Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
590401.0000Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. OBJECTIVES: To determine MICs of 16 antimicrobials representing all major classes for 473 taxonomically well-characterized isolates of lactic acid bacteria (LAB) encompassing the genera Lactobacillus, Pediococcus and Lactococcus. To propose tentative epidemiological cut-off (ECOFF) values for recognizing intrinsic and acquired antimicrobial resistances in numerically dominant species. METHODS: On the basis of depositors' information, LAB were grouped in categories of probiotic, nutritional, probiotic or nutritional research, human and animal isolates and tested for their antibiotic susceptibilities by broth microdilution using LAB susceptibility test medium (LSM). Tentative ECOFFs were defined according to the recommendations of the European Committee on Antimicrobial Susceptibility Testing. Isolates showing acquired antimicrobial resistance(s) were selected for PCR-based detection of resistance gene(s) and in vitro conjugative transfer experiments. RESULTS: Tentative ECOFF values of 13 antibiotics were determined for up to 12 LAB species. Generally, LAB were susceptible to penicillin, ampicillin, ampicillin/sulbactam, quinupristin/dalfopristin, chloramphenicol and linezolid. LAB exhibited broad or partly species-dependent MIC profiles of trimethoprim, trimethoprim/sulfamethoxazole, vancomycin, teicoplanin and fusidic acid. Three probiotic Lactobacillus strains were highly resistant to streptomycin. Although erythromycin, clindamycin and oxytetracycline possessed high antimicrobial activities, 17 Lactobacillus isolates were resistant to one or more of these antibiotics. Eight of them, including six probiotic and nutritional cultures, possessed erm(B) and/or tet(W), tet(M) or unidentified members of the tet(M) group. In vitro intra- and interspecies filter-mating experiments failed to show transfer of resistance determinants. CONCLUSIONS: Finding of acquired resistance genes in isolates intended for probiotic or nutritional use highlights the importance of antimicrobial susceptibility testing in documenting the safety of commercial LAB.200717369278
590610.9998Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs. OBJECTIVE: To identify the antimicrobial resistance of commercial lactic acid bacteria present in microbial foods and drug additives by analyzing their isolated strains used for fermentation and probiotics. METHODS: Antimicrobial susceptibility of 41 screened isolates was tested with disc diffusion and E-test methods after species-level identification. Resistant strains were selected and examined for the presence of resistance genes by PCR. RESULTS: Distribution of resistance was found in different species. All isolates were susceptible to chloramphenicol, tetracycline, ampicillin, amoxicillin/clavulanic acid, cephalothin, and imipenem. In addition, isolates resistant to vancomycin, rifampicin, streptomycin, bacitracin, and erythromycin were detected, although the incidence of resistance to these antibiotics was relatively low. In contrast, most strains were resistant to ciprofloxacin, amikacin, trimethoprim/sulphamethoxazole, and gentamycin. The genes msrC, vanX, and dfrA were detected in strains of Enterococcus faecium, Lactobacillus plantarum, Streptococcus thermophilus, and Lactococcus lactis. CONCLUSION: Antibiotic resistance is present in different species of probiotic strains, which poses a threat to food safety. Evaluation of the safety of lactic acid bacteria for human consumption should be guided by established criteria, guidelines and regulations.200920163065
590720.9998Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products. Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents.200111482563
590530.9998Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. Lactobacilli are widely used as starter cultures or probiotics in yoghurt, cheese, beer, wine, pickles, preserved food, and silage. They are generally recognized as safe (GRAS). However, recent studies have shown that some lactic acid bacteria (LAB) strains carry antibiotic resistance genes and are resistant to antibiotics. Some of them may even transfer their intrinsic antibiotic resistance genes to other LAB or pathogens via horizontal gene transfer, thus threatening human health. A total of 33 Lactobacillus strains was isolated from fermented milk collected from different areas of China. We analyzed (1) their levels of antibiotic resistance using a standardized dilution method, (2) their antibiotic resistance gene profiles by polymerase chain reaction (PCR) using gene-specific primers, and (3) the transferability of some of the detected resistance markers by a filter mating assay. All Lactobacillus strains were found to be resistant to vancomycin, but susceptible to gentamicin, linezolid, neomycin, erythromycin, and clindamycin. Their susceptibilities to tetracycline, kanamycin, ciprofloxacin, streptomycin, quinupristin/dalfopristin, trimethoprim, ampicillin, rifampicin, and chloramphenicol was different. Results from our PCR analysis revealed 19 vancomycin, 10 ciprofloxacin, and 1 tetracycline-resistant bacteria that carried the van(X), van(E), gyr(A), and tet(M) genes, respectively. Finally, no transferal of the monitored antibiotic resistance genes was observed in the filter mating assay. Taken together, our study generated the antibiotic resistance profiles of some milk-originated lactobacilli isolates and preliminarily assessed their risk of transferring antibiotic gene to other bacteria. The study may provide important data concerning the safe use of LAB.201728182844
590940.9998Antibiotic susceptibility profiles of Lactobacillus reuteri and Lactobacillus fermentum. Lactobacillus reuteri and Lactobacillus fermentum, which are commonly used as food processing aids and probiotics, can potentially act as reservoirs of antibiotic resistance genes. Acquired resistance genes may be transferred via the food chain or in the gastrointestinal tract to pathogenic bacteria. Knowledge of the distributions of antibiotic MICs for a species is needed when using a phenotypic method to assess the presence of acquired resistance genes. In the present study, 56 L. reuteri and 56 L. fermentum strains that differed by source and spatial and temporal origin were assessed for antibiotic susceptibility using an Etest kit and a broth microdilution protocol. L. fermentum strains displayed a uniform distribution of MICs for all six antibiotics tested. L. reuteri strains had a bimodal distribution of MICs or a distribution with MICs above the test range for 7 of the 14 antibiotics tested. Genetic relatedness was observed among L. reuteri strains with high MICs for both ampicillin and tetracycline and among strains with high MICs for both erythromycin and clindamycin. Results obtained with the Etest and the broth microdilution method corresponded well with each other. Thus, further research may make it possible to define microbiological breakpoints for distinguishing between strains with and without acquired resistance genes.200717340877
553250.9998Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. In this study, we screened eight commercially available brands of Lactobacillus-containing probiotic preparations and dietary supplements for resistance towards commonly administered antibiotics of different classes. According to disc diffusion results, most of the isolates were resistant to vancomycin and susceptible to penicillin-type antibiotics (ampicillin and amoxicillin), carbapenems (imipenem, meropenem, and ertapenem), and inhibitors of protein synthesis (chloramphenicol, erythromycin, tetracycline, clarithromycin, and linezolid). However, based on minimum inhibitory concentration (MIC) values, six strains were reconsidered as resistant to tetracycline. All tested lactobacilli were resistant towards amikacin, ciprofloxacin, and norfloxacin. Resistance to cephalosporins was highly variable and decreased in the following order: ceftazidime/cefepime, ceftriaxone, cefotaxime, cefazolin, and cefoperazone. PCR screening for antibiotic resistance determinants in probiotic lactobacilli revealed a wide occurrence of vancomycin resistance gene vanX, ciprofloxacin resistance gene parC, and extended-spectrum β-lactamase gene blaTEM. We also detected the tetK gene for tetracycline resistance in one isolate. Additionally, we identified discrepancies between the claims of the manufacturers and the identified species composition, as well as the enumerated amount of viable bacteria, for several products. The results of this study raise concerns about the safety of lactobacilli for human consumption as probiotics, as they may act as reservoirs of transferable antibiotic resistance genes.202236358212
599460.9998Characterization of Erythromycin and Tetracycline Resistance in Lactobacillus fermentum Strains. Lactobacillus fermentum colonizing gastrointestinal and urogenital tracts of humans and animals is widely used in manufacturing of fermented products and as probiotics. These bacteria may function as vehicles of antibiotic resistance genes, which can be transferred to pathogenic bacteria. Therefore, monitoring and control of transmissible antibiotic resistance determinants in these microorganisms is necessary to approve their safety status. The aim of this study was to characterize erythromycin and tetracycline resistance of L. fermentum isolates and to estimate the potential transfer of resistance genes from lactobacilli to the other Gram-positive and Gram-negative bacteria. Among six L. fermentum strains isolated from human feces and commercial dairy products, five strains demonstrated phenotypic resistance to tetracycline. PCR screening for antibiotic resistance determinants revealed plasmid-located tetracycline resistance genes tet(K) and tet(M) in all strains and erythromycin resistance genes erm(B) in the chromosome of L. fermentum 5-1 and erm(C) in the plasmid of L. fermentum 3-4. All tested lactobacilli lacked conjugative transposon Tn916 and were not able to transfer tetracycline resistance genes to Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, Acinetobacter baumannii, Citrobacter freundii, and Escherichia coli by filter mating. Staphylococcus haemolyticus did not accept erythromycin resistance genes from corresponding Lactobacillus strains. Thus, in the present study, L. fermentum was not implicated in the spread of erythromycin and tetracycline resistance, but still these strains pose the threat to the environment and human health because they harbored erythromycin and tetracycline resistance genes in their plasmids and therefore should not be used in foods and probiotics.201830534155
591070.9997Antimicrobial Susceptibility Testing and Tentative Epidemiological Cutoff Values for Five Bacillus Species Relevant for Use as Animal Feed Additives or for Plant Protection. Bacillus megaterium (n = 29), Bacillus velezensis (n = 26), Bacillus amyloliquefaciens (n = 6), Bacillus paralicheniformis (n = 28), and Bacillus licheniformis (n = 35) strains from different sources, origins, and time periods were tested for the MICs for nine antimicrobial agents by the CLSI-recommended method (Mueller-Hinton broth, 35°C, for 18 to 20 h), as well as with a modified CLSI method (Iso-Sensitest [IST] broth, 37°C [35°C for B. megaterium], 24 h). This allows a proposal of species-specific epidemiological cutoff values (ECOFFs) for the interpretation of antimicrobial resistance in these species. MICs determined by the modified CLSI method were 2- to 16-fold higher than with the CLSI-recommended method for several antimicrobials. The MIC distributions differed between species for five of the nine antimicrobials. Consequently, use of the modified CLSI method and interpretation of resistance by use of species-specific ECOFFs is recommended. The genome sequences of all strains were determined and used for screening for resistance genes against the ResFinder database and for multilocus sequence typing. A putative chloramphenicol acetyltransferase (cat) gene was found in one B. megaterium strain with an elevated chloramphenicol MIC compared to the other B. megaterium strains. In B. velezensis and B. amyloliquefaciens, a putative tetracycline efflux gene, tet(L), was found in all strains (n = 27) with reduced tetracycline susceptibility but was absent in susceptible strains. All B. paralicheniformis and 23% of B. licheniformis strains had elevated MICs for erythromycin and harbored ermD The presence of these resistance genes follows taxonomy suggesting they may be intrinsic rather than horizontally acquired. Reduced susceptibility to chloramphenicol, streptomycin, and clindamycin could not be explained in all species.IMPORTANCE When commercializing bacterial strains, like Bacillus spp., for feed applications or plant bioprotection, it is required that the strains are free of acquired antimicrobial resistance genes that could potentially spread to pathogenic bacteria, thereby adding to the pool of resistance genes that may cause treatment failures in humans or animals. Conversely, if antimicrobial resistance is intrinsic to a bacterial species, the risk of spreading horizontally to other bacteria is considered very low. Reliable susceptibility test methods and interpretation criteria at the species level are needed to accurately assess antimicrobial resistance levels. In the present study, tentative ECOFFs for five Bacillus species were determined, and the results showed that the variation in MICs followed the respective species. Moreover, putative resistance genes, which were detected by whole-genome sequencing and suggested to be intrinsic rather that acquired, could explain the resistance phenotypes in most cases.201830030233
599780.9997Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Probiotic bacteria and starter cultures of Lactobacillus, Weissella and Bifidobacterium of African and European origins were studied and compared for their susceptibility to antimicrobials. The study included, for all isolates, determination of MICs (Minimal Inhibitory Concentration) for 24 antimicrobials, detection of resistance genes by PCR reactions using specific primers and sequencing of positive amplicons. The ability of Lb. reuteri from Africa to transfer the erythromycin resistance gene erm(B) to closely related bacteria was investigated by conjugation. Variations were observed and high levels of intrinsic resistance were found among the tested species. Positive amplicons were obtained for resistance genes encoding aminoglycoside (aph(3')-III, aadA, aadE) and tetracycline (tet(S)) from isolates from Europe and macrolide (erm(B)) from an isolate from Africa. However, only the erm(B) gene found in Lb. reuteri L4: 12002 from Africa contained a homologous sequence to previously published sequences. This gene could be transferred in vitro to enterococci. Higher prevalence of phenotypic resistance for aminoglycoside was found in isolates from Europe.200818063151
243190.9997Bacteriocin production, antibiotic susceptibility and prevalence of haemolytic and gelatinase activity in faecal lactic acid bacteria isolated from healthy Ethiopian infants. The objective of this study was to characterise lactic acid bacteria (LAB) isolated from faecal samples of healthy Ethiopian infants, with emphasis on bacteriocin production and antibiotic susceptibility. One hundred fifty LAB were obtained from 28 healthy Ethiopian infants. The isolates belonged to Lactobacillus (81/150), Enterococcus (54/150) and Streptococcus (15/150) genera. Lactobacillus species were more abundant in the breast-fed infants while Enterococcus dominated the mixed-fed population. Bacteriocin-producing LAB species were isolated from eight of the infants. Many different bacteriocins were identified, including one new bacteriocin from Streptococcus salivarius, avicin A (class IIa) from Enterococcus avium, one class IIa bacteriocin from Enterococcus faecalis strains, one unknown bacteriocin from E. faecalis and two unknown bacteriocins from Lactobacillus fermentum strains and the two-peptide gassericin T from Lactobacillus gasseri isolate. Susceptibility tests performed for nine antibiotics suggest that some lactobacilli might have acquired resistance to erythromycin (3 %) and tetracycline (4 %) only. The streptococci were generally antibiotic sensitive except for penicillin, to which they showed intermediate resistance. All enterococci were susceptible to ampicillin while 13 % showed penicillin resistance. Only one E. faecalis isolate was vancomycin-resistant. Tetracycline (51 %) and erythromycin (26 %) resistance was prevalent among the enterococci, but multidrug resistance was confined to E. faecalis (47 %) and Enterococcus faecium (33 %). Screening of enterococcal virulence traits revealed that 2 % were β-haemolytic. The structural genes of cytolysin were detected in 28 % of the isolates in five enterococcal species, the majority being E. faecalis and Enterococcus raffinosus. This study shows that bacteriocin production and antibiotic resistance is a common trait of faecal LAB of Ethiopian infants while virulence factors occur at low levels.201323184155
5901100.9997Identification and characterization of vancomycin-resistant Enterococcus species frequently isolated from laboratory mice. To determine the prevalence of drug resistant bacteria colonizing laboratory mice, we isolated and characterized vancomycin-resistant Enterococcus species (VRE) from commercially available mice. A total of 24 VRE isolates were obtained from 19 of 21 mouse strains supplied by 4 commercial breeding companies. Of these, 19 isolates of E. gallinarum and 5 isolates of E. casseliflavus possessing the vanC1 and vanC2/3 genes intrinsically, exhibited intermediate resistance to vancomycin respectively. In addition, these isolates also exhibited diverse resistant patterns to erythromycin, tetracycline, and ciprofloxacin, whereas the use of antibiotics had not been undertaken in mouse strains tested in this study. Although 6 virulence-associated genes (ace, asa, cylA, efaA, esp, and gelE) and secretion of gelatinase and hemolysin were not detected in all isolates, 23 of 24 isolates including the isolates of E. casselifalvus secreted ATP into culture supernatants. Since secretion of ATP by bacteria resident in the intestinal tract modulates the local immune responses, the prevalence of ATP-secreting VRE in mice therefore needs to be considered in animal experiments that alter the gut microflora by use of antibiotics.201425077759
6051110.9997Antibiotic susceptibility of different lactic acid bacteria strains. Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes.201122146692
5900120.9997Safety profiles of beneficial lactic acid bacteria isolated from dairy systems. This study aimed to assess the safety aspects of 15 lactic acid bacteria (LAB) strains previously isolated from a dairy environment with relation to their beneficial features. LAB strains were assessed using phenotypic methods according to their production of virulence factors at 25 °C and 37 °C, as well as by examining their potential resistance to 15 antibiotics. Polymerase chain reaction (PCR) was also used to identify the presence of 50 genes associated with virulence factors and antibiotic resistance in the strains. None of the strains presented hemolytic activity or the production of gelatinase, lipase, deoxyribonuclease, or the tested biogenic amines. Based on the disk diffusion assay, all strains were resistant to oxacillin and sulfa/trimethoprim. Further, some were resistant to gentamicin (14), clindamycin (11), vancomycin (9), rifampicin (8), erythromycin (5), tetracycline (4), ampicillin (2), and chloramphenicol (1); no strain was resistant to imipenem. Regarding virulence- and antibiotic-resistance-related genes, 19 out of 50 tested genes were present in some strains; there was a variable association of expression. Based on the obtained data, the isolates presented relatively safe characteristics and behavior, findings that should lead to further studies to assess their potential usage as beneficial cultures in the food industry.202031970700
5533130.9997Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. INTRODUCTION: Probiotic lactobacilli are generally recognized as safe (GRAS) and are being used in several food and pharma formulations. However, growing concern of antibiotic resistance in bacterial strains of food origin and its possible transmission via functional foods is increasingly being emphasized. OBJECTIVES: This study screened potential probiotic lactic acid bacteria (LAB) strains for their phenotypic and genotypic antibiotic resistance profiles. METHODS: Susceptibility to different antibiotics was assayed by the Kirby Bauer standard disc diffusion protocol. Both conventional and SYBR-RTq-PCR were used for detection of resistance coding genes. RESULTS: A variable susceptibility pattern was documented against different antibiotic classes. LAB strains irrespective of origin displayed marked phenotypic resistance against cephalosporins, aminoglycosides, quinolones, glycopeptides; and methicillin among beta-lactams with few exceptions. In contrast, high sensitivity was recorded against macrolides, sulphonamides and carbapenems sub-group of beta-lactams with some variations. parC, associated with ciprofloxacin resistance was detected in 76.5% of the strains. Other prevalent resistant determinants observed were aac(6?)Ii (42.1%), ermB, ermC (29.4%), and tetM (20.5%). Six (?17.6%) of the isolates were free from genetic resistance determinants screened in this study. CONCLUSION: Study revealed presence of antibiotic resistance determinants among lactobacilli from both fermented foods and human sources.202337208603
5908140.9997Evaluation of Tetracycline Resistance and Determination of the Tentative Microbiological Cutoff Values in Lactic Acid Bacterial Species. Lactic acid bacteria (LAB) are widely used as probiotics in the food industry owing to their beneficial effects on human health. However, numerous antibiotic resistance genes have been found in LAB strains, especially tetracycline resistance genes. Notably, the potential transferability of these genes poses safety risks. To comprehensively evaluate tetracycline resistance in LAB, we determined the tetracycline susceptibility patterns of 478 LAB strains belonging to four genera and eight species. By comparing phenotypes with genotypes based on genome-wide annotations, five tetracycline resistance genes, tet(M), tet(W/N/W), tet(L), tet(S), and tet(45), were detected in LAB. Multiple LAB strains without tetracycline resistance genes were found to be resistant to tetracycline at the currently recommended cutoff values. Thus, based on the minimum inhibitory concentrations of tetracycline for these LAB strains, the species-specific microbiological cutoff values for Lactobacillus (para)gasseri, Lactobacillus johnsonii, and Lactobacillus crispatus to tetracycline were first developed using the Turnidge, Kronvall, and eyeball methods. The cutoff values for Lactiplantibacillus plantarum were re-established and could be used to better distinguish susceptible strains from strains with acquired resistance. Finally, we verified that these five genes play a role in tetracycline resistance and found that tet(M) and tet(W/N/W) are the most widely distributed tetracycline resistance genes in LAB.202134683449
5534150.9997Antibiotic resistance in faecal microbiota of Greek healthy infants. Increasing use of antibiotics for the treatment of infectious diseases and also for non-therapeutic reasons (agriculture, animal husbandry and aquaculture) has led to the increasing incidence of antibiotic resistance and the ineffectiveness of antimicrobial treatment. Commensal intestinal bacteria are very often exposed to the selective pressure of antimicrobial agents and may constitute a reservoir of antibiotic resistance determinants that can be transferred to pathogens. The present study aimed to investigate the antibiotic susceptibility profile and the presence of selected resistance genes in cocci isolated from the faecal microbiota of 35 healthy, full-term infants at 4, 30 and 90 days after delivery. A total of 148 gram-positive, catalase-negative cocci were isolated and tested for susceptibility to 12 different antibiotics by disk-diffusion technique. Multiplex PCR analysis was performed for the identification of Enterococcus spp. isolates and the simultaneous detection of vancomycin-resistance genes. PCR-based methodology was used also for identification of tetracycline and erythromycin resistance determinants. Identification results indicated E. faecalis as the predominant species (81 strains), followed by E. faecium, E. casseliflavus/E. flavescens and E. gallinarum. High prevalence of resistance to tetracycline (39.9%), erythromycin (35.1%), vancomycin (19.6%) and to nucleic acid synthesis inhibitors was detected. PCR data revealed 24 out of 52 erythromycin-resistant isolates carrying the ermB gene and 32 out of 59 tetracycline-resistant strains carrying tet genes, with tet(L) determinant being the most frequently detected. Only intrinsic vancomycin resistance (vanC1 and vanC2/C3) was reported among tested isolates. In conclusion, erythromycin and tetracycline acquired resistant traits are widespread among faecal cocci isolates from Greek, healthy infants under no apparent antimicrobial selective pressure.201021831766
5902160.9997Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. The objective of this work was to investigate the antimicrobial resistance in Listeria spp. isolated from food of animal origin. A total of 50 Listeria strains isolated from meat and dairy products, consisting of 7 Listeria monocytogenes and 43 Listeria innocua strains, were characterized for antimicrobial susceptibility against nine antimicrobials. The strains were screened by real-time PCR for the presence of antimicrobial resistance genes: tet M, tet L, mef A, msr A, erm A, erm B, lnu A, and lnu B. Multidrug resistance was identified in 27 Listeria strains, 4 belonging to L. monocytogenes. Resistance to clindamycin was the most common resistance phenotype and was identified in 45 Listeria strains; the mechanisms of resistance are still unknown. A medium prevalence of resistance to tetracycline (15 and 9 resistant and intermediate strains) and ciprofloxacin (13 resistant strains) was also found. Tet M was detected in Listeria strains with reduced susceptibility to tetracycline, providing evidence that both L. innocua and L. monocytogenes displayed acquired resistance. The presence of antimicrobial resistance genes in L. innocua and L. monocytogenes indicates that these genes may be transferred to commensal and pathogenic bacteria via the food chain; besides this, antibiotic resistance in L. monocytogenes could compromise the effective treatment of listeriosis in humans.201728355096
5903170.9997Screening of virulence determinants in Enterococcus faecium strains isolated from breast milk. In a previous study, the authors isolated lactic acid bacteria from breast milk of healthy mothers. Since some of the identified isolates belonged to the species Enterococcus faecium, the objective of this work was to evaluate their safety. The enterococcal strains were screened by polymerase chain reaction (PCR) and Southern hybridization for the presence of virulence determinants. The potential of the strains to acquire plasmids by conjugation was investigated by screening for genes involved in conjugation processes. Parallel, phenotypic assays were performed. Presence of genes conferring resistance to vancomycin was assessed by PCR. PCR amplifications and Southern hybridizations revealed that all the strains were clear of the majority of potential virulence determinants. None of the strains showed gelatinase activity, hemolysin production, or aggregation phenotype, and none carried the vanA or vanB genes. These findings suggest that milk of healthy mothers may be a source of avirulent E faecium isolates to the newborns.200515886339
2388180.9997Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. A total of 244 lactic acid bacteria (LAB) strains were isolated from 180 dairy and pharmaceutical products that were collected from different areas in Minia governorate, Egypt. LAB were identified phenotypically on basis of morphological, physiological and biochemical characteristics. Lactobacillus isolates were further confirmed using PCR-based assay. By combination of phenotypic with molecular identification Lactobacillus spp. were found to be the dominant genus (138, 76.7%) followed by Streptococcus spp. (65, 36.1%) and Lactococcus spp. (27, 15%). Some contaminant organisms such as (Staphylococcus spp., Escherichia coli, Salmonella spp., mould and yeast) were isolated from the collected dairy samples but pharmaceutical products were free of such contaminants. Susceptibility of LAB isolates to antibiotics representing all major classes was tested by agar dilution method. Generally, LAB were highly susceptible to Beta-lactams except penicillin. Lactobacilli were resistant to vancomycin, however lactococci and streptococci proved to be very susceptible. Most strains were susceptible to tetracycline and showed a wide range of streptomycin MICs. The MICs of erythromycin and clindamycin for most of the LAB were within the normal range of susceptibility. Sixteen Lactobacillus, 8 Lactococcus and 8 Streptococcus isolates including all tetracycline and/or erythromycin resistant strains were tested for the presence of tetracycline and/or erythromycin resistant genes [tet(M) and/or erm(B)]. PCR assays shows that some resistant strains harbor tet(M) and/or erm(B) resistance genes.201424948910
5598190.9997Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products.202540298519