Detection of the sul2-strA-strB gene cluster in an ice core from Dome Fuji Station, East Antarctica. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
586901.0000Detection of the sul2-strA-strB gene cluster in an ice core from Dome Fuji Station, East Antarctica. OBJECTIVES: Bacteria harbouring antimicrobial resistance genes (ARGs) have been isolated from various locations, including ancient microbiomes, indicating that these genes pre-date the discovery of antibiotics. To gain further information regarding ARGs in the pre-antibiotic era, ice samples derived from Dome Fuji Station, Eastern Antarctica, were examined. METHODS: DNA was extracted from firn or ice core samples (n=3; 1200-1400ybp, 1700-2100ybp and 2200-2800ybp, respectively) under sterile conditions. Whole-genome amplification and PCR analyses were utilised to detect ARGs. RESULTS: A 2764-bp gene cluster containing the type II dihydropteroate synthase gene sul2 and the aminoglycoside phosphotransferase genes strA and strB was detected in the 1200-1400-year-old Antarctic ice core (DF-63.5). The sul2-strA-strB gene cluster is frequently associated with plasmid RSF1010 and transposon Tn5393; however, these elements were not detected in sample DF-63.5. The gene cluster exhibited a high level of sequence identity to sequences harboured in present-day bacteria, although there were sequence polymorphisms in the strA gene. Furthermore, expression of this gene cluster in Escherichia coli resulted in reduced susceptibility to dihydrostreptomycin and sulfamethoxazole. CONCLUSION: The results of this study provide further evidence that certain ARGs existed in the pre-antibiotic era. Because the sul2 gene confers resistance to the synthetic compound sulfamethoxazole, these findings suggest that ARGs against synthetic antimicrobials emerged in bacteria during the pre-antibiotic era.201930468914
593110.9993Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot. Antibiotic resistance has been evaluated among 36 Gram negative and anaerobic bacilli (10 Bacteroides, 11 Prevotella, 7 Porphyromonas and 8 Fusobacterium strains) isolated from clinical cases of caprine and ovine footrot (necrotic pododermatitis). The initial analysis on this bacterial consortium evaluates the relationships existing among antimicrobial resistance determinants, phenotype expression and mobilization potential. The Bacteroides strains were generally resistant to penicillins, first-generation cephalosporins, tetracycline and erythromycin, and expressed low level of β-lactamase activity. The main determinants found among the Bacteroides strains were cepA and tetQ genes, conferring resistance to β-lactams and tetracycline, respectively. A general susceptibility to β-lactams was shown for most Prevotella, Porphyromonas and Fusobacterium strains, where none of the β-lactamase genes described in Bacteroides was detected. Resistance to tetracycline and/or erythromycin was found among the three bacterial groups. Although tetQ genes were detected for several Prevotella and Porphyromonas strains, a unique ermF positive was revealed among Prevotella strains. The expression of resistance markers was not related with the polymorphism of their coding sequences. However, the finding of sequence signatures for conjugative transposons in the vicinities of tetQ and ermF suggests a mobilization potential that might have contributed to the spread of antimicrobial resistance genes.201222177890
593320.9993Novel macrolide-resistance genes, mef(C) and mph(G), carried by plasmids from Vibrio and Photobacterium isolated from sediment and seawater of a coastal aquaculture site. The aim of this study was to determine whether mef(C) and mph(G), originally found on the transferable multi-drug plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from seawater of a fish farm, are responsible for conferring macrolide resistance. Since these genes are localized head-to-tail on pAQU1 and only four nucleotides exist between them, the single- and combination-effect of these genes was examined. When mph(G) alone was introduced to Escherichia coli, the minimum inhibitory concentrations (MICs) against erythromycin, clarithromycin and azithromycin increased, whereas introduction of mef(C) alone did not influence macrolide susceptibility. Introduction of both mef(C) and mph(G) dramatically increased the MICs to the same three macrolides, i.e. >512 μg ml(-1) , >512 μg ml(-1) and 128 μg ml(-1) respectively. These results suggest that the macrolide phosphotransferase encoded by mph(G) is essential for macrolide resistance, while the efflux pump encoded by mef(C) is required for high-level macrolide resistance. The tandem-pair arrangements of the mef(C) and mph(G) genes were conserved on plasmids ranging in size from 240 to 350 kb of the 22 erythromycin-resistant strains belonging to Vibrio and Photobacterium obtained from the fish farm. Sixteen of 22 plasmids ranged in size from 300 to 350 kb. This is the first report of novel macrolide resistance genes originating from a marine bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, mef(C) and mph(G) were found to be novel macrolide-resistance genes, and this is the first report of macrolide-resistance genes originating from a marine bacterium. These genes may be responsible for previously reported cases of the emergence of erythromycin-resistant bacteria in aquaculture sites by an unknown mechanism. The introduction of the tandem arrangement of the mef(C) and mph(G) genes in Escherichia coli increased the MICs to erythromycin, clarithromycin and azithromycin, suggesting a novel mechanism conferring high-level macrolide resistance via combined expression of the efflux pump and macrolide phosphotransferase.201525765542
356930.9993Identification of a new ribosomal protection type of tetracycline resistance gene, tet(36), from swine manure pits. Previously, only one ribosome protection type of a tetracycline resistance gene, tetQ, had been identified in Bacteroides spp. During an investigation of anaerobic bacteria present in swine feces and manure storage pits, a tetracycline-resistant Bacteroides strain was isolated. Subsequent analysis showed that this new Bacteroides strain, Bacteroides sp. strain 139, did not contain tetQ but contained a previously unidentified tetracycline resistance gene. Sequence analysis showed that the tetracycline resistance gene from Bacteroides sp. strain 139 encoded a protein (designated Tet 36) that defines a new class of ribosome protection types of tetracycline resistance. Tet 36 has 60% amino acid identity over 640 aa to TetQ and between 31 and 49% amino acid identity to the nine other ribosome protection types of tetracycline resistance genes. The tet(36) region was not observed to transfer from Bacteroides sp. strain 139 to another Bacteroides sp. under laboratory conditions. Yet tet(36) was found in other genera of bacteria isolated from the same swine manure pits and from swine feces. Phylogenetic analysis of the tet(36)-containing isolates indicated that tet(36) was present not only in the Cytophaga-Flavobacter-Bacteroides group to which Bacteroides sp. strain 139 belongs but also in gram-positive genera and gram-negative proteobacteria, indicating that horizontal transfer of tet(36) is occurring between these divergent phylogenetic groups in the farm environment.200312839793
593240.9992Detection of the florfenicol resistance gene floR in Chryseobacterium isolates from rainbow trout. Exception to the general rule? Bacteria from the family Flavobacteriaceae often show low susceptibility to antibiotics. With the exception of two Chryseobacterium spp. isolates that were positive for the florfenicol resistance gene floR, no clinical resistance genes were identified by microarray in 36 Flavobacteriaceae isolates from salmonid fish that could grow in ≥ 4 mg/L florfenicol. Whole genome sequence analysis of the floR positive isolates revealed the presence of a region that contained the antimicrobial resistance genes floR, a tet(X) tetracycline resistance gene, a streptothricin resistance gene and a chloramphenicol acetyltransferase gene. In silico analysis of 377 published genomes for Flavobacteriaceae isolates from a range of sources confirmed that well-characterised resistance gene cassettes were not widely distributed in bacteria from this group. Efflux pump-mediated decreased susceptibility to a range of antimicrobials was confirmed in both floR positive isolates using an efflux pump inhibitor (phenylalanine-arginine β-naphthylamide) assay. The floR isolates possessed putative virulence factors, including production of siderophores and haemolysins, and were mildly pathogenic in rainbow trout. Results support the suggestion that, despite the detection of floR, susceptibility to antimicrobials in Flavobacteriaceae is mostly mediated via intrinsic mechanisms rather than the horizontally acquired resistance genes more normally associated with Gram-negative bacterial pathogens such as Enterobacteriaceae.201728199699
599950.9992Food isolate Listeria monocytogenes harboring tetM gene plasmid-mediated exchangeable to Enterococcus faecalis on the surface of processed cheese. The genetic basis of tetracycline resistance in a food isolate Listeria monocytogenes (Lm16) was evaluated. Resistance to tetracycline was associated with the presence of the tetM gene in plasmid DNA. The sequence of tetM showed 100% of similarity with the Enterococcus faecalis sequences found in the EMBL database, suggesting that Lm16 received this gene from E. faecalis. Various size bands were detected in the DNA plasmid analysis, the largest being approximately 54.38 kb. Transferability of the tetM gene was achieved in vitro by agar matings between Lm16 and E. faecalis JH2-2, proving the potential for the spread of tetM by horizontal gene transfer. Furthermore, the conjugation experiments were performed on the surface of processed cheese, confirming the transferability in a food matrix. PCR assays were used to confirm the identity of E. faecalis and to detect the tetM gene in transconjugant bacteria. Additionally, the minimal inhibitory concentration for tetracycline and rifampicin and plasmid profiling were performed. This is the first report of a food isolate L. monocytogenes carrying the tetM gene in plasmid DNA, and it highlights the potential risk of spreading antimicrobial resistance genes between different bacteria.201829580513
542560.9992The novel mef(C)-mph(G) macrolide resistance genes are conveyed in the environment on various vectors. BACKGROUND: The novel tandem genes mef(C) and mph(G) have been reported in marine bacteria in Japan. This paper aimed to characterise the extent of environmental distribution of mef(C) and mph(G) as well as their dissemination and persistence in aquatic bacterial communities. METHODS: Erythromycin-resistant bacteria were isolated from Japan, Taiwan and Thailand aquaculture sites. The mef(C)-mph(G) genes were detected by PCR. The size of mobile genetic elements conveying mef(C) and mph(G) was examined by Southern blotting. The conjugation rate was assessed by filter mating. RESULTS: The mef(C)-mph(G) tandem genes were distributed in erythromycin-resistant isolates from aquaculture seawater in Japan and northern Taiwan and in animal farm wastewater in Thailand. A total of 29 bacterial isolates were positive for mef(C)-mph(G). The genes were found on vectors of various sizes. Partial sequencing of the traI relaxase gene revealed homology with a pAQU1-like plasmid, an IncA/C-type plasmid and an SXT/R391 family integrative conjugative element (SRI) as vectors. Thirteen isolates (45%) were positive for traI(pAQU-IncA/C-SRI), whereas the others were negative. The traI(pAQU-IncA/C-SRI)-positive isolates exhibited a higher transfer frequency (10(-4)-10(-5) transconjugants/donor) than traI(pAQU-IncA/C-SRI)-negative isolates (<10(-9)). CONCLUSIONS: These results suggest that mef(C)-mph(G) are coded on various vectors and are distributed among marine and wastewater bacteria in Asian countries. Vectors with traI(pAQU-IncA/C-SRI) play a role in the spread of mef(C)-mph(G).201728689921
596270.9992Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion. The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73-81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1-189) that has 42% identity to the 6'-aminoglycoside acetyltransferase [AAC(6')] from Enterococcus hirae and a C-terminus (amino acids 190-274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs.201222845886
361480.9992Structure and diversity of arsenic resistant bacteria in an old tin mine area of Thailand. The microbial community structure in Thailand soils contaminated with low and high levels of arsenic was determined by denaturing gradient gel electrophoresis (DGGE). Band pattern analysis indicated that the bacterial community was not significantly different in the two soils. Phylogenetic analysis obtained by excising and sequencing six bands indicated that the soils were dominated by Arthobacter koreensis and proteobacteria. Two hundred and sixty-two bacterial isolates were obtained from arsenic contaminated soils. The majority of the As resistant isolates were gram-negative bacteria. MIC studies indicated that all of the tested bacteria had greater resistance to arsenate than arsenite. Some strains were capable of growing in medium containing up to 1,500 mg/l arsenite and arsenate. Correlations analysis of resistance patterns of arsenite resistance indicated that the isolated bacteria could be categorized into 13 groups, with a maximum similarity value of 100%. All strains were also evaluated for resistance to eight antibiotics. The antibiotic resistance patterns divided the strains into 100 unique groups, indicating that the strains were very diverse. Isolates from each antibiotic resistance group were characterized in more detail by using the repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique with ERIC primers. PCR products were analyzed by agarose gel electrophoresis. The genetic relatedness of 100 bacterial fingerprints, determined by using Pearson product moment similarity coefficient, showed that the isolates could be divided into four clusters, with similarity values ranging from 5-99%. While many isolates were genetically diverse, others were clonal in nature Additionally, the arsenic-resistant isolates were examined for the presence of arsenic resistance (ars) genes by using PCR, and 30% of the isolates were found to carry an arsenate reductase encoded by the arsC gene.201020134249
205890.9992Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment. Fluoroquinolones (FQs) have been detected in aquatic environments in several countries. Long-term exposure to low levels of antimicrobial agents provides selective pressure, which might alter the sensitivity of bacteria to antimicrobial agents in the environment. Here, we examined FQ levels and the resistance of Escherichia coli (E. coli) to FQs by phenotyping and genotyping. In the aquatic environment in Osaka, Japan, ciprofloxacin, enoxacin, enfloxacin, lomefloxacin, norfloxacin, and ofloxacin were detected in concentrations ranging from 0.1 to 570 ng L(-1). FQ-resistant E. coli were also found. Although no obvious correlation was detected between the concentration of FQs and the presence of FQ-resistant E. coli, FQ-resistant E. coli were detected in samples along with FQs, particularly ciprofloxacin and ofloxacin. Most FQ-resistant E. coli carried mutations in gyrA, parC, and parE in quinolone resistance-determining regions. No mutations in gyrB were detected in any isolates. Amino acid changes in these isolates were quite similar to those in clinical isolates. Six strains carried the plasmid-mediated quinolone resistance determinant qnrS1 and expressed low susceptibility to ciprofloxacin and nalidixic acid: the minimum inhibitory concentrations ranged from 0.25 μg mL(-1) for ciprofloxacin, and from 8 to 16 μg mL(-1) for nalidixic acid. This finding confirmed that plasmids containing qnr genes themselves did not confer full resistance to quinolones. Because plasmids are responsible for much of the horizontal gene transfer, these genes may transfer and spread in the environment. To our knowledge, this is the first report of plasmid-mediated quinolone resistance determinant qnrS1 in the aquatic environment, and this investigation provides baseline data on antimicrobial resistance profiles in the Osaka area.201323291652
2914100.9992The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. OBJECTIVES: The aim of this study was to investigate the genetic background for streptomycin resistance in Escherichia coli and perform analysis of the MICs in relation to genetic background. METHODS: The 136 strains investigated, with streptomycin MICs of > or =16 mg/L, originated from meat and meat products and were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET). PCR was carried out for detection of the streptomycin resistance genes strA-strB and the integron-associated aadA gene cassettes. RESULTS: The strA-strB genes and/or an aadA gene cassette were detected in 110 of the 136 (80.9%) strains investigated. The strA-strB genes were the most prevalent, and were detected in 90 strains. The aadA gene cassettes were detected in 29 strains, and nine strains harboured both the strA-strB genes and an aadA gene cassette. The distribution of MICs differed considerably between isolates harbouring the strA-strB genes (solely) (MIC(50) = 128 mg/L) and isolates harbouring an aadA gene cassette (solely) (MIC(50) = 16 mg/L). Strains harbouring both the strA-strB genes and an aadA gene cassette had higher streptomycin MICs than those harbouring either alone. CONCLUSIONS: The distribution of streptomycin MICs in E. coli can be greatly influenced by the genes encoding resistance to streptomycin. The strA-strB genes are probably involved in conferring high-level resistance to streptomycin, whereas the opposite seems to be the case for the aadA gene cassettes. The low-level streptomycin resistance, caused by the presence of aadA gene cassettes in integrons, represents an obstacle in classifying E. coli as susceptible or resistant to streptomycin. Furthermore, the determination of an epidemiological cut-off value for surveillance purposes is also complicated by dissemination of integrons containing the aadA cassettes.200515897222
5860110.9992Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. Twenty-three isolates of the two genera Pasteurella (P.) and Mannheimia (M.) were analysed for the presence of genes specifying resistance to sulfonamides, streptomycin, and chloramphenicol. Specific PCR assays for the detection of the genes sulII, strA and catAIII, but also for the confirmation of their physical linkage were developed. A resistance gene cluster consisting of all three genes and characterised by a PCR amplicon of 2.2 kb was detected on four different types of plasmids and also in the chromosomal DNA of seven isolates. Physically linked sulII and strA genes were detected on three different types of plasmids and in the chromosomal DNA of three isolates. Sequence analysis of the different PCR amplicons revealed that these genes were present in either the orientation sulII-strA separated by differently sized spacer sequences, or strA-sulII. A truncated strA gene preceding a sulII gene was also detected in two cases.200111750817
5421120.9992Florfenicol Resistance in Enterobacteriaceae and Whole-Genome Sequence Analysis of Florfenicol-Resistant Leclercia adecarboxylata Strain R25. Due to inappropriate use, florfenicol resistance is becoming increasingly serious among animal respiratory tract and gut bacteria. To detect the florfenicol resistance mechanism among Enterobacteriaceae bacteria, 292 isolates from animal feces were examined. The agar dilution method was conducted to determine the minimum inhibitory concentration (MIC) for florfenicol, and polymerase chain reaction (PCR) was performed to detect florfenicol resistance genes. To further explore the molecular mechanism of florfenicol resistance, the whole-genome Leclercia adecarboxylata R25 was sequenced. Of the strains tested, 61.6% (180/292) were resistant to florfenicol, 64.4% (188/292) were positive for floR, and 1.0% (3/292) for cfr. The whole-genome sequence analysis of L. adecarboxylata R25 revealed that the floR gene is carried by a transposon and located on a plasmid (pLA-64). Seven other resistance genes are also encoded on pLA-64, all of which were found to be related to mobile genetic elements. The sequences sharing the greatest similarities to pLA-64 are the plasmids p02085-tetA of Citrobacter freundii and p234 and p388, both from Enterobacter cloacae. The resistance gene-related mobile genetic elements also share homologous sequences from different species or genera of bacteria. These findings indicate that floR mainly contributes to the high rate of florfenicol resistance among Enterobacteriaceae. The resistance gene-related mobile genetic elements encoded by pLA-64 may be transferred among bacteria of different species or genera, resulting in resistance dissemination.201931662959
5985130.9992Alternative quinolone-resistance pathway caused by simultaneous horizontal gene transfer in Haemophilus influenzae. BACKGROUND: Quinolone-resistant bacteria are known to emerge via the accumulation of mutations in a stepwise manner. Recent studies reported the emergence of quinolone low-susceptible Haemophilus influenzae ST422 isolates harbouring two relevant mutations, although ST422 isolates harbouring one mutation were never identified. OBJECTIVES: To investigate if GyrA and ParC from quinolone low-susceptible isolates can be transferred horizontally and simultaneously to susceptible isolates. METHODS: Genomic DNA was extracted from an H. influenzae isolate harbouring amino acid substitutions in both gyrA and parC and mixed with clinical isolates. The emergence of resistant isolates was compared, and WGS analysis was performed. RESULTS: By adding the genomic DNA harbouring both mutated gyrA and parC, resistant bacteria exhibiting recombination at gyrA only or both gyrA and parC loci were obtained on nalidixic acid and pipemidic acid plates, and the frequency was found to increase with the amount of DNA. Recombination events in gyrA only and in both gyrA and parC occurred with at least 1 and 1-100 ng of DNA, respectively. The genome sequence of a representative strain showed recombination events throughout the genome. The MIC of quinolone for the resulting strains was found to be similar to that of the donor. Although the recombination efficacy was different among the various strains, all strains used in this study obtained multiple genes simultaneously. CONCLUSIONS: These findings indicate that H. influenzae can simultaneously obtain more than two mutated genes. This mechanism of horizontal transfer could be an alternative pathway for attaining quinolone resistance.202236124853
5456140.9992Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli. The transferable optrA gene encodes an ABC-F protein which confers resistance to oxazolidinones and phenicols, and has so far been detected exclusively in Gram-positive bacteria, including enterococci, staphylococci and streptococci. Here, we identified for the first time the presence of optrA in naturally occurring Gram-negative bacteria. Seven optrA-positive Campylobacter coli were identified from 563 Campylobacter isolates of animal origin from Guangdong (n = 1, chicken) and Shandong (n = 6, duck) provinces of China in 2017-2018. The detected optrA genes were functionally active and mediated resistance or elevated minimal inhibitory concentrations of linezolid, florfenicol and chloramphenicol in the respective C. coli isolates. The optrA gene, together with other transferable resistance genes, such as fexA, catA9, tet(O), tet(L), erm(A)-like, spc, or aadE, was located in two different chromosome-borne multidrug resistance genomic islands (MDRGIs). In both MDRGIs, complete or truncated copies of the insertion sequence IS1216E were present in the vicinity of optrA. The IS1216E-bracketed genetic environment of optrA was almost identical to the optrA regions on enterococcal plasmids, suggesting that the optrA in Campylobacter probably originated from Enterococcus spp.. Moreover, the formation of an optrA-carrying translocatable unit by recombination of IS1216E indicated that this IS element may play an important role in the horizontal transfer of optrA in Campylobacter. Although optrA was only found in a small number of C. coli isolates, enhanced surveillance is needed to monitor the distribution and the potential emergence of optrA in Campylobacter.202032605743
5926150.9992Prevalence and Characterization of Gentamicin Resistance Genes in Escherichia coli Isolates from Beef Cattle Feces in Japan. Gentamicin is an important antibiotic for the treatment of opportunistic infections in the clinical field. Gentamicin-resistant bacteria have been detected in livestock animals and can be transmitted to humans through the food supply or direct contact. We have previously revealed that gentamicin-resistant Escherichia coli are distributed at a comparatively high rate from beef cattle in Japan, but few studies have focused on the molecular epidemiology of gentamicin-resistant bacteria. To understand these bacteria, this study examined the prevalence of various gentamicin resistance genes in gentamicin-resistant E. coli isolates from beef cattle feces. Of the 239 gentamicin-resistant E. coli isolates, the presence of the aacC2, aadB, or aac(3)-VIa genes was confirmed in 147, 84, and 8 isolates, respectively. All aac(3)-VIa-harboring isolates had an MIC value of 64 μg/mL for gentamicin and exhibited resistance to 11 antibiotic agents. An analysis of the representative aac(3)-VIa-harboring E. coli strain GC1-3-GR-4 revealed that the aac(3)-VIa gene was present on the IncA/C plasmid together with the aadA and bla(CMY) genes. Furthermore, the upstream region of the aac(3)-VIa gene contained the aadA gene and the class 1 integron-integrase gene (intI1). The aac(3)-VIa gene was detected for the first time in Japan and is expected to be able to transfer between bacteria via the IncA/C plasmid and integron. These results reveal the expansion of the distribution or diversity of gentamicin resistance genes in Japan.202235704076
2050160.9992Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. AIMS: To investigate the occurrence of fosfomycin-resistant (fos(R) ) bacteria in aquatic environments. METHODS AND RESULTS: A fos(R) strain of Enterobacter cloacae was isolated from a water sample collected at a site (50°41'33·44″N, 119°19'49·50″W) near the mouth of the Salmon River at Salmon Arm, in south-central British Columbia, Canada. The strain was identified by PCR screening for plasmid-borne, fosA-family amplicons, followed by selective plating. Sequencing of the resistance gene cloned using PCR primers to conserved flanking DNA revealed a new allele (95% amino acid identity to fosA), and I-Ceu I PFGE showed that it was chromosomally located. In Escherichia coli, the cloned DNA conferred a greater resistance to fosfomycin than its fosA counterpart. CONCLUSIONS: Gene fosA2 conferred fosfomycin resistance in an environmental isolate of Ent. cloacae. SIGNIFICANCE AND IMPACT OF THE STUDY: The repurposing of older antibiotics should be considered in the light of existing reservoirs of resistance genes in the environment.201121392044
2919170.9992Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Salmon farming industry in Chile currently uses a significant quantity of antimicrobials to control bacterial pathologies. The main aims of this study were to investigate the presence of transferable sulfonamide- and trimethoprim-resistance genes, sul and dfr, and their association with integrons among bacteria associated to Chilean salmon farming. For this purpose, 91 Gram-negative strains resistant to sulfisoxazole and/or trimethoprim recovered from various sources of seven Chilean salmonid farms and mainly identified as belonging to the Pseudomonas genus (81.0%) were studied. Patterns of antimicrobial resistance of strains showed a high incidence of resistance to florfenicol (98.9%), erythromycin (95.6%), furazolidone (90.1%) and amoxicillin (98.0%), whereas strains exhibited minimum inhibitory concentrations (MIC(90)) values of sulfisoxazole and trimethoprim of >4,096 and >2,048 μg mL(-1), respectively. Strains were studied for their carriage of these genes by polymerase chain reaction, using specific primers, and 28 strains (30.8%) were found to carry at least one type of sul gene, mainly associated to a class 1 integron (17 strains), and identified by 16S rRNA gene sequencing as mainly belonging to the Pseudomonas genus (21 strains). Of these, 22 strains carried the sul1 gene, 3 strains carried the sul2 gene, and 3 strains carried both the sul1 and sul2 genes. Among these, 19 strains also carried the class 1 integron-integrase gene intI1, whereas the dfrA1, dfrA12 and dfrA14 genes were detected, mostly not inserted in the class 1 integron. Otherwise, the sul3 and intI2 genes were not found. In addition, the capability to transfer by conjugation these resistance determinants was evaluated in 22 selected strains, and sul and dfr genes were successfully transferred by 10 assayed strains, mainly mediated by a 10 kb plasmid, with a frequency of transfer of 1.4 × 10(-5) to 8.4 × 10(-3) transconjugant per recipient cell, and exhibiting a co-transference of resistance to florfenicol and oxytetracycline, currently the most used in Chilean salmon industry, suggesting an antibacterial co-selection phenomenon. This is the first report of the characterization and transferability of integrons as well as sul and dfr genes among bacteria associated to Chilean salmon farms, evidencing a relevant role of this environment as a reservoir of these genes.201931031727
5920180.9992Study on acquisition of bacterial antibiotic resistance determinants in poultry litter. Antibiotic resistance and the mode of transmission were investigated in bacteria isolated from poultry litter. Total aerobic heterotrophic bacteria were screened and identified for their resistance to different antibiotics such as ampicillin, streptomycin, erythromycin, tetracycline, chloramphenicol, kanamycin, tobramycin, and rifampicin. The distribution of bacteria found in the litter was Staphylococcus (29.1%), which was the predominant group, followed by Streptococcus (25%), Micrococcus (20.8%), Escherichia coli (12.5%), Salmonella (8.3%), and Aeromonas (4.1%). Fifty percent of these isolates were susceptible to ampicillin, 57% to erythromycin, 25% to tetracycline, 4% to chloramphenicol, 40% to kanamycin, 75% to streptomycin, 54% to tobramycin, and 4% to rifampicin. Three randomly selected isolates representing Staphylococcus, Streptococcus, and Micrococcus were examined for plasmids, and plasmid-curing and plasmid-induced transformation studies were conducted. Streptococcus and Micrococcus harbored a plasmid of 4.2 and 5.1 kb, respectively, whereas Staphylococcus did not harbor any plasmids. Plasmids were cured in Streptococcus and Micrococcus at a concentration of 75 and 100 microg/ mL of acridine orange, respectively, and transformation of 4.2- and 5.1-kb plasmids isolated from the Streptococcus and Micrococcus to plasmid-free E. coli DH5alpha strain was possible. In conjugation experiments, the antibiotic resistance profiles of transconjugant cells were found to be the same as the donors with the exception of Staphylococcus. The results of this study suggest that transformation and conjugation could be an important mechanism for horizontal gene transfer between bacteria in poultry litter. An understanding of the mechanism and magnitude of resistance gene transfer may provide a strategy to reduce the potential for dissemination of these genes.200919531707
5769190.9992Analysis of Nucleotide Sequences Similarity and Protein Prediction of Some Resistance Genes in Escherichia coli Isolated from Iraqi Patients with Urinary Tract Infections. Antibiotic resistance leads to a dramatic increase in the morbidity and mortality caused by infectious diseases. Even though estimates vary widely, the economic cost of antimicrobial-resistant bacteria is on a rise. The current aimed to identify the antimicrobial resistance of Escherichia coli (E. coli). In fact, this study focused on the recent deep-learning methods (sequencing) to investigate E. coli antibiotic resistance and their protein sequences. To evaluate antibiotic resistance, the sequencing method could be considered the method of choice. The E. coli was identified by either specific biochemical tests or polymerase chain reaction (PCR) using the 16S rRNA gene. The results of aadA1 gene sequences demonstrated 10 nucleic acid substitutions throughout, as compared to the reference NCBI database (MG385063). Out of the 10 nucleic acid substitutions, 9 missense effects were observed. While the dfrA1 gene sequences illustrated 20 nucleic acid substitutions throughout, compared to the reference NCBI database (KY706080), out of the 20 nucleic acid substitutions, 8 missense effects were observed. Furthermore, the sul1 gene sequences displayed 20 nucleic acid substitutions throughout, in comparison with the reference NCBI database (CP069561), and out of the 20 nucleic acid substitutions, 12 missense effects were detected. The cat1 gene sequences showed 14 nucleic acid substitutions throughout, compared to the reference NCBI database (NC017660), and out of the 14 nucleic acid substitutions, 8 missense effects were observed. The precise point (Missense) mutation in four genes (aadA1, dfrA1, sul1, and cat1) in the expected sequence is interpreted to be the target site of a site-specific recombination mechanism that led to antibiotics resistance in E. coli isolates.202236618275