Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
598101.0000Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. A 4.2-kb DNA fragment conferring quinolone resistance was cloned from a quinolone-resistant clinical isolate of Staphylococcus aureus and was shown to possess a part of the grlB gene and a mutated grlA gene. S-80-->F and E-84-->K mutations in the grlA gene product were responsible for the quinolone resistance. The mutated grlA genes responsible for quinolone resistance were dominant over the wild-type allele, irrespective of gene dosage in a transformation experiment with the grlA gene alone. However, dominance by mutated grlA genes depended on gene dosage when bacteria were transformed with the grlA and grlB genes in combination. Quinolone-resistant gyrA mutants were easily isolated from a strain, S. aureus RN4220, carrying a plasmid with the mutated grlA gene, though this was not the case for other S. aureus strains lacking the plasmid. The elimination of this plasmid from such quinolone-resistant gyrA mutants resulted in marked increases in quinolone susceptibility. These results suggest that both DNA gyrase and DNA topoisomerase IV may be targets of quinolones and that the quinolone susceptibility of organisms may be determined by which of these enzymes is most quinolone sensitive.19968723458
597910.9998Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. Mutations in the genes for the subunits GyrA and ParC of the target enzymes DNA gyrase and topoisomerase IV are important mechanisms of resistance in quinolone-resistant bacteria, including Neisseria gonorrhoeae. The target enzymes also consist of the subunits GyrB and ParE, respectively, though their role in quinolone-resistance has not been fully investigated. We sequenced the quinolone-resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE in 25 ciprofloxacin-resistant strains from Bangladesh (MIC 4-->32 mg/l) and 5 susceptible strains of N. gonorrhoeae. All the resistant strains had three or four mutations. Two of these were at positions 91 and 95 of gyrA. Fourteen strains had an additional mutation in parC at position 91, and 17 strains had an additional mutation in parE in position 439. No alterations were found in gyrB. The five susceptible strains had identical DNA sequences. Data indicate that the mutations detected in the QRDR of gyrA and parC may be important in the development of quinolone resistance. According to transformation experiments we assume that the alteration in parE is not related to a high degree of quinolone resistance. There was no correlation between ciprofloxacin MICs and pattern or number of mutations in the target genes.200212529019
625820.9998Alterations in GyrA and ParC associated with fluoroquinolone resistance in Enterococcus faecium. High-level quinolone resistance in Enterococcus faecium was associated with mutations in both gyrA and parC genes in 10 of 11 resistant strains. On low-level resistant strain without such mutations may instead possess an efflux mechanism or alterations in the other subunits of the gyrase or topoisomerase IV genes. These findings are similar to those for other gram-positive bacteria, such as Enterococcus faecalis.199910103206
598530.9998Alternative quinolone-resistance pathway caused by simultaneous horizontal gene transfer in Haemophilus influenzae. BACKGROUND: Quinolone-resistant bacteria are known to emerge via the accumulation of mutations in a stepwise manner. Recent studies reported the emergence of quinolone low-susceptible Haemophilus influenzae ST422 isolates harbouring two relevant mutations, although ST422 isolates harbouring one mutation were never identified. OBJECTIVES: To investigate if GyrA and ParC from quinolone low-susceptible isolates can be transferred horizontally and simultaneously to susceptible isolates. METHODS: Genomic DNA was extracted from an H. influenzae isolate harbouring amino acid substitutions in both gyrA and parC and mixed with clinical isolates. The emergence of resistant isolates was compared, and WGS analysis was performed. RESULTS: By adding the genomic DNA harbouring both mutated gyrA and parC, resistant bacteria exhibiting recombination at gyrA only or both gyrA and parC loci were obtained on nalidixic acid and pipemidic acid plates, and the frequency was found to increase with the amount of DNA. Recombination events in gyrA only and in both gyrA and parC occurred with at least 1 and 1-100 ng of DNA, respectively. The genome sequence of a representative strain showed recombination events throughout the genome. The MIC of quinolone for the resulting strains was found to be similar to that of the donor. Although the recombination efficacy was different among the various strains, all strains used in this study obtained multiple genes simultaneously. CONCLUSIONS: These findings indicate that H. influenzae can simultaneously obtain more than two mutated genes. This mechanism of horizontal transfer could be an alternative pathway for attaining quinolone resistance.202236124853
598240.9997Genetic diversity of penicillin-binding protein 2B and 2X genes from Streptococcus pneumoniae in South Africa. Streptococcus pneumoniae (the pneumococcus) is believed to have developed resistance to penicillin by the production of altered forms of penicillin-binding proteins (PBPs) that have decreased affinity for penicillin. Sixty-eight clinical isolates of serogroup 6 and 19 pneumococci (MICs, < 0.015 to 8 micrograms/ml) were randomly selected from hospitals across South Africa which are at substantial geographic distance from each other. The polymerase chain reaction was used to isolate the penicillin-binding domain of PBPs 2B and 2X from the chromosomal DNAs of the bacteria; the purified PBP DNA was digested with restriction enzymes, the fragments were end-labelled and separated on polyacrylamide gels, and the DNA fingerprints were visualized following autoradiography. Fingerprint analysis revealed that at least 19 PBP 2B gene variants occur in the serogroup 6 and 19 pneumococci. The PBP 2B gene revealed a uniform profile among penicillin-susceptible isolates, with variation from this profile occurring only in isolates for which MICs were > or = 0.06 micrograms/ml. Analysis of the PBP 2X gene revealed a greater diversity in the population with 26 variant genes, including some diversity among susceptible isolates. Discrete profiles of both genes were found only within narrow bands of the penicillin MIC, so that the gene pattern predicted the MIC. PBP 2X gene variation and the lack of variability among PBP 2B genes in pneumococci inhibited at low MICs confirm that PBP 2X alteration may be responsible for low-level penicillin resistance, while alterations in both PBP 2B and PBP 2X are required for high-level resistance. The extensive diversity of PBP genes in South African serogroup 6 and 19 strains suggests that altered PBP genes have arisen frequently in this population.19938239609
45750.9997Molecular characterization of the genes encoding DNA gyrase and topoisomerase IV of Listeria monocytogenes. The genes encoding subunits A and B of DNA gyrase and subunits C and E of topoisomerase IV of Listeria monocytogenes, gyrA, gyrB, parC and parE, respectively, were cloned and sequenced. Compared with the sequences of quinolone-susceptible bacteria, such as Escherichia coli and Bacillus subtilis, the quinolone resistance-determining region (QRDR) of DNA gyrase subunit A was altered; the deduced amino acid sequences revealed the substitutions Ser-84-->Thr and Asp/Glu-88-->Phe, two amino acid variations at hot spots, commonly associated with resistance to quinolones. No relevant divergences from QRDR consensus sequences were observed in GyrB or both topoisomerase IV subunits. Thus, it could be argued that the amino acid substitutions in GyrA would explain the intrinsic resistance of L. monocytogenes to nalidixic acid. In order to analyse the actual role of the GyrA alterations, a plasmid-encoded gyrA allele was mutated and transformed into L. monocytogenes. However, these heterodiploid strains were not affected in their resistance to nalidixic acid. The effects of the mutant plasmids on ciprofloxacin and sparfloxacin susceptibility were only modest.200212039883
598060.9997Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. The gyrA gene mutations associated with quinolone resistance were determined in 21 epidemiologically unrelated clinical isolates of Acinetobacter baumannii. Our studies highlight the conserved sequences in the quinolone resistance-determining region of the gyrA gene from A. baumannii and other bacteria. All 15 isolates for which the MIC of ciprofloxacin is > or = 4 micrograms/ml showed a change at Ser-83 to Leu. Six strains for which the MIC of ciprofloxacin is 1 microgram/ml did not show any change at Ser-83, although a strain for which the MIC of ciprofloxacin is 1 microgram/ml exhibited a change at Gly-81 to Val. Although it is possible that mutations in other locations of the gyrA gene, the gyrB gene, or in other genes may also contribute to the modulation of the MIC level, our results suggest that a gyrA mutation at Ser-83 is associated with quinolone resistance in A. baumannii.19957625818
598770.9997Mutations in gyrA and parC QRDRs are not relevant for quinolone resistance in epidemiological unrelated Stenotrophomonas maltophilia clinical isolates. Clinical strains of Stenotrophomonas maltophilia are often highly resistant to multiple antibiotics and this resistance is steadily rising. Quinolones are included in the group of antimicrobial agents to which this microorganism is developing resistance. Therefore, the aim of this study was to analyze the epidemiological relationship among 22 clinical isolates of S. maltophilia as well as the molecular mechanisms responsible for the acquisition of quinolone-resistance in these strains. The results of the pulsed-field gel electrophoresis (PFGE) showed an heterogenicity of 82% among the strains used in the study. On the other hand, no amino acid changes were found in the quinolone resistance-determining region (QRDR) of either gyrA and parC genes among quinolone-susceptible and -resistant S. maltophilia strains. Besides, the amino acid of the GyrA found in the position equivalent to Ser-83 of E. coli was Gln instead of a Ser or Thr, the amino acids usually encountered in this position among Gram-negative bacteria. The results suggest that there is not a relationship between the presence of this Gln and the resistance to quinolones in S. maltophilia. We can conclude that, contrary to what has been described in other microorganisms, in these S. maltophilia isolates, the development of resistance to quinolones was not related to mutations in the QRDR of gyrA and parC genes. Thus, to our knowledge, this is the first report describing this phenomenon.200212523620
584980.9997Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. A total of 110 staphylococcal isolates from human skin were found to express a novel type of erythromycin resistance. The bacteria were resistant to 14-membered ring macrolides (MIC 32-128 mg/l) but were sensitive to 16-membered ring macrolides and lincosamides. Resistance to type B streptogramins was inducible by erythromycin. A similar phenotype, designated MS resistance, was previously described in clinical isolates of coagulase-negative staphylococci from the USA. In the UK, MS resistance is widely distributed in coagulase-negative staphylococci but was not detected in 100 erythromycin resistant clinical isolates of Staphylococcus aureus. Tests for susceptibility to a further 16 antibiotics failed to reveal any other selectable marker associated with the MS phenotype. Plasmid pattern analysis of 48 MS isolates showed considerable variability between strains and no common locus for the resistance determinant. In one strain of S. epidermidis co-resistance to tetracycline, penicillin and erythromycin (MS) was associated with a 31.5 kb plasmid, pUL5050 which replicated and expressed all three resistances when transformed into S. aureus RN4220. The MS resistance determinant was localised to a 1.9 kb fragment which was cloned on to the high-copy-number vector, pSK265. A constitutive mutant of S. aureus RN4220 containing the 1.9 kb fragment remained sensitive to clindamycin. This observation, together with the concentration-dependent induction (optimum 5 mg/l of erythromycin) of virginiamycin S resistance suggests that the MS phenotype is not due to altered expression of MLS resistance determinants (erm genes) but probably occurs via a different mechanism.19892559912
625690.9997Conjugation between quinolone-susceptible bacteria can generate mutations in the quinolone resistance-determining region, inducing quinolone resistance. Quinolones are an important group of antibacterial agents that can inhibit DNA gyrase and topoisomerase IV activity. DNA gyrase is responsible for maintaining bacteria in a negatively supercoiled state, being composed of subunits A and B. Topoisomerase IV is a homologue of DNA gyrase and consists of two subunits codified by the parC and parE genes. Mutations in gyrA and gyrB of DNA gyrase may confer resistance to quinolones, and the majority of resistant strains show mutations between positions 67 and 106 of gyrA, a region denoted the quinolone resistance-determining region (QRDR). The most frequent substitutions occur at positions 83 and 87, but little is known about the mechanisms promoting appearance of mutations in the QRDR. The present study proposes that some mutations in the QRDR could be generated as a result of the natural mechanism of conjugation between bacteria in their natural habitat. This event was observed following conjugation in vitro of two different isolates of quinolone-susceptible Pseudomonas aeruginosa, which transferred plasmids of different molecular weights to a recipient strain of Escherichia coli (HB101), also quinolone-susceptible, generating two different transconjugants that presented mutations in DNA gyrase and acquisition of resistance to all quinolones tested.201525262036
5984100.9997First characterization of fluoroquinolone resistance in Streptococcus suis. We have identified and sequenced the genes encoding the quinolone-resistance determining region (QRDR) of ParC and GyrA in fluoroquinolone-susceptible and -resistant Streptococcus suis clinical isolates. Resistance is the consequence of single point mutations in the QRDRs of ParC and GyrA and is not due to clonal spread of resistant strains or horizontal gene transfer with other bacteria.200717116660
5959110.9997High incidence of multiple antibiotic resistant cells in cultures of in enterohemorrhagic Escherichia coli O157:H7. The spontaneous incidence of chloramphenicol (Cam) resistant mutant bacteria is at least ten-fold higher in cultures of enterohemorrhagic Escherichia coli O157:H7 strain EDL933 than in E. coli K-12. It is at least 100-fold higher in the dam (DNA adenine methyltransferase) derivative of EDL933, compared to the dam strain of E. coli K-12, thereby preventing the use of Cam resistance as a marker in gene replacement technology. Genome sequencing of Cam-resistant isolates of EDL933 and its dam derivatives showed that the marR (multiple antibiotic resistance) gene was mutated in every case but not in the Cam-sensitive parental strains. As expected from mutation in the marR gene, the Cam-resistant bacteria were also found to be resistant to tetracycline and nalidixic acid. The marR gene in strain EDL933 is annotated as a shorter open reading frame than that in E. coli K-12 but the longer marR(+) open reading frame was more efficient at complementing the marR antibiotic-resistance phenotype of strain EDL933. Beta-lactamase-tolerant derivatives were present at frequencies 10-100 times greater in cultures of marR derivatives of strain EDL933 than the parent strain. Spontaneous mutation frequency to rifampicin, spectinomycin and streptomycin resistance was the same in E. coli O157:H7 and E. coli K-12 strains.201424361397
5963120.9997Expression of the mphB gene for macrolide 2'-phosphotransferase II from Escherichia coli in Staphylococcus aureus. The genes mphA and mphB encode macrolide 2'-phosphotransferases I and II, respectively, and they confer resistance to macrolide antibiotics in Escherichia coli. To study the expression of these genes in Gram-positive bacteria, we constructed recombinant plasmids that consisted of an mph gene and the pUB110 vector in Bacillus subtilis. When these plasmids were introduced into Staphylococcus aureus, the mphB gene was active and macrolide 2'-phosphotransferase II was produced. The gene endowed S. aureus with high-level resistance to spiramycin, a macrolide antibiotic with a 16-membered ring. Moreover, transcription of the mphB gene in S. aureus began at the promoter that was active in E. coli.19989503630
6259130.9996Evidence of an efflux pump in Serratia marcescens. Spontaneous mutants resistant to fluoroquinolones were obtained by exposing Serratia marcescens NIMA (wild-type strain) to increasing concentrations of ciprofloxacin both in liquid and on solid media. Frequencies of mutation ranged from 10(-7) to 10(-9). Active expulsion of antibiotic was explored as a possible mechanism of resistance in mutants as well as changes in topoisomerase target genes. The role of extrusion mechanisms in determining the emergence of multidrug-resistant bacteria was also examined. Mutants resistant to high concentrations of fluoroquinolones had a single mutation in their gyrA QRDR sequences, whereas the moderate resistance in the rest of mutants was due to extrusion of the drug.200010990265
5947140.9996Fluoroquinolone-resistant Streptococcus agalactiae: epidemiology and mechanism of resistance. Quinolone-resistant Streptococcus agalactiae bacteria were recovered from single-patient isolates and found to contain mutations in the gyrase and topoisomerase IV genes. Pulsed-field gel electrophoresis demonstrated that four isolates from the same long-term care facility were closely related; in seven cases, quinolone-resistant Haemophilus influenzae and S. agalactiae bacteria were isolated from the same patient.200515917553
5983150.9996Analysis of mutational patterns in quinolone resistance-determining regions of GyrA and ParC of clinical isolates. Fluoroquinolone (FQ)-resistant bacteria pose a major global health threat. Unanalysed genomic data from thousands of sequenced microbes likely contain important hints regarding the evolution of FQ resistance, yet this information lies fallow. Here we analysed the co-occurrence patterns of quinolone resistance mutations in genes encoding the FQ drug targets DNA gyrase (gyrase) and topoisomerase IV (topo-IV) from 36,402 bacterial genomes, representing 10 Gram-positive and 10 Gram-negative species. For 19 species, the likeliest routes toward resistance mutations in both targets were determined, and for 5 species those mutations necessary and sufficient to predict FQ resistance were also determined. Target mutation hierarchy was fixed in all examined Gram-negative species, with gyrase being the primary and topo-IV the secondary quinolone target, as well as in six of nine Gram-positive species, with topo-IV being the primary and gyrase the secondary target. By contrast, in three Gram-positive species (Staphylococcus haemolyticus, Streptococcus pneumoniae and Streptococcus suis), under some conditions gyrase became the primary and topo-IV the secondary target. The path through individual resistance mutations varied by species. Both linear and branched paths were identified in Gram-positive and Gram-negative organisms alike. Finally, FQ resistance could be predicted based solely on target gene quinolone resistance mutations for Acinetobacter baumannii, Escherichia coli and Staphylococcus aureus, but not Klebsiella pneumoniae or Pseudomonas aeruginosa. These findings have important implications both for sequence-based diagnostics and for understanding the emergence of FQ resistance.201930582984
5848160.9996Plasmid and chromosomal basis of tolerance to cadmium and resistance to antibiotics in normal bovine duodenal bacterial flora. Cadmium (Cd) tolerance and antibiotic resistance was studied in duodenal flora of 20 normal bovine samples. Twelve bacterial isolates (5 Staphylococcus spp, 4 Enterococcus faecalis, 2 Bacillus spp, and a Pseudomonas sp) were grown in Luria broth containing 0.05 to 0.8 mM of cadmium chloride (CdCl). All isolates displayed multiple antibiotic resistance, with 2 Enterococcus strains and Pseudomonas pickettii demonstrating resistance to 12/17 antibiotics tested. With the exception of Staphylococcus sp, all contained plasmid DNA. Curing to remove plasmid DNA determined if Cd tolerance and/or antibiotic resistance was plasmid or chromosomally mediated. None of the bacteria became sensitive to CdCl after curing, suggesting that tolerance was not plasmid-mediated. Six bacteria became sensitive to antibiotics after curing indicating that antibiotic2 resistance was plasmid mediated. Two of these bacteria became sensitive to multiple antibiotics; a Staphylococcus sp became sensitive to ampicillin, ceftiofur and cephalothin, and a Enterococcus strain became sensitive to neomycin, oxacillin, and tiamulin. All of the isolates were probed for the presence of known Cd-resistance genes (cadA, cadC, and cadD). DNA-DNA hybridization revealed cadA- and cadC-related sequences in chromosomal DNA of a Staphylococcus sp, an Enterococcus strain, and in plasmid DNA of another Staphylococcus sp. No cadD-related sequences were detected in any of the 12 isolates even under reduced stringency of hybridization.200111383651
5499170.9996Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. In food, bacteria carrying antibiotic resistance genes could play a prominent role in the spread of resistance. Staphylococcus equorum populations can become large in a number of fermented foods, yet the antibiotic resistance properties of this species have been little studied. In this work, the resistance/susceptibility (R/S) profile of S. equorum strains (n = 30) from cheese to 16 antibiotics was determined by broth microdilution. The minimum inhibitory concentration (MIC) for all antibiotics was low in most strains, although higher MICs compatible with acquired genes were also noted. Genome analysis of 13 strains showed the S. equorum resistome to be composed of intrinsic mechanisms, acquired mutations, and acquired genes. As such, a plasmidic cat gene providing resistance to chloramphenicol was found in one strain; this was able to provide resistance to Staphylococcus aureus after electroporation. An msr(A) polymorphic gene was identified in five strains. The Mrs(A) variants were associated with variable resistance to erythromycin. However, the genetic data did not always correlate with the phenotype. As such, all strains harbored a polymorphic fosB/fosD gene, although only one acquired copy was associated with strong resistance to fosfomycin. Similarly, a plasmid-associated blaR1-blaZI operon encoding a penicillinase system was identified in five ampicillin- and penicillin G-susceptible strains. Identified genes not associated with phenotypic resistance further included mph(C) in two strains and norA in all strains. The antibiotic R/S status and gene content of S. equorum strains intended to be employed in food systems should be carefully determined.202337511416
5763180.9996Development of in vitro resistance to fluoroquinolones in Pseudomonas aeruginosa. Fluoroquinolone resistance in Pseudomonas aeruginosa typically arises through site-specific mutations and overexpression of efflux pumps. In this study, we investigated the dynamics of different resistance mechanisms in P. aeruginosa populations that have evolved under fluoroquinolone pressure, as well as the interactions between these mechanisms in evolutionary trajectories. Bacteria of strain ATCC27853 were selected under different concentrations of ciprofloxacin and levofloxacin for six parallel lineages, followed by amplification of four target genes in the quinolone-resistance determining region (QRDR) and Sanger sequencing to identify the mutations. The expression of four efflux pump proteins was evaluated by real-time polymerase chain reaction using the relative quantitation method, with the ATCC27853 strain used as a control. We found that ciprofloxacin killed P. aeruginosa sooner than did levofloxacin. Further, we identified five different mutations in three subunits of QRDRs, with gyrA as the main mutated gene associated with conferring fluoroquinolone resistance. Additionally, we found a larger number of mutations appearing at 2 mg/L and 4 mg/L of ciprofloxacin and levofloxacin, respectively. Moreover, we identified the main efflux pump being expressed as MexCD-OprJ, with initial overexpression observed at 0.25 mg/L and 0.5 mg/L of ciprofloxacin and levofloxacin, respectively. These results demonstrated gyrA(83) mutation and MexCD-OprJ overexpression as the primary mechanism conferring ciprofloxacin and levofloxacin resistance in P. aeruginosa. In addition, we also show that ciprofloxacin exhibited a stronger ability to kill the bacteria while potentially rendering it more susceptible to resistance.202032758289
4498190.9996A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. Gene amplifications have been detected as a transitory phenomenon in bacterial cultures. They are predicted to contribute to rapid adaptation by simultaneously increasing the expression of genes clustered on the chromosome. However, genome amplifications have rarely been described in natural isolates. Through DNA array analysis, we have identified two Streptococcus agalactiae strains carrying tandem genome amplifications: a fourfold amplification of 13.5 kb and a duplication of 92 kb. Both amplifications were located close to the terminus of replication and originated independently from any long repeated sequence. They probably arose in the human host and showed different stabilities, the 13.5-kb amplification being lost at a frequency of 0.003 per generation and the 92-kb tandem duplication at a frequency of 0.035 per generation. The 13.5-kb tandem amplification carried the five genes required for dihydrofolate biosynthesis and led to both trimethoprim (TMP) and sulfonamide (SU) resistance. Resistance to SU probably resulted from the increased synthesis of dihydropteroate synthase, the target of this antibiotic, whereas the amplification of the whole pathway was responsible for TMP resistance. This revealed a new mechanism of resistance to TMP involving an increased dihydrofolate biosynthesis. This is, to our knowledge, the first reported case of naturally occurring antibiotic resistance resulting from genome amplification in bacteria. The low stability of DNA segment amplifications suggests that their role in antibiotic resistance might have been underestimated.200818024520