. Two of these strains could also transfer their resistance to Lactococcus lactis subsp. lactis, whereas no conjugal transfer to a Staphylococcus aureus recipient was found. These data suggest that meat lactobacilli might be reservoir organisms for acquired resistance genes that can be spread to other lactic acid bacteria. In order to assess the risk of this potential hazard, the magnitude of transfer along the food chain merits further research.200312900030
600020.9998Incidence and behaviour of Tn916-like elements within tetracycline-resistant bacteria isolated from root canals. INTRODUCTION: Tetracycline resistance is commonly found in endodontic bacteria. One of the most common tetracycline-resistance genes is tet(M), which is often encoded on the broad-host-range conjugative transposon Tn916. This study aimed to determine whether tet(M) was present in bacteria isolated from endodontic patients at the Eastman Dental Institute and whether this gene was carried on the transferable conjugative transposon Tn916. METHODS: The cultivable microflora isolated from 15 endodontic patients was screened for resistance to tetracycline. Polymerase chain reactions for tet(M) and for unique regions of Tn916 were carried out on the DNA of all tetracycline-resistant bacteria. Filter-mating experiments were used to see if transfer of any Tn916-like elements could occur. RESULTS: Eight out of 15 tetracycline-resistant bacteria isolated were shown to possess tet(M). Furthermore, four of these eight were shown to possess the Tn916-unique regions linked to the tet(M) gene. Transfer experiments demonstrated that a Neisseria sp. donor could transfer an extremely unstable Tn916-like element to Enterococcus faecalis. CONCLUSIONS: The tet(M) gene is present in the majority of tetracycline-resistant bacteria isolated in this study and the conjugative transposon Tn916 has been shown to be responsible for the support and transfer of this gene in some of the bacteria isolated.200616842505
600130.9998Assessment of horizontal gene transfer in Lactic acid bacteria--a comparison of mating techniques with a view to optimising conjugation conditions. Plate, filter and broth mating techniques were assessed over a range of pHs using three Lactococcus lactis donor strains (one with an erythromycin resistance marker and two with tetracycline resistance markers, all located on transferable genetic elements) and one L. lactis recipient strain. Transconjugants were confirmed using antibiotic selection, E-tests to determine MICs, PCR assays to detect the corresponding marker genes, DNA fingerprinting by pulsed-field gel electrophoresis (PFGE), and Southern blotting. Horizontal gene transfer (HGT) rates varied (ranging from 1.6 x 10(-1) to 2.3 x 10(-8)). The general trend observed was plate > filter > broth, independent of pH. Our data suggests that standardisation of methodologies to be used to assess HGT, is warranted and would provide a meaningful assessment of the ability of commensal and other bacteria in different environments to transfer relevant markers.200919135099
586840.9998Evaluation of plasmid content and tetracycline resistance conjugative transfer in Enterococcus italicus strains of dairy origin. Five Enterococcus italicus strains harbouring tet genes responsible for the tetracycline resistance were subjected to plasmid profile determination studies. For four strains tested the profiles showed between three and six plasmid bands, the size of which ranged between 1.6 and 18.5 kb. Southern hybridization experiments associated tetS and tetK genes with chromosomal DNA in all strains and tetM gene with plasmids of around the same size (18.5 kb) in two of the tested strains. The ability of the new species to transfer tetM gene was studied by transfer experiments with the tetracycline-susceptible recipient strains E. faecalis JH2-2 and OG1RF; mobilization experiments were performed with E. faecalis JH 2-2 harbouring the conjugative plasmid pIP501as helper plasmid. The results obtained show that the new enterococcal species was able to acquire antibiotic resistance by conjugation, but not to transfer its plasmids to other bacteria. Further PCR and hybridization experiments carried out to assess the presence of mobilization sequences also suggest that the tetM plasmid from E. italicus is a non-mobilizable plasmid.200919484299
592050.9998Study on acquisition of bacterial antibiotic resistance determinants in poultry litter. Antibiotic resistance and the mode of transmission were investigated in bacteria isolated from poultry litter. Total aerobic heterotrophic bacteria were screened and identified for their resistance to different antibiotics such as ampicillin, streptomycin, erythromycin, tetracycline, chloramphenicol, kanamycin, tobramycin, and rifampicin. The distribution of bacteria found in the litter was Staphylococcus (29.1%), which was the predominant group, followed by Streptococcus (25%), Micrococcus (20.8%), Escherichia coli (12.5%), Salmonella (8.3%), and Aeromonas (4.1%). Fifty percent of these isolates were susceptible to ampicillin, 57% to erythromycin, 25% to tetracycline, 4% to chloramphenicol, 40% to kanamycin, 75% to streptomycin, 54% to tobramycin, and 4% to rifampicin. Three randomly selected isolates representing Staphylococcus, Streptococcus, and Micrococcus were examined for plasmids, and plasmid-curing and plasmid-induced transformation studies were conducted. Streptococcus and Micrococcus harbored a plasmid of 4.2 and 5.1 kb, respectively, whereas Staphylococcus did not harbor any plasmids. Plasmids were cured in Streptococcus and Micrococcus at a concentration of 75 and 100 microg/ mL of acridine orange, respectively, and transformation of 4.2- and 5.1-kb plasmids isolated from the Streptococcus and Micrococcus to plasmid-free E. coli DH5alpha strain was possible. In conjugation experiments, the antibiotic resistance profiles of transconjugant cells were found to be the same as the donors with the exception of Staphylococcus. The results of this study suggest that transformation and conjugation could be an important mechanism for horizontal gene transfer between bacteria in poultry litter. An understanding of the mechanism and magnitude of resistance gene transfer may provide a strategy to reduce the potential for dissemination of these genes.200919531707
599460.9997Characterization of Erythromycin and Tetracycline Resistance in Lactobacillus fermentum Strains. Lactobacillus fermentum colonizing gastrointestinal and urogenital tracts of humans and animals is widely used in manufacturing of fermented products and as probiotics. These bacteria may function as vehicles of antibiotic resistance genes, which can be transferred to pathogenic bacteria. Therefore, monitoring and control of transmissible antibiotic resistance determinants in these microorganisms is necessary to approve their safety status. The aim of this study was to characterize erythromycin and tetracycline resistance of L. fermentum isolates and to estimate the potential transfer of resistance genes from lactobacilli to the other Gram-positive and Gram-negative bacteria. Among six L. fermentum strains isolated from human feces and commercial dairy products, five strains demonstrated phenotypic resistance to tetracycline. PCR screening for antibiotic resistance determinants revealed plasmid-located tetracycline resistance genes tet(K) and tet(M) in all strains and erythromycin resistance genes erm(B) in the chromosome of L. fermentum 5-1 and erm(C) in the plasmid of L. fermentum 3-4. All tested lactobacilli lacked conjugative transposon Tn916 and were not able to transfer tetracycline resistance genes to Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, Acinetobacter baumannii, Citrobacter freundii, and Escherichia coli by filter mating. Staphylococcus haemolyticus did not accept erythromycin resistance genes from corresponding Lactobacillus strains. Thus, in the present study, L. fermentum was not implicated in the spread of erythromycin and tetracycline resistance, but still these strains pose the threat to the environment and human health because they harbored erythromycin and tetracycline resistance genes in their plasmids and therefore should not be used in foods and probiotics.201830534155
599770.9997Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Probiotic bacteria and starter cultures of Lactobacillus, Weissella and Bifidobacterium of African and European origins were studied and compared for their susceptibility to antimicrobials. The study included, for all isolates, determination of MICs (Minimal Inhibitory Concentration) for 24 antimicrobials, detection of resistance genes by PCR reactions using specific primers and sequencing of positive amplicons. The ability of Lb. reuteri from Africa to transfer the erythromycin resistance gene erm(B) to closely related bacteria was investigated by conjugation. Variations were observed and high levels of intrinsic resistance were found among the tested species. Positive amplicons were obtained for resistance genes encoding aminoglycoside (aph(3')-III, aadA, aadE) and tetracycline (tet(S)) from isolates from Europe and macrolide (erm(B)) from an isolate from Africa. However, only the erm(B) gene found in Lb. reuteri L4: 12002 from Africa contained a homologous sequence to previously published sequences. This gene could be transferred in vitro to enterococci. Higher prevalence of phenotypic resistance for aminoglycoside was found in isolates from Europe.200818063151
586380.9997Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. The likelihood that products prepared from raw meat and milk may act as vehicles for antibiotic-resistant bacteria is currently of great concern in food safety issues. In this study, a collection of 94 tetracycline-resistant (Tc(r)) lactic acid bacteria recovered from nine different fermented dry sausage types were subjected to a polyphasic molecular study with the aim of characterizing the host organisms and the tet genes, conferring tetracycline resistance, that they carry. With the (GTG)(5)-PCR DNA fingerprinting technique, the Tc(r) lactic acid bacterial isolates were identified as Lactobacillus plantarum, L. sakei subsp. carnosus, L. sakei subsp. sakei, L. curvatus, and L. alimentarius and typed to the intraspecies level. For a selection of 24 Tc(r) lactic acid bacterial isolates displaying unique (GTG)(5)-PCR fingerprints, tet genes were determined by means of PCR, and only tet(M) was detected. Restriction enzyme analysis with AccI and ScaI revealed two different tet(M) allele types. This grouping was confirmed by partial sequencing of the tet(M) open reading frame, which indicated that the two allele types displayed high sequence similarities (>99.6%) with tet(M) genes previously reported in Staphylococcus aureus MRSA 101 and in Neisseria meningitidis, respectively. Southern hybridization with plasmid profiles revealed that the isolates contained tet(M)-carrying plasmids. In addition to the tet(M) gene, one isolate also contained an erm(B) gene on a different plasmid from the one encoding the tetracycline resistance. Furthermore, it was also shown by PCR that the tet(M) genes were not located on transposons of the Tn916/Tn1545 family. To our knowledge, this is the first detailed molecular study demonstrating that taxonomically and genotypically diverse Lactobacillus strains from different types of fermented meat products can be a host for plasmid-borne tet genes.200312571056
599690.9997Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species and strains. Based on the distribution of these MIC values, most of the strains were either susceptible or intrinsically resistant to these antibiotics. However, the MIC range of some of these antibiotics showed a bimodal distribution, which suggested that some of the tested strains possess acquired antibiotic resistance. Screening for resistance genes was performed by PCR using specific primers, or using a DNA microarray with around 300 nucleotide probes representing 7 classes of antibiotic resistance genes. The genes identified encoded resistance to tetracycline [tet(M), tet(W), tet(O) and tet(O/W)], erythromycin and clindamycin [erm(B)] and streptomycin [aph(E) and sat(3)]. Internal portions of some of these determinants were sequenced and found to be identical to genes described in other bacteria. All resistance determinants were located on the bacterial chromosome, except for tet(M), which was identified on plasmids in Lactococcus lactis. The contribution of intrinsic multidrug transporters to the antibiotic resistance was investigated by cloning and measuring the expression of Bifidobacterium breve genes in L. lactis.200817957105
5924100.9997In vivo transfer of an incFIB plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Transfer of resistance genes from bacteria from food producing animals to human pathogens is a potential risk to human health. The aim of this study was to determine in vivo transfer of a plasmid harbouring a class 1 integron containing gene cassettes dfrA1-aadA1 from Salmonella to Escherichia coli and the influence of the use of antimicrobials on this transfer. Thirty four-day-old SPF chickens colonized with E. coli K12 were divided into 3 groups of 10 animals each, and placed in separate isolators. Eleven days after inoculation with E. coli K12 the chickens were inoculated orally with 10(4)CFU of S. enterica spp. enterica serovar Typhimurium containing a plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Two days after the administration of S. Typhimurium 1 group was treated orally with doxycycline, 1 group orally with trimethoprim/sulphamethoxazole and 1 group remained untreated (control group). E. coli K12, S. Typhimurium and the transconjugants were isolated from cloacal samples on selective MacConkey agar plates. Transfer of the plasmid was confirmed by plasmid characterization, PCR, PFGE and hybridization. Plasmid mediated transfer of a class 1 integron was observed almost immediately after inoculation with S. Typhimurium. Treatment of the chickens with antibiotics had neither a positive nor a negative effect on the transfer rates. In addition to the resistance genes located on the integron, resistance genes encoding for tetracycline and amoxicillin resistance transferred from the donor strain as well. The resistance genes and the integron were located on a 130 kb sized IncFIB plasmid. Our data demonstrate in vivo transfer of an IncFIB plasmid harbouring a class 1 integron containing gene cassettes dfrA1-aadA1 from Salmonella to E. coli, with or without selective pressure of antibiotics in chickens.200919264430
5927110.9997The prevalence of, associations between and conjugal transfer of antibiotic resistance genes in Escherichia coli isolated from Norwegian meat and meat products. OBJECTIVES: To investigate the distribution of, associations between and the transferability of antimicrobial resistance genes in resistant Escherichia coli strains isolated from Norwegian meat and meat products. METHODS: The 241 strains investigated were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET) during the years 2000-2003. PCR was carried out for detection of resistance genes. Conjugation experiments were carried out with the resistant isolates from meat as donor strains and E. coli DH5alpha as the recipient strain. Statistical analyses were performed with the SAS-PC-System version 9.1 for Windows. RESULTS: Resistance genes common in pathogenic E. coli were frequently found among the isolates investigated. Strains harbouring several genes encoding resistance to the same antimicrobial agent were significantly (P < 0.0001) more frequently multiresistant than others. Strong positive associations were found between the tet(A) determinant and the genetic elements sul1, dfrA1 and aadA1. Negative associations were found between resistance genes encoding resistance to the same antimicrobial agent: tet(A)/tet(B), sul1/sul2 and strA-strB/aadA1. The resistance genes were successfully transferred from 38% of the isolates. The transfer was more frequent from resistant isolates harbouring class 1 integrons (P < 0.001). CONCLUSIONS: Acquired resistance played a major role in conferring resistance among the isolates investigated. The possibility of transferring resistance increases both by increased multiresistance and by the presence of class 1 integrons. The conjugation experiments suggest that tet(A) and class 1 integrons are often located on the same conjugative plasmid.200616931539
5479120.9997Novel linezolid resistance plasmids in Enterococcus from food animals in the USA. OBJECTIVES: To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme. METHODS: Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible. RESULTS: Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3')-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant. CONCLUSIONS: To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.201830272180
2083130.9997A classification system for plasmids from enterococci and other Gram-positive bacteria. A classification system for plasmids isolated from enterococci and other Gram-positive bacteria was developed based on 111 published plasmid sequences from enterococci and other Gram-positive bacteria; mostly staphylococci. Based on PCR amplification of conserved areas of the replication initiating genes (rep), alignment of these sequences and using a cutoff value of 80% identity on both protein and DNA level, 19 replicon families (rep-families) were defined together with several unique sequences. The prevalence of these rep-families was tested on 79 enterococcal isolates from a collection of isolates of animal and human origin. Difference in prevalence of the designed rep-families were detected with rep(9) being most prevalent in Enterococcus faecalis and rep(2) in Enterococcus faecium. In 33% of the tested E. faecium and 32% of the tested E. faecalis no positive amplicons were detected. Furthermore, conjugation experiments were performed obtaining 30 transconjugants when selecting for antimicrobial resistance. Among them 19 gave no positive amplicons indicating presence of rep-families not tested for in this experimental setup.201019879906
5860140.9997Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. Twenty-three isolates of the two genera Pasteurella (P.) and Mannheimia (M.) were analysed for the presence of genes specifying resistance to sulfonamides, streptomycin, and chloramphenicol. Specific PCR assays for the detection of the genes sulII, strA and catAIII, but also for the confirmation of their physical linkage were developed. A resistance gene cluster consisting of all three genes and characterised by a PCR amplicon of 2.2 kb was detected on four different types of plasmids and also in the chromosomal DNA of seven isolates. Physically linked sulII and strA genes were detected on three different types of plasmids and in the chromosomal DNA of three isolates. Sequence analysis of the different PCR amplicons revealed that these genes were present in either the orientation sulII-strA separated by differently sized spacer sequences, or strA-sulII. A truncated strA gene preceding a sulII gene was also detected in two cases.200111750817
5953150.9997CAT III chloramphenicol resistance in Pasteurella haemolytica and Pasteurella multocida isolated from calves. Chloramphenicol, which had been used extensively for antimicrobial veterinary therapy, was prohibited in Europe in 1994. Soon after it became available, resistance to this drug was detected, generally conferred by plasmids encoding inactivating enzymes, the chloramphenicol acetyltransferases (CAT), in Gram-negative as well as in Gram-positive bacteria. In the last few years, resistance to antibiotics emerged in Pasteurella strains from breeding herds and this evolution was followed by a national surveillance network. Chloramphenicol-resistance was more recently detected in multiresistant strains. We studied 25 strains of Pasteurella, selected for their resistance to chloramphenicol. Production of a CAT was demonstrated in all these strains. PCR amplification indicated that the CAT produced was of type III for 23 of them. In these strains, chloramphenicol-resistance was mediated by plasmids of about 5.1 kb. Southern blots on restriction fragments suggested a high degree of homology between these 5.1 kb plasmids. In the two other strains, production of a CAT type I was demonstrated, and the corresponding genes were either shown on a plasmid of 17 or 5.5 kb.19968877534
5921160.9997Prevalence of tetracycline resistance genes in oral bacteria. Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tetracycline resistance genes in these isolates were identified by multiplex PCR and DNA sequencing. Tetracycline-resistant bacteria constituted an average of 11% of the total cultivable oral microflora. A representative 105 tetracycline-resistant isolates from the 20 samples were investigated; most of the isolates carried tetracycline resistance genes encoding a ribosomal protection protein. The most common tet gene identified was tet(M), which was found in 79% of all the isolates. The second most common gene identified was tet(W), which was found in 21% of all the isolates, followed by tet(O) and tet(Q) (10.5 and 9.5% of the isolates, respectively) and then tet(S) (2.8% of the isolates). Tetracycline resistance genes encoding an efflux protein were detected in 4.8% of all the tetracycline-resistant isolates; 2.8% of the isolates had tet(L) and 1% carried tet(A) and tet(K) each. The results have shown that a variety of tetracycline resistance genes are present in the oral microflora of healthy adults. This is the first report of tet(W) in oral bacteria and the first report to show that tet(O), tet(Q), tet(A), and tet(S) can be found in some oral species.200312604515
5902170.9997Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. The objective of this work was to investigate the antimicrobial resistance in Listeria spp. isolated from food of animal origin. A total of 50 Listeria strains isolated from meat and dairy products, consisting of 7 Listeria monocytogenes and 43 Listeria innocua strains, were characterized for antimicrobial susceptibility against nine antimicrobials. The strains were screened by real-time PCR for the presence of antimicrobial resistance genes: tet M, tet L, mef A, msr A, erm A, erm B, lnu A, and lnu B. Multidrug resistance was identified in 27 Listeria strains, 4 belonging to L. monocytogenes. Resistance to clindamycin was the most common resistance phenotype and was identified in 45 Listeria strains; the mechanisms of resistance are still unknown. A medium prevalence of resistance to tetracycline (15 and 9 resistant and intermediate strains) and ciprofloxacin (13 resistant strains) was also found. Tet M was detected in Listeria strains with reduced susceptibility to tetracycline, providing evidence that both L. innocua and L. monocytogenes displayed acquired resistance. The presence of antimicrobial resistance genes in L. innocua and L. monocytogenes indicates that these genes may be transferred to commensal and pathogenic bacteria via the food chain; besides this, antibiotic resistance in L. monocytogenes could compromise the effective treatment of listeriosis in humans.201728355096
5935180.9997Antibiotic resistance genes in anaerobic bacteria isolated from primary dental root canal infections. Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes.201223108290
5936190.9997Antibiotic Resistance Characterization and Molecular Characteristics of Enterococcus Species Isolated from Combination Probiotic Preparations in China. Enterococci can act as reservoirs for antibiotic-resistant genes that are potentially at risk of being transferred to other bacteria that inhabit in the gastrointestinal tract. The aim of this study was to determine the phenotypic and molecular characteristics of antibiotic-resistant enterococci isolated from probiotic preparations. In total, we isolated 15 suspected Enterococcus species from 5 compound probiotics, which were identified by 16S rDNA as 12 Enterococcus faecium and 3 Enterococcus faecalis. Determination of antimicrobial susceptibility by the microdilution broth method showed widespread resistance to sulfamethoxazole (100%), norfloxacin (99.3%), azithromycin (99.3%), gentamicin (86.7%), and chloramphenicol (20%). Whole genome sequencing of five resistant strains revealed that all had circular DNA chromosomes and that E. faecium J-1-A to J-4-A contained a plasmid, while E. faecalis J-5-A did not. The results of the resistance gene analysis revealed that each strain contained approximately 30 resistance genes, with the antibiotic resistance genes and the multidrug resistance efflux pump genes mdtG, lmrC, and lmrD detected in all strains. The chloramphenicol resistance genes ykkC and ykkD were first identified in E. faecalis. And there were 21, 19, 21, 21, and 29 virulence factors involved in strains, respectively. Further analysis of the gene islands (GIs) revealed that each strain contained more than 10 GIs. The above results confirm the existence of hidden dangers in the safety of probiotics and remind us to carefully select probiotic preparations containing enterococcal strains to avoid the potential spread of resistance and pathogenicity.202437824752