Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
586001.0000Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. Twenty-three isolates of the two genera Pasteurella (P.) and Mannheimia (M.) were analysed for the presence of genes specifying resistance to sulfonamides, streptomycin, and chloramphenicol. Specific PCR assays for the detection of the genes sulII, strA and catAIII, but also for the confirmation of their physical linkage were developed. A resistance gene cluster consisting of all three genes and characterised by a PCR amplicon of 2.2 kb was detected on four different types of plasmids and also in the chromosomal DNA of seven isolates. Physically linked sulII and strA genes were detected on three different types of plasmids and in the chromosomal DNA of three isolates. Sequence analysis of the different PCR amplicons revealed that these genes were present in either the orientation sulII-strA separated by differently sized spacer sequences, or strA-sulII. A truncated strA gene preceding a sulII gene was also detected in two cases.200111750817
595310.9998CAT III chloramphenicol resistance in Pasteurella haemolytica and Pasteurella multocida isolated from calves. Chloramphenicol, which had been used extensively for antimicrobial veterinary therapy, was prohibited in Europe in 1994. Soon after it became available, resistance to this drug was detected, generally conferred by plasmids encoding inactivating enzymes, the chloramphenicol acetyltransferases (CAT), in Gram-negative as well as in Gram-positive bacteria. In the last few years, resistance to antibiotics emerged in Pasteurella strains from breeding herds and this evolution was followed by a national surveillance network. Chloramphenicol-resistance was more recently detected in multiresistant strains. We studied 25 strains of Pasteurella, selected for their resistance to chloramphenicol. Production of a CAT was demonstrated in all these strains. PCR amplification indicated that the CAT produced was of type III for 23 of them. In these strains, chloramphenicol-resistance was mediated by plasmids of about 5.1 kb. Southern blots on restriction fragments suggested a high degree of homology between these 5.1 kb plasmids. In the two other strains, production of a CAT type I was demonstrated, and the corresponding genes were either shown on a plasmid of 17 or 5.5 kb.19968877534
586120.9998Distribution of genes conferring combined resistance to tetracycline and minocycline among group B streptococcal isolates from humans and various animals. Forty-nine tetracycline and minocycline resistant streptococci of serological group B isolated from humans, cattle, pigs and nutrias were investigated for the presence of genes conferring this combined resistance. Southern blot hybridization of EcoRI-digested chromosomal DNA of the bacteria revealed for 39 of the cultures a hybridization signal with tet(M), for four of the cultures a hybridization signal with tet(O) and for none of the cultures a hybridization signal with the tet(Q) gene probe. The restriction endonuclease digested and blotted DNA of six tetracycline and minocycline resistant group B streptococci did not hybridize with any of the available gene probes. The tet(M) gene probes recognized complementary sequences of EcoRI fragments of approximately 10.5 kb and 21.5 kb, the tet(O) gene probe hybridized with fragments of approximately 19 kb. The hybridization of the tet(M) gene probe in two different patterns appeared to be related to the origin of the cultures.19947727901
586230.9998Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Twenty-five distinct tetracycline-resistant gram-negative bacteria recovered from four Chilean fish farms with no history of recent antibiotic use were examined for the presence of tetracycline resistance (tet) genes. Sixty percent of the isolates carried 1 of the 22 known tet genes examined. The distribution was as follows. The tet(A) gene was found in six isolates. The tet(B) gene was found in two isolates, including the first description in the genus Brevundimonas: Two isolates carried the tet(34) and tet(B) genes, including the first description of the tet(34) gene in Pseudomonas and Serratia and the first description of the tet(B) gene in Pseudomonas: The tet(H) gene was found in two isolates, which includes the first description in the genera Moraxella and Acinetobacter: One isolate carried tet(E), and one isolate carried tet(35), the first description of the gene in the genus Stenotrophomonas: Finally, one isolate carried tet(L), found for the first time in the genus Morganella: By DNA sequence analysis, the two tet(H) genes were indistinguishable from the previously sequenced tet(H) gene from Tn5706 found in Pasteurella multocida. The Acinetobacter radioresistens isolate also harbored the Tn5706-associated 1,063-bp IS element IS1597, while the Moraxella isolate carried a 1,026-bp IS-like element whose 293-amino-acid transposase protein exhibited 69% identity and 84% similarity to the transposase protein of IS1597, suggesting the presence of a novel IS element. The distribution of tet genes from the Chilean freshwater ponds was different than those that have previously been described from other geographical locations, with 40% of the isolates carrying unidentified tetracycline resistance genes.200312604516
291440.9998The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. OBJECTIVES: The aim of this study was to investigate the genetic background for streptomycin resistance in Escherichia coli and perform analysis of the MICs in relation to genetic background. METHODS: The 136 strains investigated, with streptomycin MICs of > or =16 mg/L, originated from meat and meat products and were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET). PCR was carried out for detection of the streptomycin resistance genes strA-strB and the integron-associated aadA gene cassettes. RESULTS: The strA-strB genes and/or an aadA gene cassette were detected in 110 of the 136 (80.9%) strains investigated. The strA-strB genes were the most prevalent, and were detected in 90 strains. The aadA gene cassettes were detected in 29 strains, and nine strains harboured both the strA-strB genes and an aadA gene cassette. The distribution of MICs differed considerably between isolates harbouring the strA-strB genes (solely) (MIC(50) = 128 mg/L) and isolates harbouring an aadA gene cassette (solely) (MIC(50) = 16 mg/L). Strains harbouring both the strA-strB genes and an aadA gene cassette had higher streptomycin MICs than those harbouring either alone. CONCLUSIONS: The distribution of streptomycin MICs in E. coli can be greatly influenced by the genes encoding resistance to streptomycin. The strA-strB genes are probably involved in conferring high-level resistance to streptomycin, whereas the opposite seems to be the case for the aadA gene cassettes. The low-level streptomycin resistance, caused by the presence of aadA gene cassettes in integrons, represents an obstacle in classifying E. coli as susceptible or resistant to streptomycin. Furthermore, the determination of an epidemiological cut-off value for surveillance purposes is also complicated by dissemination of integrons containing the aadA cassettes.200515897222
599650.9998Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species and strains. Based on the distribution of these MIC values, most of the strains were either susceptible or intrinsically resistant to these antibiotics. However, the MIC range of some of these antibiotics showed a bimodal distribution, which suggested that some of the tested strains possess acquired antibiotic resistance. Screening for resistance genes was performed by PCR using specific primers, or using a DNA microarray with around 300 nucleotide probes representing 7 classes of antibiotic resistance genes. The genes identified encoded resistance to tetracycline [tet(M), tet(W), tet(O) and tet(O/W)], erythromycin and clindamycin [erm(B)] and streptomycin [aph(E) and sat(3)]. Internal portions of some of these determinants were sequenced and found to be identical to genes described in other bacteria. All resistance determinants were located on the bacterial chromosome, except for tet(M), which was identified on plasmids in Lactococcus lactis. The contribution of intrinsic multidrug transporters to the antibiotic resistance was investigated by cloning and measuring the expression of Bifidobacterium breve genes in L. lactis.200817957105
595560.9998Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Despite a trend of declining consumption, resistance to co-trimoxazole has increased during a 12-year period in Stockholm. The molecular background to this surprising development was investigated by using PCR to screen for integrons and specific resistance genes, followed by sequence analysis of selected integrons, in 105 clinical urinary isolates of Gram-negative bacteria selected partly for trimethoprim resistance. Sixty-five integrons of class 1 or 2 were detected in a subset of 59 isolates, and of these positive isolates, all but one were resistant to trimethoprim. However, 11 isolates were resistant to trimethoprim, but negative for integrons. Isolates positive for integrons were resistant to an average of 4.2 antibiotics, compared with 1.9 antibiotics for integron-negative isolates. Despite this, the only gene cassettes identified in 19 class 1 integrons analysed were dfr and aadA cassettes. Thus, only resistance to trimethoprim, streptomycin, spectinomycin and sulphonamides could be explained by the presence of integrons in these isolates. A new dfr gene, named dfrA22, was discovered as a single gene cassette in a class 1 integron. In addition, sulphonamide resistance in many isolates was caused by carriage of sul2, which has no known association with integrons. Resistance to co-trimoxazole and many other antibiotics was thus not accounted for fully by the presence of integrons in these isolates.200515715715
355570.9997Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents.201424612265
599780.9997Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Probiotic bacteria and starter cultures of Lactobacillus, Weissella and Bifidobacterium of African and European origins were studied and compared for their susceptibility to antimicrobials. The study included, for all isolates, determination of MICs (Minimal Inhibitory Concentration) for 24 antimicrobials, detection of resistance genes by PCR reactions using specific primers and sequencing of positive amplicons. The ability of Lb. reuteri from Africa to transfer the erythromycin resistance gene erm(B) to closely related bacteria was investigated by conjugation. Variations were observed and high levels of intrinsic resistance were found among the tested species. Positive amplicons were obtained for resistance genes encoding aminoglycoside (aph(3')-III, aadA, aadE) and tetracycline (tet(S)) from isolates from Europe and macrolide (erm(B)) from an isolate from Africa. However, only the erm(B) gene found in Lb. reuteri L4: 12002 from Africa contained a homologous sequence to previously published sequences. This gene could be transferred in vitro to enterococci. Higher prevalence of phenotypic resistance for aminoglycoside was found in isolates from Europe.200818063151
585790.9997Prevalence of tetracycline resistance genes in Greek seawater habitats. The presence of selected tetracycline resistance (TcR) genes was studied in different Greek seawater habitats, originated from wastewater treatment facilities, fishfarm, and coastal environments. The methods employed included assessment of the presence of twelve gene clusters by PCR, followed by hybridization with specific probes, in habitat extracted DNA, Tc(R) bacteria, and exogenous isolated plasmids conferring TcR. The direct DNA-based analysis showed that tet(A) and tet(K) genes were detected in all habitats, whilst tet(C) and tet(E) were present in fishfarm and wastewater effluent samples and tet(M) was detected in fish-farm and coastal samples. Resistance genes tet(h), tet(C), tet(K), and tet(M) were detected in 60 of the 89 isolates screened. These isolates were identified by fatty acid methyl ester analysis (FAME) as Stenotrophomonas, Acinetobacter, Pseudomonas, Bacillus, and Staphylococcus strains. The presence of the TcR genes in 15% of the bacterial isolates coincided with the presence of IncP plasmids. A habitat-specific dissemination of IncP alpha plasmids in wastewater effluent isolates and of IncP beta plasmids in fishfarm isolates was observed. Exogenous isolation demonstrated the presence of plasmids harbouring Tc(R) genes in all the habitats tested. Plasmids were shown to carry tet(h), tet(C), tet(E), and tet(K) genes. It is concluded that TcR genes are widespread in the seawater habitats studied and often occur on broad host range plasmids that seem to be well disseminated in the bacterial communities.200819107391
5853100.9997Identification of the tet(B) resistance gene in Streptococcus suis. The tetracycline resistance gene, tet(B), has been described previously in gram negative bacteria. In this study tet(B) was detected in plasmid extracts from 17/111 (15%) Streptococcus suis isolates from diseased pigs, representing the first report of this resistance gene in gram positive bacteria.201120696603
2800110.9997Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. Occurrence of tetracycline resistance genes encoding ribosomal protection proteins was examined in 151 tetracycline-resistant bacterial isolates from fish and seawater at coastal aquaculture sites in Japan and Korea. The tet(M) gene was detected in 34 Japanese and Korean isolates, which included Vibrio sp., Lactococcus garvieae, Photobacterium damsela subsp. piscicida, and unidentified Gram-positive bacteria. The majority of these bacterial isolates displayed high-level resistance with a minimum inhibitory concentrations (MICs) equal to or greater than 250 microg/ml of oxytetracycline and only four isolates had MICs less than 31.3 microg/ml. 16S rDNA RFLP typing of tet(M)-positive Vibrio isolates suggests that these are clonal populations of the same phylotype specific to a particular location. One Vibrio clone (phylotype III), however, is widely disseminated, being detected during different sampling years, at different locations, and in different fish species in both Japan and Korea. The tet(S) gene was detected in L. garvieae from yellowtail in Japan and in Vibrio sp. from seawater in Korea. This is the first report of tet(S) occurrence in Gram-negative facultative anaerobes. These results suggest that tet(M) and tet(S) genes are present in fish intestinal and seawater bacteria at aquaculture sites and could be an important reservoir of tetracycline resistance genes in the marine environment.200415268950
5921120.9997Prevalence of tetracycline resistance genes in oral bacteria. Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tetracycline resistance genes in these isolates were identified by multiplex PCR and DNA sequencing. Tetracycline-resistant bacteria constituted an average of 11% of the total cultivable oral microflora. A representative 105 tetracycline-resistant isolates from the 20 samples were investigated; most of the isolates carried tetracycline resistance genes encoding a ribosomal protection protein. The most common tet gene identified was tet(M), which was found in 79% of all the isolates. The second most common gene identified was tet(W), which was found in 21% of all the isolates, followed by tet(O) and tet(Q) (10.5 and 9.5% of the isolates, respectively) and then tet(S) (2.8% of the isolates). Tetracycline resistance genes encoding an efflux protein were detected in 4.8% of all the tetracycline-resistant isolates; 2.8% of the isolates had tet(L) and 1% carried tet(A) and tet(K) each. The results have shown that a variety of tetracycline resistance genes are present in the oral microflora of healthy adults. This is the first report of tet(W) in oral bacteria and the first report to show that tet(O), tet(Q), tet(A), and tet(S) can be found in some oral species.200312604515
2010130.9997Epidemiological survey of genes encoding aminoglycoside phosphotransferases APH (3') I and APH (3') II using DNA probes. The epidemiological survey of APH (3') I and APH (3') II genes, at a time when the specific antibiotic pressure was very low, was carried out by DNA-DNA hybridization. The sample included 334 aminoglycoside resistant Gram-negative bacteria collected from patients of a General Hospital. Of these, 251 hybridized with the APH (3') I-probe and 19 with the APH (3') II-probe but only 190 strains showed high resistance levels (CIM greater than 64 micrograms/ml) for kanamycin, neomycin and paromomycin. These strains were isolated both from inpatients and outpatients with different infectious diseases. The APH (3') I-gene was dispersed among all the bacterial species and clinical specimens tested but the APH (3') II-gene was not found in Pseudomonas spp, Escherichia coli, Citrobacter freundii and Enterobacter cloacae, nor in infected catheters. Several plasmids of different sizes carrying APH (3') genes were detected among different bacteria. Plasmids along with transposable elements (the probes used in this work were developed from Tn906 and Tn5) and the high consumption of other antibiotics whose resistance is carried by these bacteria might be playing an important role in the maintenance and dispersion of APH (3') genes.19921328557
5935140.9997Antibiotic resistance genes in anaerobic bacteria isolated from primary dental root canal infections. Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes.201223108290
6000150.9997Incidence and behaviour of Tn916-like elements within tetracycline-resistant bacteria isolated from root canals. INTRODUCTION: Tetracycline resistance is commonly found in endodontic bacteria. One of the most common tetracycline-resistance genes is tet(M), which is often encoded on the broad-host-range conjugative transposon Tn916. This study aimed to determine whether tet(M) was present in bacteria isolated from endodontic patients at the Eastman Dental Institute and whether this gene was carried on the transferable conjugative transposon Tn916. METHODS: The cultivable microflora isolated from 15 endodontic patients was screened for resistance to tetracycline. Polymerase chain reactions for tet(M) and for unique regions of Tn916 were carried out on the DNA of all tetracycline-resistant bacteria. Filter-mating experiments were used to see if transfer of any Tn916-like elements could occur. RESULTS: Eight out of 15 tetracycline-resistant bacteria isolated were shown to possess tet(M). Furthermore, four of these eight were shown to possess the Tn916-unique regions linked to the tet(M) gene. Transfer experiments demonstrated that a Neisseria sp. donor could transfer an extremely unstable Tn916-like element to Enterococcus faecalis. CONCLUSIONS: The tet(M) gene is present in the majority of tetracycline-resistant bacteria isolated in this study and the conjugative transposon Tn916 has been shown to be responsible for the support and transfer of this gene in some of the bacteria isolated.200616842505
5868160.9997Evaluation of plasmid content and tetracycline resistance conjugative transfer in Enterococcus italicus strains of dairy origin. Five Enterococcus italicus strains harbouring tet genes responsible for the tetracycline resistance were subjected to plasmid profile determination studies. For four strains tested the profiles showed between three and six plasmid bands, the size of which ranged between 1.6 and 18.5 kb. Southern hybridization experiments associated tetS and tetK genes with chromosomal DNA in all strains and tetM gene with plasmids of around the same size (18.5 kb) in two of the tested strains. The ability of the new species to transfer tetM gene was studied by transfer experiments with the tetracycline-susceptible recipient strains E. faecalis JH2-2 and OG1RF; mobilization experiments were performed with E. faecalis JH 2-2 harbouring the conjugative plasmid pIP501as helper plasmid. The results obtained show that the new enterococcal species was able to acquire antibiotic resistance by conjugation, but not to transfer its plasmids to other bacteria. Further PCR and hybridization experiments carried out to assess the presence of mobilization sequences also suggest that the tetM plasmid from E. italicus is a non-mobilizable plasmid.200919484299
2082170.9997Rapid screening technique for class 1 integrons in Enterobacteriaceae and nonfermenting gram-negative bacteria and its use in molecular epidemiology. A screening technique for integrons in members of the family Enterobacteriaceae and nonfermenting gram-negative bacteria by real-time PCR is reported. A total of 226 isolates of gram-negative bacteria obtained from a variety of clinical specimens were screened for class 1 integrons by real-time PCR performed on a LightCycler instrument. This technique used a primer pair specific for a 300-bp conserved region at the 5' ends of class 1 integrons. The screening assay was evaluated by comparison with results obtained by the conventional, thermal-block PCR (long PCR) by using established conditions and primers for the detection of class 1 integrons, and the real-time PCR technique was thus shown to be both sensitive and specific. DNA from 50 of 226 (22%) isolates screened was identified as containing an integron by the screening PCR, and sequence data were obtained across the integron for 34 of 50 (68%) of these isolates. In an attempt to study the molecular epidemiology of antimicrobial resistance genes carried within integrons, a comparison of the types of gene cassettes carried by isolates from different patients was made. Adenyltransferase genes conferring resistance to streptomycin and spectinomycin were the predominant gene cassettes amplified in the study. Resistance to trimethoprim was also frequently found to be encoded within integrons. Furthermore, multiple bacterial isolates obtained from one patient over a 5-month period were all shown to carry an integron containing the same single adenyltransferase gene cassette, suggesting that these elements were relatively stable in this case.200111257011
5999180.9997Food isolate Listeria monocytogenes harboring tetM gene plasmid-mediated exchangeable to Enterococcus faecalis on the surface of processed cheese. The genetic basis of tetracycline resistance in a food isolate Listeria monocytogenes (Lm16) was evaluated. Resistance to tetracycline was associated with the presence of the tetM gene in plasmid DNA. The sequence of tetM showed 100% of similarity with the Enterococcus faecalis sequences found in the EMBL database, suggesting that Lm16 received this gene from E. faecalis. Various size bands were detected in the DNA plasmid analysis, the largest being approximately 54.38 kb. Transferability of the tetM gene was achieved in vitro by agar matings between Lm16 and E. faecalis JH2-2, proving the potential for the spread of tetM by horizontal gene transfer. Furthermore, the conjugation experiments were performed on the surface of processed cheese, confirming the transferability in a food matrix. PCR assays were used to confirm the identity of E. faecalis and to detect the tetM gene in transconjugant bacteria. Additionally, the minimal inhibitory concentration for tetracycline and rifampicin and plasmid profiling were performed. This is the first report of a food isolate L. monocytogenes carrying the tetM gene in plasmid DNA, and it highlights the potential risk of spreading antimicrobial resistance genes between different bacteria.201829580513
5957190.9997ant(6)-I Genes Encoding Aminoglycoside O-Nucleotidyltransferases Are Widely Spread Among Streptomycin Resistant Strains of Campylobacter jejuni and Campylobacter coli. Thermotolerant Campylobacter species C. jejuni and C. coli are actually recognized as the major bacterial agent responsible for food-transmitted gastroenteritis. The most effective antimicrobials against Campylobacter are macrolides and some, but not all aminoglycosides. Among these, susceptibility to streptomycin is reduced by mutations in the ribosomal RPSL protein or by expression of ANT(6)-I aminoglycoside O-nucleotidyltransferases. The presence of streptomycin resistance genes was evaluated among streptomycin-resistant Campylobacter isolated from humans and animals by using PCR with degenerated primers devised to distinguish ant(6)-Ia, ant(6)-Ib and other ant-like genes. Genes encoding ANT(6)-I enzymes were found in all possible combinations with a major fraction of the isolates carrying a previously described ant-like gene, distantly related and belonging to the new ant(6)-I sub-family ant(6)-Ie. Among Campylobacter isolates, ant(6)-Ie was uniquely found functional in C. coli, as shown by gene transfer and phenotype expression in Escherichia coli, unlike detected coding sequences in C. jejuni that were truncated by an internal frame shift associated to RPSL mutations in streptomycin resistant strains. The genetic relationships of C. coli isolates with ANT(6)-Ie revealed one cluster of strains presented in bovine and humans, suggesting a circulation pathway of Campylobacter strains by consuming contaminated calf meat by bacteria expressing this streptomycin resistance element.201830405573