Identification of strA-strB Genes in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 2 Strains Isolated in Korea. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
589901.0000Identification of strA-strB Genes in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 2 Strains Isolated in Korea. Bacterial canker is a devastating disease of kiwifruit caused by the bacterium Pseudomonas syringe pv. actinidiae. Canker disease of kiwifruit in Korea has been controlled using streptomycin for more than two decades. Four streptomycin-resistant strains, belonging to biovar 2, which are found only in Korea, were collected between 2013 and 2014 from different orchards located in Jeju, Korea. The genetic background for streptomycin resistance among P. syringe pv. actinidiae strains were determined by examining the presence of strA-strB or aadA, which are genes frequently found in streptomycin-resistant bacteria, and a point mutation at codon 43 in the rpsL gene. All four streptomycin-resistant strains of P. syringe pv. actinidiae investigated in this study contained strA-strB as a resistant determinant. The presence of the aadA gene and a mutation in codon 43 of the rpsL gene was not identified.202134847635
586010.9995Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. Twenty-three isolates of the two genera Pasteurella (P.) and Mannheimia (M.) were analysed for the presence of genes specifying resistance to sulfonamides, streptomycin, and chloramphenicol. Specific PCR assays for the detection of the genes sulII, strA and catAIII, but also for the confirmation of their physical linkage were developed. A resistance gene cluster consisting of all three genes and characterised by a PCR amplicon of 2.2 kb was detected on four different types of plasmids and also in the chromosomal DNA of seven isolates. Physically linked sulII and strA genes were detected on three different types of plasmids and in the chromosomal DNA of three isolates. Sequence analysis of the different PCR amplicons revealed that these genes were present in either the orientation sulII-strA separated by differently sized spacer sequences, or strA-sulII. A truncated strA gene preceding a sulII gene was also detected in two cases.200111750817
595320.9994CAT III chloramphenicol resistance in Pasteurella haemolytica and Pasteurella multocida isolated from calves. Chloramphenicol, which had been used extensively for antimicrobial veterinary therapy, was prohibited in Europe in 1994. Soon after it became available, resistance to this drug was detected, generally conferred by plasmids encoding inactivating enzymes, the chloramphenicol acetyltransferases (CAT), in Gram-negative as well as in Gram-positive bacteria. In the last few years, resistance to antibiotics emerged in Pasteurella strains from breeding herds and this evolution was followed by a national surveillance network. Chloramphenicol-resistance was more recently detected in multiresistant strains. We studied 25 strains of Pasteurella, selected for their resistance to chloramphenicol. Production of a CAT was demonstrated in all these strains. PCR amplification indicated that the CAT produced was of type III for 23 of them. In these strains, chloramphenicol-resistance was mediated by plasmids of about 5.1 kb. Southern blots on restriction fragments suggested a high degree of homology between these 5.1 kb plasmids. In the two other strains, production of a CAT type I was demonstrated, and the corresponding genes were either shown on a plasmid of 17 or 5.5 kb.19968877534
585430.9994Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli. Bovine-origin Escherichia coli isolates were tested for resistance phenotypes using a disk diffusion assay and for resistance genotypes using a DNA microarray. An isolate with gentamicin and amikacin resistance but with no corresponding genes detected yielded a 1,056-bp DNA sequence with the closest homologues for its inferred protein sequence among a family of 16S rRNA methyltransferase enzymes. These enzymes confer high-level aminoglycoside resistance and have only recently been described in Gram-negative bacteria.201020368404
595540.9994Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Despite a trend of declining consumption, resistance to co-trimoxazole has increased during a 12-year period in Stockholm. The molecular background to this surprising development was investigated by using PCR to screen for integrons and specific resistance genes, followed by sequence analysis of selected integrons, in 105 clinical urinary isolates of Gram-negative bacteria selected partly for trimethoprim resistance. Sixty-five integrons of class 1 or 2 were detected in a subset of 59 isolates, and of these positive isolates, all but one were resistant to trimethoprim. However, 11 isolates were resistant to trimethoprim, but negative for integrons. Isolates positive for integrons were resistant to an average of 4.2 antibiotics, compared with 1.9 antibiotics for integron-negative isolates. Despite this, the only gene cassettes identified in 19 class 1 integrons analysed were dfr and aadA cassettes. Thus, only resistance to trimethoprim, streptomycin, spectinomycin and sulphonamides could be explained by the presence of integrons in these isolates. A new dfr gene, named dfrA22, was discovered as a single gene cassette in a class 1 integron. In addition, sulphonamide resistance in many isolates was caused by carriage of sul2, which has no known association with integrons. Resistance to co-trimoxazole and many other antibiotics was thus not accounted for fully by the presence of integrons in these isolates.200515715715
599650.9994Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species and strains. Based on the distribution of these MIC values, most of the strains were either susceptible or intrinsically resistant to these antibiotics. However, the MIC range of some of these antibiotics showed a bimodal distribution, which suggested that some of the tested strains possess acquired antibiotic resistance. Screening for resistance genes was performed by PCR using specific primers, or using a DNA microarray with around 300 nucleotide probes representing 7 classes of antibiotic resistance genes. The genes identified encoded resistance to tetracycline [tet(M), tet(W), tet(O) and tet(O/W)], erythromycin and clindamycin [erm(B)] and streptomycin [aph(E) and sat(3)]. Internal portions of some of these determinants were sequenced and found to be identical to genes described in other bacteria. All resistance determinants were located on the bacterial chromosome, except for tet(M), which was identified on plasmids in Lactococcus lactis. The contribution of intrinsic multidrug transporters to the antibiotic resistance was investigated by cloning and measuring the expression of Bifidobacterium breve genes in L. lactis.200817957105
595760.9994ant(6)-I Genes Encoding Aminoglycoside O-Nucleotidyltransferases Are Widely Spread Among Streptomycin Resistant Strains of Campylobacter jejuni and Campylobacter coli. Thermotolerant Campylobacter species C. jejuni and C. coli are actually recognized as the major bacterial agent responsible for food-transmitted gastroenteritis. The most effective antimicrobials against Campylobacter are macrolides and some, but not all aminoglycosides. Among these, susceptibility to streptomycin is reduced by mutations in the ribosomal RPSL protein or by expression of ANT(6)-I aminoglycoside O-nucleotidyltransferases. The presence of streptomycin resistance genes was evaluated among streptomycin-resistant Campylobacter isolated from humans and animals by using PCR with degenerated primers devised to distinguish ant(6)-Ia, ant(6)-Ib and other ant-like genes. Genes encoding ANT(6)-I enzymes were found in all possible combinations with a major fraction of the isolates carrying a previously described ant-like gene, distantly related and belonging to the new ant(6)-I sub-family ant(6)-Ie. Among Campylobacter isolates, ant(6)-Ie was uniquely found functional in C. coli, as shown by gene transfer and phenotype expression in Escherichia coli, unlike detected coding sequences in C. jejuni that were truncated by an internal frame shift associated to RPSL mutations in streptomycin resistant strains. The genetic relationships of C. coli isolates with ANT(6)-Ie revealed one cluster of strains presented in bovine and humans, suggesting a circulation pathway of Campylobacter strains by consuming contaminated calf meat by bacteria expressing this streptomycin resistance element.201830405573
586170.9993Distribution of genes conferring combined resistance to tetracycline and minocycline among group B streptococcal isolates from humans and various animals. Forty-nine tetracycline and minocycline resistant streptococci of serological group B isolated from humans, cattle, pigs and nutrias were investigated for the presence of genes conferring this combined resistance. Southern blot hybridization of EcoRI-digested chromosomal DNA of the bacteria revealed for 39 of the cultures a hybridization signal with tet(M), for four of the cultures a hybridization signal with tet(O) and for none of the cultures a hybridization signal with the tet(Q) gene probe. The restriction endonuclease digested and blotted DNA of six tetracycline and minocycline resistant group B streptococci did not hybridize with any of the available gene probes. The tet(M) gene probes recognized complementary sequences of EcoRI fragments of approximately 10.5 kb and 21.5 kb, the tet(O) gene probe hybridized with fragments of approximately 19 kb. The hybridization of the tet(M) gene probe in two different patterns appeared to be related to the origin of the cultures.19947727901
595480.9993Distribution of genes for trimethoprim and gentamicin resistance in bacteria and their plasmids in a general hospital. The incidence of trimethoprim resistance in enterobacteria causing infection in a London hospital increased from 5.6% in 1970 to 16% in 1979. The proportion of gentamicin-resistant aerobic Gram-negative bacilli had risen to 6.5% by 1979. During a 5-month period in 1977, during which no epidemic was recognized, all isolates resistant to either trimethoprim, gentamicin, tobramycin or amikacin were studied. The proportion of enterobacteria resistant to both trimethoprim and gentamicin (3.8% of the total) was significantly higher than expected assuming no correlation between acquisition of resistance characters. The resistance was transferable in 23% of trimethoprim-resistant and 76% of gentamicin-resistant strains. Trimethoprim resistance was carried by plasmids of seven different incompatibility groups and in at least four instances was part of a transposon. Gentamicin resistance was determined by plasmids of three groups - IncC, IncFII and IncW. Transposition of gentamicin resistance was not shown, though this may have been the means of evolution of the gentamicin R plasmids of InW, which determined aminoglycoside acetyltransferase, AAC(3). Some bacterial strains with their plasmids were endemic. There was evidence for these plasmids (i) acquiring new resistance genes by transposition, (ii) losing resistance genes by deletion and (iii) being transferred between bacterial species in the hospital.19807003059
280090.9993Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. Occurrence of tetracycline resistance genes encoding ribosomal protection proteins was examined in 151 tetracycline-resistant bacterial isolates from fish and seawater at coastal aquaculture sites in Japan and Korea. The tet(M) gene was detected in 34 Japanese and Korean isolates, which included Vibrio sp., Lactococcus garvieae, Photobacterium damsela subsp. piscicida, and unidentified Gram-positive bacteria. The majority of these bacterial isolates displayed high-level resistance with a minimum inhibitory concentrations (MICs) equal to or greater than 250 microg/ml of oxytetracycline and only four isolates had MICs less than 31.3 microg/ml. 16S rDNA RFLP typing of tet(M)-positive Vibrio isolates suggests that these are clonal populations of the same phylotype specific to a particular location. One Vibrio clone (phylotype III), however, is widely disseminated, being detected during different sampling years, at different locations, and in different fish species in both Japan and Korea. The tet(S) gene was detected in L. garvieae from yellowtail in Japan and in Vibrio sp. from seawater in Korea. This is the first report of tet(S) occurrence in Gram-negative facultative anaerobes. These results suggest that tet(M) and tet(S) genes are present in fish intestinal and seawater bacteria at aquaculture sites and could be an important reservoir of tetracycline resistance genes in the marine environment.200415268950
5853100.9993Identification of the tet(B) resistance gene in Streptococcus suis. The tetracycline resistance gene, tet(B), has been described previously in gram negative bacteria. In this study tet(B) was detected in plasmid extracts from 17/111 (15%) Streptococcus suis isolates from diseased pigs, representing the first report of this resistance gene in gram positive bacteria.201120696603
2081110.9993Distribution of the antiseptic-resistance gene qacE delta 1 in gram-positive bacteria. The distribution of the antiseptic-resistance genes qacE and qacE delta 1, originally isolated from Gram-negative bacteria, was studied in a large number of Gram-positive bacteria by a method that included the polymerase chain reaction. A total of 151 strains of Staphylococcus and Enterococcus, isolated from clinical sources and obtained from the Japanese Collection of Microorganisms, was used in this analysis. We found the qacE delta 1 gene in 36 of 103 strains of Staphylococcus and in nine of 48 strains of Enterococcus. All of the strains in which we detected the qacE delta 1 gene were clinical isolates. The qacE gene was not detected in any of the strains examined in this study. The nucleotide sequences of the qacE delta 1 genes from the strains of Staphylococcus and Enterococcus were identical to that of the gene located on integron InC in Pseudomonas aeruginosa. These results indicate that the antiseptic-resistance gene qacE delta 1 is present in Gram-positive, as well as Gram-negative, bacteria.19989742702
5862120.9993Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Twenty-five distinct tetracycline-resistant gram-negative bacteria recovered from four Chilean fish farms with no history of recent antibiotic use were examined for the presence of tetracycline resistance (tet) genes. Sixty percent of the isolates carried 1 of the 22 known tet genes examined. The distribution was as follows. The tet(A) gene was found in six isolates. The tet(B) gene was found in two isolates, including the first description in the genus Brevundimonas: Two isolates carried the tet(34) and tet(B) genes, including the first description of the tet(34) gene in Pseudomonas and Serratia and the first description of the tet(B) gene in Pseudomonas: The tet(H) gene was found in two isolates, which includes the first description in the genera Moraxella and Acinetobacter: One isolate carried tet(E), and one isolate carried tet(35), the first description of the gene in the genus Stenotrophomonas: Finally, one isolate carried tet(L), found for the first time in the genus Morganella: By DNA sequence analysis, the two tet(H) genes were indistinguishable from the previously sequenced tet(H) gene from Tn5706 found in Pasteurella multocida. The Acinetobacter radioresistens isolate also harbored the Tn5706-associated 1,063-bp IS element IS1597, while the Moraxella isolate carried a 1,026-bp IS-like element whose 293-amino-acid transposase protein exhibited 69% identity and 84% similarity to the transposase protein of IS1597, suggesting the presence of a novel IS element. The distribution of tet genes from the Chilean freshwater ponds was different than those that have previously been described from other geographical locations, with 40% of the isolates carrying unidentified tetracycline resistance genes.200312604516
5960130.999316S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Most Helicobacter pylori strains are susceptible to tetracycline, an antibiotic commonly used for the eradication of H. pylori. However, an increase in incidence of tetracycline resistance in H. pylori has recently been reported. Here the mechanism of tetracycline resistance of the first Dutch tetracycline-resistant (Tet(r)) H. pylori isolate (strain 181) is investigated. Twelve genes were selected from the genome sequences of H. pylori strains 26695 and J99 as potential candidate genes, based on their homology with tetracycline resistance genes in other bacteria. With the exception of the two 16S rRNA genes, none of the other putative tetracycline resistance genes was able to transfer tetracycline resistance. Genetic transformation of the Tet(s) strain 26695 with smaller overlapping PCR fragments of the 16S rRNA genes of strain 181, revealed that a 361-bp fragment that spanned nucleotides 711 to 1071 was sufficient to transfer resistance. Sequence analysis of the 16S rRNA genes of the Tet(r) strain 181, the Tet(s) strain 26695, and four Tet(r) 26695 transformants showed that a single triple-base-pair substitution, AGA(926-928)-->TTC, was present within this 361-bp fragment. This triple-base-pair substitution, present in both copies of the 16S rRNA gene of all our Tet(r) H. pylori transformants, resulted in an increased MIC of tetracycline that was identical to that for the Tet(r) strain 181.200212183259
5940140.9993In vitro activities of spectinomycin and comparator agents against Pasteurella multocida and Mannheimia haemolytica from respiratory tract infections of cattle. OBJECTIVES: Prior to the renewal of spectinomycin licensing for veterinary uses in Germany, 154 Pasteurella multocida and 148 Mannheimia haemolytica strains from respiratory tract infections in cattle were investigated for their MICs of spectinomycin and other antimicrobial agents. The data obtained should serve as a baseline from which to judge the future development of resistance. Moreover, the in vitro activity of spectinomycin in comparison with other antimicrobials should be assessed. METHODS: MIC determination for all 302 strains was performed by the broth dilution method and evaluated according to NCCLS standards. MIC(50) and MIC(90) values were calculated. Strains resistant to spectinomycin were subjected to PCR assays for genes known to mediate spectinomycin resistance in Gram-negative and Gram-positive bacteria. RESULTS: With the exception of resistance to sulfamethoxazole in P. multocida and M. haemolytica, and resistance to ampicillin in M. haemolytica, an overall low level of resistance was detected. A total of 93.5% of the P. multocida and 98.6% of the M. haemolytica strains were susceptible to spectinomycin, with MIC(90)s of 32 mg/L. PCR analysis showed that none of the spectinomycin-resistant strains carried any of the aadA gene subtypes, nor the genes spc or aad(9). CONCLUSIONS: Prior to the renewal of spectinomycin, only a small number of spectinomycin-resistant strains was detected among bovine P. multocida and M. haemolytica. The genes responsible for spectinomycin resistance in these strains seemed to be different from those so far known to occur in other Gram-negative and Gram-positive bacteria.200414729757
2913150.9993Distribution of resistance genetic determinants among Vibrio cholerae isolates of 2012 and 2013 outbreaks in IR Iran. The objective of this study was to characterize antimicrobial resistance determinants in relation to antimicrobial susceptibility and genotyping profile in 20 clinical isolates of Vibrio cholerae. All of the isolates were resistant to streptomycin. The second most prevalent resistance was observed to trimethoprim (75%), co-trimoxazole (60%), tetracycline (50%), and minocycline (45%). About 50% of the isolates fulfilled the criteria of Multi Drug Resistance (MDR) phenotype. None of the isolates carried tet A, B, C, and, D determinants. This finding shows that tetracycline resistance determinants recognized so far, does not satisfactorily describe the 50% tetracycline resistance phenotype in this study, suggesting the possible contribution of other not yet characterized resistance mechanisms involved. Class 1 integron, widely distributed among enteric bacteria, was not detected among V. cholerae strains under study. Conversely, 100% of the isolates harbored SXT constin((int)), among which 70% were positive for dfrA1, strA, and strB genes. The sul1gene was present in 60% of the isolates while none of them contained floR gene. All the isolates uniformly appeared to be identical in fingerprinting profiles expected from outbreak strains. In conclusion, SXT element with its mosaic structure was the exclusive antimicrobial resistance determinant of clonal V. cholerae isolates taken from outbreaks of 2012 and 2013 in Iran.201728062293
5411160.9993Detection of the aminoglycosidestreptothricin resistance gene cluster ant(6)-sat4-aph(3 ')-III in commensal viridans group streptococci. High-level aminoglycoside resistance was assessed in 190 commensal erythromycin-resistant alpha-hemolytic streptococcal strains. Of these, seven were also aminoglycoside-resistant: one Streptococcus mitis strain was resistant to high levels of kanamycin and carried the aph(3 ')-III gene, four S. mitis strains were resistant to high levels of streptomycin and lacked aminoglycoside-modifying enzymes, and two S. oralis strains that were resistant to high levels of kanamycin and streptomycin harbored both the aph(3 ')-III and the ant(6) genes. The two S. oralis strains also carried the ant(6)-sat4- aph(3 ' ')-III aminoglycoside-streptothricin resistance gene cluster, but it was not contained in a Tn5405-like structure. The presence of this resistance gene cluster in commensal streptococci suggests an exchange of resistance genes between these bacteria and enterococci or staphylococci.200717407061
2010170.9993Epidemiological survey of genes encoding aminoglycoside phosphotransferases APH (3') I and APH (3') II using DNA probes. The epidemiological survey of APH (3') I and APH (3') II genes, at a time when the specific antibiotic pressure was very low, was carried out by DNA-DNA hybridization. The sample included 334 aminoglycoside resistant Gram-negative bacteria collected from patients of a General Hospital. Of these, 251 hybridized with the APH (3') I-probe and 19 with the APH (3') II-probe but only 190 strains showed high resistance levels (CIM greater than 64 micrograms/ml) for kanamycin, neomycin and paromomycin. These strains were isolated both from inpatients and outpatients with different infectious diseases. The APH (3') I-gene was dispersed among all the bacterial species and clinical specimens tested but the APH (3') II-gene was not found in Pseudomonas spp, Escherichia coli, Citrobacter freundii and Enterobacter cloacae, nor in infected catheters. Several plasmids of different sizes carrying APH (3') genes were detected among different bacteria. Plasmids along with transposable elements (the probes used in this work were developed from Tn906 and Tn5) and the high consumption of other antibiotics whose resistance is carried by these bacteria might be playing an important role in the maintenance and dispersion of APH (3') genes.19921328557
3595180.9993Antibiotic Susceptibility, Resistance Gene Determinants and Corresponding Genomic Regions in Lactobacillus amylovorus Isolates Derived from Wild Boars and Domestic Pigs. Restrictions on the use of antibiotics in pigs lead to the continuous search for new probiotics serving as an alternative to antibiotics. One of the key parameters for probiotic bacteria selection is the absence of horizontally transmissible resistance genes. The aim of our study was to determine antibiotic susceptibility profiles in 28 Lactobacillus amylovorus isolates derived from the digestive tract of wild boars and farm pigs by means of the broth microdilution method and whole genome sequencing (WGS). We revealed genetic resistance determinants and examined sequences flanking resistance genes in these strains. Our findings indicate that L. amylovorus strains from domestic pigs are predominantly resistant to tetracycline, erythromycin and ampicillin. WGS analysis of horizontally transmissible genes revealed only three genetic determinants (tetW, ermB and aadE) of which all tetW and ermB genes were present only in strains derived from domestic pigs. Sequence analysis of coding sequences (CDS) in the neighborhood of the tetW gene revealed the presence of site-specific recombinase (xerC/D), site-specific DNA recombinase (spoIVCA) or DNA-binding transcriptional regulator (xre), usually directly downstream of the tetW gene. In the case of ermB, CDS for omega transcriptional repressor or mobilization protein were detected upstream of the ermB gene.202236677394
5931190.9993Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot. Antibiotic resistance has been evaluated among 36 Gram negative and anaerobic bacilli (10 Bacteroides, 11 Prevotella, 7 Porphyromonas and 8 Fusobacterium strains) isolated from clinical cases of caprine and ovine footrot (necrotic pododermatitis). The initial analysis on this bacterial consortium evaluates the relationships existing among antimicrobial resistance determinants, phenotype expression and mobilization potential. The Bacteroides strains were generally resistant to penicillins, first-generation cephalosporins, tetracycline and erythromycin, and expressed low level of β-lactamase activity. The main determinants found among the Bacteroides strains were cepA and tetQ genes, conferring resistance to β-lactams and tetracycline, respectively. A general susceptibility to β-lactams was shown for most Prevotella, Porphyromonas and Fusobacterium strains, where none of the β-lactamase genes described in Bacteroides was detected. Resistance to tetracycline and/or erythromycin was found among the three bacterial groups. Although tetQ genes were detected for several Prevotella and Porphyromonas strains, a unique ermF positive was revealed among Prevotella strains. The expression of resistance markers was not related with the polymorphism of their coding sequences. However, the finding of sequence signatures for conjugative transposons in the vicinities of tetQ and ermF suggests a mobilization potential that might have contributed to the spread of antimicrobial resistance genes.201222177890