# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5882 | 0 | 1.0000 | PCR Analysis Methods for Detection and Identification of Beer-Spoilage Lactic Acid Bacteria. Polymerase chain reaction (PCR) analysis enables rapid and accurate detection of beer-spoilage lactic acid bacteria (LAB). Hop resistance genes, horA and horC, are utilized as genetic markers to determine the spoilage ability of LAB strains. PCR analysis of horA and horC, combined with multiplex PCR methods of 12 beer-spoilage species, enables simultaneous and comprehensive detection easily and inexpensively. | 2019 | 30506252 |
| 6061 | 1 | 0.9992 | Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Screening for lactic acid bacteria (LAB) from fresh shrimp samples (Penaeus vannamei) collected from retail seafood markets in the Tunisian's coast, resulted in the isolation of an Enterococcus strain termed Q1. This strain was selected for its antagonistic activity against pathogenic bacteria such as Listeria monocytogenes, Pseudomonas aeruginosa, Lactococcus garvieae and against fungi (Aspergillus niger and Fusarium equiseti). The Q1 strain was characterised using standard morphological and biochemical tests, growth assays at different temperatures, pH and salinity. 16S rRNA, rpoA and pheS gene sequencing, as well as the 16S-23S rRNA intergenic spacer analyses, were combined to identify strain Q1 as a strain of Enterococcus lactis. The bacteriocin produced by E. lactis Q1 is thermostable, active in the pH range from 4.0 to 9.0 and has a bactericidal mode of action. The enterocin P structural gene was detected by specific PCR in strain E. lactis Q1, which is in good agreement with SDS-PAGE data of the purified bacteriocin. A lack of significant antibiotic resistance genes and virulence determinants was confirmed by specific PCRs. This work provides the first description of an enterocin P producer E. lactis strain isolated from a fresh shrimp. Based on its safety properties (absence of haemolytic activity, virulence factors and antibiotic resistance genes), this strain has the potential to be used as a natural additive or adjunct protective culture in food biopreservation and/or probiotic culture. | 2017 | 28265787 |
| 5833 | 2 | 0.9992 | Rapid identification, virulence analysis and resistance profiling of Staphylococcus aureus by gene segment-based DNA microarrays: application to blood culture post-processing. Up to now, blood culturing systems are the method of choice to diagnose bacteremia. However, definitive pathogen identification from positive blood cultures is a time-consuming procedure, requiring subculture and biochemical analysis. We developed a microarray for the identification of Staphylococcus aureus comprising PCR generated gene-segments, which can reduce the blood culture post-processing time to a single day. Moreover, it allows concomitant identification of virulence factors and antibiotic resistance determinants directly from positive blood cultures without previous amplification by PCR. The assay unambiguously identifies most of the important virulence genes such as tsst-1, sea, seb, eta and antibiotic resistance genes such as mecA, aacA-aphD, blaZ and ermA. To obtain positive signals, 20 ng of purified genomic S. aureus DNA or 2 microg of total DNA extracted from blood culture was required. The microarray specifically distinguished S. aureus from gram-negative bacteria as well as from closely related coagulase negative staphylococci (CoNS). The microarray-based identification of S. aureus can be accomplished on the same day blood cultures become positive in the Bactec. The results of our study demonstrate the feasibility of microarray-based systems for the direct identification and characterization of bacteria from cultured clinical specimens. | 2007 | 17141897 |
| 5795 | 3 | 0.9991 | Direct identification of Gram-positive bacteria and resistance determinants from blood cultures using a microarray-based nucleic acid assay: in-depth analysis of microarray data for undetermined results. BACKGROUND: The Verigene Gram-Positive Blood Culture (BC-GP) nucleic acid assay (Nanosphere, Inc., Northbrook, IL, USA) is a newly developed microarray-based test with which 12 Gram-positive bacterial genes and three resistance determinants can be detected using blood culture broths. We evaluated the performance of this assay and investigated the signal characteristics of the microarray images. METHODS: At the evaluation stage, we tested 80 blood cultures that were positive for various bacteria (68 bacteria covered and 12 not covered by the BC-GP panel) collected from the blood of 36 patients and 44 spiked samples. In instances where the automated system failed and errors were called, we manually inspected microarray images, measured the signal intensities of target spots, and reclassified the results. RESULTS: With the manual analysis of the microarray images of 14 samples for which error calls were reported, we could obtain correct identification results for 12 samples without the need for retesting, because strong signals in the target spots were clearly discriminable from background noise. With our interpretation strategy, we could obtain 97.1% sensitivity and 100% specificity for bacterial identification by using the BC-GP assay. The two unidentified bacteria were viridans group streptococci, which produced weaker target signals. During the application stage, among 25 consecutive samples positive for Gram-positive bacteria, we identified two specimens with error calls as Streptococcus spp. by using manual analysis. CONCLUSIONS: With help of the manual review of the microarray images, the BC-GP assay could successfully identify species and resistance markers for many clinically important Gram-positive bacteria. | 2015 | 25536666 |
| 5971 | 4 | 0.9991 | Detection of antibiotic resistance genes in different Salmonella serovars by oligonucleotide microarray analysis. In this study the feasibility of 50- and 60-mer oligonucleotides in microarray analysis for the detection and identification of antibiotic resistance genes in various Salmonella strains was assessed. The specificity of the designed oligonucleotides was evaluated, furthermore the optimal spotting concentration was determined. The oligonucleotide microarray was used to screen two sets of Salmonella strains for the presence of several antibiotic resistance genes. Set 1 consisted of strains with variant Salmonella Genomic Island 1 (SGI1) multidrug resistance (MDR) regions of which the antibiotic resistance profiles and genotypes were known. The second set contained strains of which initially only phenotypic data were available. The microarray results of the first set of Salmonella strains perfectly matched with the phenotypic and genotypic information. The microarray data of the second set were almost completely in concordance with the available phenotypic data. It was concluded that the microarray technique in combination with random primed genomic labeling and 50- or 60-mer oligonucleotides is a powerful tool for the detection of antibiotic resistance genes in bacteria. | 2005 | 15823391 |
| 5973 | 5 | 0.9991 | DNA microarray detection of antimicrobial resistance genes in diverse bacteria. High throughput genotyping is essential for studying the spread of multiple antimicrobial resistance. A test oligonucleotide microarray designed to detect 94 antimicrobial resistance genes was constructed and successfully used to identify antimicrobial resistance genes in control strains. The microarray was then used to assay 51 distantly related bacteria, including Gram-negative and Gram-positive isolates, resulting in the identification of 61 different antimicrobial resistance genes in these bacteria. These results were consistent with their known gene content and resistance phenotypes. Microarray results were confirmed by polymerase chain reaction and Southern blot analysis. These results demonstrate that this approach could be used to construct a microarray to detect all sequenced antimicrobial resistance genes in nearly all bacteria. | 2006 | 16427254 |
| 5969 | 6 | 0.9991 | Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. A disposable microarray was developed for detection of up to 90 antibiotic resistance genes in gram-positive bacteria by hybridization. Each antibiotic resistance gene is represented by two specific oligonucleotides chosen from consensus sequences of gene families, except for nine genes for which only one specific oligonucleotide could be developed. A total of 137 oligonucleotides (26 to 33 nucleotides in length with similar physicochemical parameters) were spotted onto the microarray. The microarrays (ArrayTubes) were hybridized with 36 strains carrying specific antibiotic resistance genes that allowed testing of the sensitivity and specificity of 125 oligonucleotides. Among these were well-characterized multidrug-resistant strains of Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis and an avirulent strain of Bacillus anthracis harboring the broad-host-range resistance plasmid pRE25. Analysis of two multidrug-resistant field strains allowed the detection of 12 different antibiotic resistance genes in a Staphylococcus haemolyticus strain isolated from mastitis milk and 6 resistance genes in a Clostridium perfringens strain isolated from a calf. In both cases, the microarray genotyping corresponded to the phenotype of the strains. The ArrayTube platform presents the advantage of rapidly screening bacteria for the presence of antibiotic resistance genes known in gram-positive bacteria. This technology has a large potential for applications in basic research, food safety, and surveillance programs for antimicrobial resistance. | 2005 | 15872258 |
| 5974 | 7 | 0.9991 | Use of a bacterial antimicrobial resistance gene microarray for the identification of resistant Staphylococcus aureus. As diagnostic and surveillance activities are vital to determine measures needed to control antimicrobial resistance (AMR), new and rapid laboratory methods are necessary to facilitate this important effort. DNA microarray technology allows the detection of a large number of genes in a single reaction. This technology is simple, specific and high-throughput. We have developed a bacterial antimicrobial resistance gene DNA microarray that will allow rapid antimicrobial resistance gene screening for all Gram-positive and Gram-negative bacteria. A prototype microarray was designed using a 70-mer based oligonucleotide set targeting AMR genes of Gram-negative and Gram-positive bacteria. In the present version, the microarray consists of 182 oligonucleotides corresponding to 166 different acquired AMR gene targets, covering most of the resistance genes found in both Gram-negative and -positive bacteria. A test study was performed on a collection of Staphylococcus aureus isolates from milk samples from dairy farms in Québec, Canada. The reproducibility of the hybridizations was determined, and the microarray results were compared with those obtained by phenotypic resistance tests (either MIC or Kirby-Bauer). The microarray genotyping demonstrated a correlation between penicillin, tetracycline and erythromycin resistance phenotypes with the corresponding acquired resistance genes. The hybridizations showed that the 38 antimicrobial resistant S. aureus isolates possessed at least one AMR gene. | 2010 | 21083822 |
| 5798 | 8 | 0.9991 | Rapid identification of bacteria, mecA and van genes from blood cultures. The Genotype technology, a quick molecular genetic assay based on DNA multiplex amplification with biotinylated primers followed by hybridization to membrane bound probes, complies with the requirements for a fast diagnosis of sepsis. We evaluated the new Genotype BC Gram-negative and Gram-positive test kits (Hain Life Science, Germany) which respectively allow for the identification of 15 species of Gram-negative (GN) rods, and the identification of 17 Gram-positive (GP) bacteria species together with the determination of methicillin and vancomycin resistance (mecA and van genes). The study was performed on 60 positive blood cultures from BacT/ALERT bottles (aerobic, anaerobic and pediatric bottles). First, a Gram stain was carried out to select between Genotype BC GP or GN test, then identification were performed by the Genotype BC tests and by biochemical conventional tests after subculture and phenotypic susceptibility determination. The operating procedure was very easy to carry out and required a small amount of starting material (5 to 10 microL of blood culture). The results were available within 4.5 hours. For all the blood cultures, the Genotype BC results correlated with the biochemical identification and phenotypic antibiotics susceptibility. According to our results, this DNA strip technology based assay can easily be incorporated into routine diagnosis. | 2007 | 17913394 |
| 5881 | 9 | 0.9990 | A novel universal DNA labeling and amplification system for rapid microarray-based detection of 117 antibiotic resistance genes in Gram-positive bacteria. A rapid and simple DNA labeling system has been developed for disposable microarrays and has been validated for the detection of 117 antibiotic resistance genes abundant in Gram-positive bacteria. The DNA was fragmented and amplified using phi-29 polymerase and random primers with linkers. Labeling and further amplification were then performed by classic PCR amplification using biotinylated primers specific for the linkers. The microarray developed by Perreten et al. (Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., Frey, J., 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J.Clin.Microbiol. 43, 2291-2302.) was improved by additional oligonucleotides. A total of 244 oligonucleotides (26 to 37 nucleotide length and with similar melting temperatures) were spotted on the microarray, including genes conferring resistance to clinically important antibiotic classes like β-lactams, macrolides, aminoglycosides, glycopeptides and tetracyclines. Each antibiotic resistance gene is represented by at least 2 oligonucleotides designed from consensus sequences of gene families. The specificity of the oligonucleotides and the quality of the amplification and labeling were verified by analysis of a collection of 65 strains belonging to 24 species. Association between genotype and phenotype was verified for 6 antibiotics using 77 Staphylococcus strains belonging to different species and revealed 95% test specificity and a 93% predictive value of a positive test. The DNA labeling and amplification is independent of the species and of the target genes and could be used for different types of microarrays. This system has also the advantage to detect several genes within one bacterium at once, like in Staphylococcus aureus strain BM3318, in which up to 15 genes were detected. This new microarray-based detection system offers a large potential for applications in clinical diagnostic, basic research, food safety and surveillance programs for antimicrobial resistance. | 2015 | 25451460 |
| 4684 | 10 | 0.9990 | Genomic characterization and assessment of the virulence and antibiotic resistance of the novel species Paenibacillus sp. strain VT-400, a potentially pathogenic bacterium in the oral cavity of patients with hematological malignancies. BACKGROUND: Paenibacillus sp. strain VT-400, a novel spore-forming bacterium, was isolated from patients with hematological malignancies. METHODS: Paenibacillus sp. strain VT-400 was isolated from the saliva of four children with acute lymphoblastic leukemia. The genome was annotated using RAST and the NCBI Prokaryotic Genome Annotation Pipeline to characterize features of antibiotic resistance and virulence factors. Susceptibility to antibiotics was determined by the Kirby-Bauer disc diffusion method. We used a mouse model of pneumonia to study virulence in vivo. Mice were challenged with 7.5 log10-9.5 log10 CFU, and survival was monitored over 7 days. Bacterial load was measured in the lungs and spleen of surviving mice 48 h post-infection to reveal bacterial invasion and dissemination. RESULTS: Whole-genome sequencing revealed a large number of virulence factors such as hemolysin D and CD4+ T cell-stimulating antigen. Furthermore, the strain harbors numerous antibiotic resistance genes, including small multidrug resistance proteins, which have never been previously found in the Paenibacillus genus. We then compared the presence of antibiotic resistance genes against results from antibiotic susceptibility testing. Paenibacillus sp. strain VT-400 was found to be resistant to macrolides such as erythromycin and azithromycin, as well as to chloramphenicol and trimethoprim-sulphamethoxazole. Finally, the isolate caused mortality in mice infected with ≥8.5 log10 CFU. CONCLUSIONS: Based on our results and on the available literature, there is yet no strong evidence that shows Paenibacillus species as an opportunistic pathogen in immunocompromised patients. However, the presence of spore-forming bacteria with virulence and antibiotic resistance genes in such patients warrants special attention because infections caused by spore-forming bacteria are poorly treatable. | 2016 | 26900405 |
| 2434 | 11 | 0.9990 | Antimicrobial Activity of Lactic Acid Bacteria Starters against Acid Tolerant, Antibiotic Resistant, and Potentially Virulent E. coli Isolated from a Fermented Sorghum-Millet Beverage. Bacterial contamination of fermented foods is a serious global food safety challenge that requires effective control strategies. This study characterized presumptive E. coli isolated from Obushera, a traditional fermented cereal beverage from Uganda. Thereafter, the antimicrobial effect of lactic acid bacteria (LAB) previously isolated from Obushera, against the E. coli, was examined. The presumptive E. coli was incubated in brain heart infusion broth (pH = 3.6) at 25°C for 48 h. The most acid-stable strains were clustered using (GTG)(5) rep-PCR fingerprinting and identified using 16S rRNA sequencing. E. coli was screened for Shiga toxins (Stx 1 and Stx 2) and Intimin (eae) virulence genes as well as antibiotic resistance. The spot-on-the-lawn method was used to evaluate antimicrobial activity. Eighteen isolates were acid stable and are identified as E. coli, Shigella, and Lysinibacillus. The Stx 2 gene and antibiotic resistance were detected in some E. coli isolates. The LAB were antagonistic against the E. coli. Lactic acid bacteria from traditional fermented foods can be applied in food processing to inhibit pathogens. Obushera lactic acid bacteria could be used to improve the safety of fermented foods. | 2019 | 31933646 |
| 6123 | 12 | 0.9990 | Genomic analysis of a hop-resistance Lactobacillus brevis strain responsible for food spoilage and capable of entering into the VBNC state. BACKGROUND: Lactobacillus brevis is a major contaminant of spoiled beer. And it was able to enter VBNC state and cause false negative detection, which poses a major challenge to the brewing industry. METHODS: The genomic DNA of L. brevis BM-LB13908 was extracted and purified to form a sequencing library that meets the quality requirements and was sequenced. The sequencing results were then screened and assembled to obtain the entire genome sequence of L. brevis. Predicted genes were annotated by GO database, KEGG pathway database and COG functional classification system. RESULTS: The final assembly yielded 275 scaffolds of a total length of 2 840 080 bp with a G + C content of 53.35%. There were 2357, 701, 1519 predicted genes with corresponding GO functional, COG functional, and KEGG biological pathway annotations, respectively. The genome of L. brevis BM-LB13908 contains hop resistance gene horA and multiple genes related to the formation of VBNC state. CONCLUSIONS: This report describes the draft genome sequence of L. brevis BM-LB13908, a spoilage strain isolated from finished beer sample. This study may support further study on L. brevis and other beer spoilage bacteria, and prevent and control beer spoilage caused by microorganisms. | 2020 | 32272213 |
| 6068 | 13 | 0.9990 | Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese. AIM: Evaluate technologically relevant properties from bacteriocin-producing strains to use as starter/adjunct cultures in cheese making. METHODS AND RESULTS: Eight isolates obtained from Pico cheese produced in Azores (Portugal) were found to produce bacteriocins against Listeria monocytogenes and three isolates against Clostridium perfringens. They were identified as Lactococcus lactis and Enterococcus faecalis and submitted to technological tests: growth at different conditions of temperature and salt, acid production, proteolysis, lipolysis, coexistence, enzymatic profile and autolytic capacity. Safety evaluation was performed by evaluating haemolytic, gelatinase and DNase activity, resistance to antibiotics and the presence of virulence genes. Some isolates presented good technological features such as high autolytic activity, acid and diacetyl production. Lactococcus lactis was negative for all virulence genes tested and inhibit the growth of all Lactic acid bacteria (LAB) isolates. Enterococci were positive for the presence of some virulence genes, but none of the isolates were classified as resistant to important antibiotics. CONCLUSIONS: The bacteriocin-producing Lc. lactis present good potential for application in food as adjunct culture in cheese production. The study also reveals good technological features for some Enterococcus isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriocin-producing strains presented important technological properties to be exploited as new adjunct culture for the dairy industry, influencing flavour development and improve safety. | 2014 | 24206097 |
| 6069 | 14 | 0.9990 | Phenotypic and genotypic characterization of lactic acid bacteria from traditional cheese in Khorramabad city of Iran with probiotic potential. Lactic acid bacteria (LAB) with proteolitic activity are used as aromatic and antibacterial substances, cholesterol reduces, bile salt hydrolyses, and probiotic. The aims of this project were to isolate and identify natural LAB flora involved in traditional fermentation in cheeses of Khoramabad city and also to survey their probiotic potential. In order to achieve this goal, LAB were isolated and characterized using phenotypic and genotypic methods (PCR-sequencing); in the next stage, they were analyzed lowering cholesterol medium, hydrolysis of the bile, resistance to bile-resistant PH acidic stomach. At the end of the study, 88 cocci and 3 bacill were found: 58 Enterococcus faecium, 16 Enterococcus hirae, 5 Lactococcus lactis, 3 Lactobacillus plantarum, and 9 undetermined. The probiotic results of the bacteria had effects on the reduction of cholesterol, resistance to stomach acid, had relative antibacterial effects, and some strains had effects on hydrolyzing the bile. For further identification, the PCR method and the application of 16s-DNA-ITS genes and its sequencing were found useful. This study showed that lactic acid bacteria in the traditional cheese of the Khorramabad city have relative probiotic effect and that these lactic acid bacteria in fermented milk are suitable. | 2015 | 25519007 |
| 2435 | 15 | 0.9990 | Genotypic and Technological Characterization of Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Sucuk: A Preliminary Screening of Potential Starter Cultures. This study aimed to characterize lactic acid bacteria (LAB) and coagulase-negative staphylococci (CoNS) isolated from traditionally produced sucuk for their potential use in starter culture development and food safety applications in fermented meat products. A total of 145 isolates (95 LAB and 50 CoNS) were analyzed through genetic identification, phylogenetic analysis, and assessments of technological properties. Antagonistic activity against Listeria monocytogenes and Staphylococcus aureus was also evaluated, along with antibiotic sensitivity. Among LAB, Lactiplantibacillus plantarum was the most prevalent species (60 isolates), while Staphylococcus xylosus was the predominant CoNS species (24 isolates). The isolates exhibited diverse technological properties and varying levels of antagonistic activity against the tested pathogens. Antibiotic sensitivity tests indicated that 15 selected isolates were negative for antibiotic resistance genes. Overall, this comprehensive characterization provides valuable insights for the development of starter cultures and for enhancing food safety in fermented meat products. | 2025 | 41154032 |
| 5094 | 16 | 0.9990 | A duplex one-step recombinase aided PCR assay for the rapid and sensitive detection of the isoniazid resistance genes katG and inhA in Mycobacterium tuberculosis. OBJECTIVES: Drug resistance in tuberculosis seriously affects the eradication of tuberculosis, and isoniazid resistance is the second most commonly observed drug resistance in patients with tuberculosis. Timely and accurate detection of isoniazid resistance is critical to the treatment of tuberculosis. METHODS: A duplex one-step recombinase-aided PCR (DO-RAP) assay was developed for the rapid and sensitive detection of the katG Ser315Thr and inhA-15 (C-T) mutations in Mycobacterium tuberculosis, which are the most common isoniazid-resistant mutations. Quantitative recombinant plasmids were used to evaluate the sensitivity of DO-RAP, and 91 Mycobacterium tuberculosis strains with different genotypes, as well as 5 common respiratory tract bacteria, were used to evaluate the specificity of DO-RAP. A total of 78 sputum specimens were simultaneously detected using DO-RAP, quantitative PCR (qPCR) and sanger sequencing of nested PCR products. Sanger sequencing results were used as the standard to verify the clinical performance of DO-RAP. RESULTS: The reaction time of DO-RAP was less than 1 h. The sensitivity of DO-RAP was 2 copies/reaction, which was 10 times higher than qPCR. The sensitivity of DO-RAP for detecting heterogenous resistance was 5%. There was no cross-reactivity between the isoniazid wild-type gene, drug-resistant mutant genes, and other common respiratory tract bacteria. Compared with Sanger sequencing, the sensitivity, specificity, PPV and NPV of DO-RAP were all 100%. There were 7 specimens with gray zone or negative qPCR results but positive DO-RAP test results. CONCLUSION: The DO-RAP can be adopted in ordinary qPCR equipment for the rapid, highly sensitive and specific detection of the isoniazid resistance genes of Mycobacterium tuberculosis. | 2025 | 40182291 |
| 5797 | 17 | 0.9990 | PCR-reverse blot hybridization assay for screening and identification of pathogens in sepsis. Rapid and accurate identification of the pathogens involved in bloodstream infections is crucial for the prompt initiation of appropriate therapy, as this can decrease morbidity and mortality rates. A PCR-reverse blot hybridization assay for sepsis, the reverse blot hybridization assay (REBA) Sepsis-ID test, was developed; it uses pan-probes to distinguish Gram-positive and -negative bacteria and fungi. In addition, the assay was designed to identify bacteria and fungi using six genus-specific and 13 species-specific probes; it uses additional probes for antibiotic resistance genes, i.e., the mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) and the vanA and vanB genes of vancomycin-resistant enterococci (VRE). The REBA Sepsis-ID test successfully identified clinical isolates and blood culture samples as containing Gram-positive bacteria, Gram-negative bacteria, or fungi. The results matched those obtained with conventional microbiological methods. For the REBA Sepsis-ID test, of the 115 blood culture samples tested, 47 (40.8%) and 49 (42.6%) samples were identified to the species and genus levels, respectively, and the remaining 19 samples (16.5%), which included five Gram-positive rods, were identified as Gram-positive bacteria, Gram-negative bacteria, or fungi. The antibiotic resistances of the MRSA and VRE strains were identified using both conventional microbiological methods and the REBA Sepsis-ID test. In conclusion, the REBA Sepsis-ID test developed for this study is a fast and reliable test for the identification of Gram-positive bacteria, Gram-negative bacteria, fungi, and antibiotic resistance genes (including mecA for MRSA and the vanA and vanB genes for VRE) in bloodstream infections. | 2013 | 23447637 |
| 5796 | 18 | 0.9989 | Antibiotic treatment algorithm development based on a microarray nucleic acid assay for rapid bacterial identification and resistance determination from positive blood cultures. Rapid diagnosis of bloodstream infections remains a challenge for the early targeting of an antibiotic therapy in sepsis patients. In recent studies, the reliability of the Nanosphere Verigene Gram-positive and Gram-negative blood culture (BC-GP and BC-GN) assays for the rapid identification of bacteria and resistance genes directly from positive BCs has been demonstrated. In this work, we have developed a model to define treatment recommendations by combining Verigene test results with knowledge on local antibiotic resistance patterns of bacterial pathogens. The data of 275 positive BCs were analyzed. Two hundred sixty-three isolates (95.6%) were included in the Verigene assay panels, and 257 isolates (93.5%) were correctly identified. The agreement of the detection of resistance genes with subsequent phenotypic susceptibility testing was 100%. The hospital antibiogram was used to develop a treatment algorithm on the basis of Verigene results that may contribute to a faster patient management. | 2016 | 26712265 |
| 5972 | 19 | 0.9989 | Method of Selection of Bacteria Antibiotic Resistance Genes Based on Clustering of Similar Nucleotide Sequences. A new method for selection of bacterium antibiotic resistance genes is proposed and tested for solving the problems related to selection of primers for PCR assay. The method implies clustering of similar nucleotide sequences and selection of group primers for all genes of each cluster. Clustering of resistance genes for six groups of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolides and lincosamides, and fusidic acid) was performed. The method was tested for 81 strains of bacteria of different genera isolated from patients (K. pneumoniae, Staphylococcus spp., S. agalactiae, E. faecalis, E. coli, and G. vaginalis). The results obtained by us are comparable to those in the selection of individual genes; this allows reducing the number of primers necessary for maximum coverage of the known antibiotic resistance genes during PCR analysis. | 2017 | 29063318 |