# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5852 | 0 | 1.0000 | A novel transposon, Tn6009, composed of a Tn916 element linked with a Staphylococcus aureus mer operon. OBJECTIVES: The aim of this study was to characterize a novel conjugative transposon Tn6009 composed of a Tn916 linked to a Staphylococcus aureus mer operon in representative Gram-positive and Gram-negative bacteria isolated in Nigeria and Portugal. METHODS: Eighty-three Gram-positive and 34 Gram-negative bacteria were screened for the presence of the Tn6009 using DNA-DNA hybridization, PCR, hybridization of PCR products, sequencing and mating experiments by established procedures. RESULTS: Forty-three oral and 23 urine Gram-negative and Gram-positive isolates carried the Tn6009. Sequencing was performed to verify the direct linkage between the mer resistance genes and the tet(M) gene. A Nigerian Klebsiella pneumoniae, isolated from a urinary tract infection patient, and one commensal isolate from each of the other Tn6009-positive genera, Serratia liquefaciens, Pseudomonas sp., Enterococcus sp. and Streptococcus sp. isolated from the oral and urine samples of healthy Portuguese children, were able to act as donors and conjugally transfer the Tn6009 to the Enterococcus faecalis JH2-2 recipient, resulting in tetracycline- and mercury-resistant E. faecalis transconjugants. CONCLUSIONS: This study reports a novel non-composite conjugative transposon Tn6009 containing a Tn916 element linked to an S. aureus mer operon carrying genes coding for inorganic mercury resistance (merA), an organic mercury resistance (merB), a regulatory protein (merR) and a mercury transporter (merT). This transposon was identified in 66 isolates from two Gram-positive and three Gram-negative genera and is the first transposon in the Tn916 family to carry the Gram-positive mer genes directly linked to the tet(M) gene. | 2008 | 18583328 |
| 5853 | 1 | 0.9998 | Identification of the tet(B) resistance gene in Streptococcus suis. The tetracycline resistance gene, tet(B), has been described previously in gram negative bacteria. In this study tet(B) was detected in plasmid extracts from 17/111 (15%) Streptococcus suis isolates from diseased pigs, representing the first report of this resistance gene in gram positive bacteria. | 2011 | 20696603 |
| 5850 | 2 | 0.9998 | Gram-positive merA gene in gram-negative oral and urine bacteria. Clinical mercury resistant (Hg(r)) Gram-negative bacteria carrying Gram-positive mercury reductase (merA)-like genes were characterized using DNA-DNA hybridization, PCR and sequencing. A PCR assay was developed which discriminated between the merA genes related to Staphylococcus and those related to the Bacillus/Streptococcus merA genes by the difference in size of the PCR product. DNA sequence analysis correlated with the PCR assay. The merA genes from Acinetobacter junii, Enterobacter cloacae and Escherichia coli were sequenced and shared 98-99% identical nucleotide (nt) and 99.6-100% amino acid identity with the Staphylococcus aureus MerA protein. A fourth merA gene, from Pantoeae agglomerans, was partially sequenced (60%) and had 99% identical nt and 100% amino acid identity with the Streptococcus oralis MerA protein. All the Hg(r) Gram-negative bacteria transferred their Gram-positive merA genes to a Gram-positive Enterococcus faecalis recipient with the resulting transconjugants expressing mercury resistance. These Gram-positive merA genes join Gram-positive tetracycline resistance and Gram-positive macrolide resistance genes in their association with mobile elements which are able to transfer and express in Gram-negative bacteria. | 2004 | 15358427 |
| 5851 | 3 | 0.9997 | Arsenic resistance determinants from environmental bacteria. Arsenic resistance determinants from 42 environmental bacterial isolates (32 Gram negative) were analyzed by DNA: DNA hybridization using probes derived from Escherichia coli and Staphylococcus plasmid or chromosomal arsenic resistance (ars) genes. In colony hybridization assays, 11 and 1 Gram negative strains hybridized with the E. coli chromosome and plasmid probes, respectively. No hybridization was detected using a probe containing only the arsA (ATPase) gene from E. coli plasmid or with a Staphylococcus plasmid ars probe. From Southern hybridization tests of some of the positive strains it was concluded that homology to ars chromosomal genes occurred within chromosome regions, except in an E. coli isolate where hybridization occurred in both the chromosome and a 130-kb plasmid. Our results show that DNA sequences homologous to E. coli ars chromosomal genes are commonly present in the chromosomes of environmental arsenic-resistant Gram negative isolates. | 1998 | 10932734 |
| 2083 | 4 | 0.9997 | A classification system for plasmids from enterococci and other Gram-positive bacteria. A classification system for plasmids isolated from enterococci and other Gram-positive bacteria was developed based on 111 published plasmid sequences from enterococci and other Gram-positive bacteria; mostly staphylococci. Based on PCR amplification of conserved areas of the replication initiating genes (rep), alignment of these sequences and using a cutoff value of 80% identity on both protein and DNA level, 19 replicon families (rep-families) were defined together with several unique sequences. The prevalence of these rep-families was tested on 79 enterococcal isolates from a collection of isolates of animal and human origin. Difference in prevalence of the designed rep-families were detected with rep(9) being most prevalent in Enterococcus faecalis and rep(2) in Enterococcus faecium. In 33% of the tested E. faecium and 32% of the tested E. faecalis no positive amplicons were detected. Furthermore, conjugation experiments were performed obtaining 30 transconjugants when selecting for antimicrobial resistance. Among them 19 gave no positive amplicons indicating presence of rep-families not tested for in this experimental setup. | 2010 | 19879906 |
| 2082 | 5 | 0.9997 | Rapid screening technique for class 1 integrons in Enterobacteriaceae and nonfermenting gram-negative bacteria and its use in molecular epidemiology. A screening technique for integrons in members of the family Enterobacteriaceae and nonfermenting gram-negative bacteria by real-time PCR is reported. A total of 226 isolates of gram-negative bacteria obtained from a variety of clinical specimens were screened for class 1 integrons by real-time PCR performed on a LightCycler instrument. This technique used a primer pair specific for a 300-bp conserved region at the 5' ends of class 1 integrons. The screening assay was evaluated by comparison with results obtained by the conventional, thermal-block PCR (long PCR) by using established conditions and primers for the detection of class 1 integrons, and the real-time PCR technique was thus shown to be both sensitive and specific. DNA from 50 of 226 (22%) isolates screened was identified as containing an integron by the screening PCR, and sequence data were obtained across the integron for 34 of 50 (68%) of these isolates. In an attempt to study the molecular epidemiology of antimicrobial resistance genes carried within integrons, a comparison of the types of gene cassettes carried by isolates from different patients was made. Adenyltransferase genes conferring resistance to streptomycin and spectinomycin were the predominant gene cassettes amplified in the study. Resistance to trimethoprim was also frequently found to be encoded within integrons. Furthermore, multiple bacterial isolates obtained from one patient over a 5-month period were all shown to carry an integron containing the same single adenyltransferase gene cassette, suggesting that these elements were relatively stable in this case. | 2001 | 11257011 |
| 2081 | 6 | 0.9997 | Distribution of the antiseptic-resistance gene qacE delta 1 in gram-positive bacteria. The distribution of the antiseptic-resistance genes qacE and qacE delta 1, originally isolated from Gram-negative bacteria, was studied in a large number of Gram-positive bacteria by a method that included the polymerase chain reaction. A total of 151 strains of Staphylococcus and Enterococcus, isolated from clinical sources and obtained from the Japanese Collection of Microorganisms, was used in this analysis. We found the qacE delta 1 gene in 36 of 103 strains of Staphylococcus and in nine of 48 strains of Enterococcus. All of the strains in which we detected the qacE delta 1 gene were clinical isolates. The qacE gene was not detected in any of the strains examined in this study. The nucleotide sequences of the qacE delta 1 genes from the strains of Staphylococcus and Enterococcus were identical to that of the gene located on integron InC in Pseudomonas aeruginosa. These results indicate that the antiseptic-resistance gene qacE delta 1 is present in Gram-positive, as well as Gram-negative, bacteria. | 1998 | 9742702 |
| 5947 | 7 | 0.9997 | Fluoroquinolone-resistant Streptococcus agalactiae: epidemiology and mechanism of resistance. Quinolone-resistant Streptococcus agalactiae bacteria were recovered from single-patient isolates and found to contain mutations in the gyrase and topoisomerase IV genes. Pulsed-field gel electrophoresis demonstrated that four isolates from the same long-term care facility were closely related; in seven cases, quinolone-resistant Haemophilus influenzae and S. agalactiae bacteria were isolated from the same patient. | 2005 | 15917553 |
| 6000 | 8 | 0.9997 | Incidence and behaviour of Tn916-like elements within tetracycline-resistant bacteria isolated from root canals. INTRODUCTION: Tetracycline resistance is commonly found in endodontic bacteria. One of the most common tetracycline-resistance genes is tet(M), which is often encoded on the broad-host-range conjugative transposon Tn916. This study aimed to determine whether tet(M) was present in bacteria isolated from endodontic patients at the Eastman Dental Institute and whether this gene was carried on the transferable conjugative transposon Tn916. METHODS: The cultivable microflora isolated from 15 endodontic patients was screened for resistance to tetracycline. Polymerase chain reactions for tet(M) and for unique regions of Tn916 were carried out on the DNA of all tetracycline-resistant bacteria. Filter-mating experiments were used to see if transfer of any Tn916-like elements could occur. RESULTS: Eight out of 15 tetracycline-resistant bacteria isolated were shown to possess tet(M). Furthermore, four of these eight were shown to possess the Tn916-unique regions linked to the tet(M) gene. Transfer experiments demonstrated that a Neisseria sp. donor could transfer an extremely unstable Tn916-like element to Enterococcus faecalis. CONCLUSIONS: The tet(M) gene is present in the majority of tetracycline-resistant bacteria isolated in this study and the conjugative transposon Tn916 has been shown to be responsible for the support and transfer of this gene in some of the bacteria isolated. | 2006 | 16842505 |
| 5855 | 9 | 0.9997 | Plasmid-encoded resistance to arsenic compounds in Gram-negative bacteria isolated from a hospital environment in Venezuela. Resistance to arsenic compounds was examined among amikacin resistant Gram-negative bacteria isolate from a hospital environment. Arsenite resistance (Ars(r)) was found in a high proportion of isolates ( >60%) being frequently associated with resistance to tellurite (40%), and to other antimicrobial agents. Ars determinants (27%) were found to be transferable to E. coli K12 strains from which large plasmid DNA molecules were isolated and characterized by agarose gel electrophoresis. Plasmids were identified by both classical incompatibility tests, and by replicon typing using DNA specific probes. Most of the amikacin-arsenite (Ak-Ars) conjugative plasmids belong to the H incompatibility group. These results suggest that Ak-Ars resistance linked to IncH plasmids is wide spread in Gram-negative bacteria. | 1997 | 18611788 |
| 5849 | 10 | 0.9997 | Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. A total of 110 staphylococcal isolates from human skin were found to express a novel type of erythromycin resistance. The bacteria were resistant to 14-membered ring macrolides (MIC 32-128 mg/l) but were sensitive to 16-membered ring macrolides and lincosamides. Resistance to type B streptogramins was inducible by erythromycin. A similar phenotype, designated MS resistance, was previously described in clinical isolates of coagulase-negative staphylococci from the USA. In the UK, MS resistance is widely distributed in coagulase-negative staphylococci but was not detected in 100 erythromycin resistant clinical isolates of Staphylococcus aureus. Tests for susceptibility to a further 16 antibiotics failed to reveal any other selectable marker associated with the MS phenotype. Plasmid pattern analysis of 48 MS isolates showed considerable variability between strains and no common locus for the resistance determinant. In one strain of S. epidermidis co-resistance to tetracycline, penicillin and erythromycin (MS) was associated with a 31.5 kb plasmid, pUL5050 which replicated and expressed all three resistances when transformed into S. aureus RN4220. The MS resistance determinant was localised to a 1.9 kb fragment which was cloned on to the high-copy-number vector, pSK265. A constitutive mutant of S. aureus RN4220 containing the 1.9 kb fragment remained sensitive to clindamycin. This observation, together with the concentration-dependent induction (optimum 5 mg/l of erythromycin) of virginiamycin S resistance suggests that the MS phenotype is not due to altered expression of MLS resistance determinants (erm genes) but probably occurs via a different mechanism. | 1989 | 2559912 |
| 5854 | 11 | 0.9997 | Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli. Bovine-origin Escherichia coli isolates were tested for resistance phenotypes using a disk diffusion assay and for resistance genotypes using a DNA microarray. An isolate with gentamicin and amikacin resistance but with no corresponding genes detected yielded a 1,056-bp DNA sequence with the closest homologues for its inferred protein sequence among a family of 16S rRNA methyltransferase enzymes. These enzymes confer high-level aminoglycoside resistance and have only recently been described in Gram-negative bacteria. | 2010 | 20368404 |
| 5970 | 12 | 0.9997 | DNA microarray for detection of macrolide resistance genes. A DNA microarray was developed to detect bacterial genes conferring resistance to macrolides and related antibiotics. A database containing 65 nonredundant genes selected from publicly available DNA sequences was constructed and used to design 100 oligonucleotide probes that could specifically detect and discriminate all 65 genes. Probes were spotted on a glass slide, and the array was reacted with DNA templates extracted from 20 reference strains of eight different bacterial species (Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Staphylococcus haemolyticus, Escherichia coli, and Bacteroides fragilis) known to harbor 29 different macrolide resistance genes. Hybridization results showed that probes reacted with, and only with, the expected DNA templates and allowed discovery of three unexpected genes, including msr(SA) in B. fragilis, an efflux gene that has not yet been described for gram-negative bacteria. | 2006 | 16723563 |
| 5863 | 13 | 0.9997 | Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. The likelihood that products prepared from raw meat and milk may act as vehicles for antibiotic-resistant bacteria is currently of great concern in food safety issues. In this study, a collection of 94 tetracycline-resistant (Tc(r)) lactic acid bacteria recovered from nine different fermented dry sausage types were subjected to a polyphasic molecular study with the aim of characterizing the host organisms and the tet genes, conferring tetracycline resistance, that they carry. With the (GTG)(5)-PCR DNA fingerprinting technique, the Tc(r) lactic acid bacterial isolates were identified as Lactobacillus plantarum, L. sakei subsp. carnosus, L. sakei subsp. sakei, L. curvatus, and L. alimentarius and typed to the intraspecies level. For a selection of 24 Tc(r) lactic acid bacterial isolates displaying unique (GTG)(5)-PCR fingerprints, tet genes were determined by means of PCR, and only tet(M) was detected. Restriction enzyme analysis with AccI and ScaI revealed two different tet(M) allele types. This grouping was confirmed by partial sequencing of the tet(M) open reading frame, which indicated that the two allele types displayed high sequence similarities (>99.6%) with tet(M) genes previously reported in Staphylococcus aureus MRSA 101 and in Neisseria meningitidis, respectively. Southern hybridization with plasmid profiles revealed that the isolates contained tet(M)-carrying plasmids. In addition to the tet(M) gene, one isolate also contained an erm(B) gene on a different plasmid from the one encoding the tetracycline resistance. Furthermore, it was also shown by PCR that the tet(M) genes were not located on transposons of the Tn916/Tn1545 family. To our knowledge, this is the first detailed molecular study demonstrating that taxonomically and genotypically diverse Lactobacillus strains from different types of fermented meat products can be a host for plasmid-borne tet genes. | 2003 | 12571056 |
| 2010 | 14 | 0.9997 | Epidemiological survey of genes encoding aminoglycoside phosphotransferases APH (3') I and APH (3') II using DNA probes. The epidemiological survey of APH (3') I and APH (3') II genes, at a time when the specific antibiotic pressure was very low, was carried out by DNA-DNA hybridization. The sample included 334 aminoglycoside resistant Gram-negative bacteria collected from patients of a General Hospital. Of these, 251 hybridized with the APH (3') I-probe and 19 with the APH (3') II-probe but only 190 strains showed high resistance levels (CIM greater than 64 micrograms/ml) for kanamycin, neomycin and paromomycin. These strains were isolated both from inpatients and outpatients with different infectious diseases. The APH (3') I-gene was dispersed among all the bacterial species and clinical specimens tested but the APH (3') II-gene was not found in Pseudomonas spp, Escherichia coli, Citrobacter freundii and Enterobacter cloacae, nor in infected catheters. Several plasmids of different sizes carrying APH (3') genes were detected among different bacteria. Plasmids along with transposable elements (the probes used in this work were developed from Tn906 and Tn5) and the high consumption of other antibiotics whose resistance is carried by these bacteria might be playing an important role in the maintenance and dispersion of APH (3') genes. | 1992 | 1328557 |
| 5953 | 15 | 0.9996 | CAT III chloramphenicol resistance in Pasteurella haemolytica and Pasteurella multocida isolated from calves. Chloramphenicol, which had been used extensively for antimicrobial veterinary therapy, was prohibited in Europe in 1994. Soon after it became available, resistance to this drug was detected, generally conferred by plasmids encoding inactivating enzymes, the chloramphenicol acetyltransferases (CAT), in Gram-negative as well as in Gram-positive bacteria. In the last few years, resistance to antibiotics emerged in Pasteurella strains from breeding herds and this evolution was followed by a national surveillance network. Chloramphenicol-resistance was more recently detected in multiresistant strains. We studied 25 strains of Pasteurella, selected for their resistance to chloramphenicol. Production of a CAT was demonstrated in all these strains. PCR amplification indicated that the CAT produced was of type III for 23 of them. In these strains, chloramphenicol-resistance was mediated by plasmids of about 5.1 kb. Southern blots on restriction fragments suggested a high degree of homology between these 5.1 kb plasmids. In the two other strains, production of a CAT type I was demonstrated, and the corresponding genes were either shown on a plasmid of 17 or 5.5 kb. | 1996 | 8877534 |
| 5946 | 16 | 0.9996 | Plasmid-encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicentre survey. Sixty out of 219 fosfomycin-resistant bacteria selected from more than 7400 urinary pathogens in an epidemiological multicentre survey performed in Italy were screened for plasmid genes fosA and fosB conferring fosfomycin resistance. Only five strains, three enterobacteria and two staphylococci, carried plasmids harbouring, respectively, fosA and fosB genes. Fosfomycin resistance in the other isolates was caused by an alteration of the chromosomally encoded GlpT transport system. One strain, Morganella morganii 279, incorporated alpha-glycerolphosphate and its mechanism of fosfomycin resistance needs to be further investigated. Our study showed that PCR amplification is the most accurate, simple and rapid method for epidemiological studies of plasmid-encoded fosfomycin resistance, and that fosfomycin resistance conferred by plasmid genes (both fosA and fosB) accounts for only a low percentage of the fosfomycin-resistant strains. | 1997 | 9338493 |
| 5868 | 17 | 0.9996 | Evaluation of plasmid content and tetracycline resistance conjugative transfer in Enterococcus italicus strains of dairy origin. Five Enterococcus italicus strains harbouring tet genes responsible for the tetracycline resistance were subjected to plasmid profile determination studies. For four strains tested the profiles showed between three and six plasmid bands, the size of which ranged between 1.6 and 18.5 kb. Southern hybridization experiments associated tetS and tetK genes with chromosomal DNA in all strains and tetM gene with plasmids of around the same size (18.5 kb) in two of the tested strains. The ability of the new species to transfer tetM gene was studied by transfer experiments with the tetracycline-susceptible recipient strains E. faecalis JH2-2 and OG1RF; mobilization experiments were performed with E. faecalis JH 2-2 harbouring the conjugative plasmid pIP501as helper plasmid. The results obtained show that the new enterococcal species was able to acquire antibiotic resistance by conjugation, but not to transfer its plasmids to other bacteria. Further PCR and hybridization experiments carried out to assess the presence of mobilization sequences also suggest that the tetM plasmid from E. italicus is a non-mobilizable plasmid. | 2009 | 19484299 |
| 5862 | 18 | 0.9996 | Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Twenty-five distinct tetracycline-resistant gram-negative bacteria recovered from four Chilean fish farms with no history of recent antibiotic use were examined for the presence of tetracycline resistance (tet) genes. Sixty percent of the isolates carried 1 of the 22 known tet genes examined. The distribution was as follows. The tet(A) gene was found in six isolates. The tet(B) gene was found in two isolates, including the first description in the genus Brevundimonas: Two isolates carried the tet(34) and tet(B) genes, including the first description of the tet(34) gene in Pseudomonas and Serratia and the first description of the tet(B) gene in Pseudomonas: The tet(H) gene was found in two isolates, which includes the first description in the genera Moraxella and Acinetobacter: One isolate carried tet(E), and one isolate carried tet(35), the first description of the gene in the genus Stenotrophomonas: Finally, one isolate carried tet(L), found for the first time in the genus Morganella: By DNA sequence analysis, the two tet(H) genes were indistinguishable from the previously sequenced tet(H) gene from Tn5706 found in Pasteurella multocida. The Acinetobacter radioresistens isolate also harbored the Tn5706-associated 1,063-bp IS element IS1597, while the Moraxella isolate carried a 1,026-bp IS-like element whose 293-amino-acid transposase protein exhibited 69% identity and 84% similarity to the transposase protein of IS1597, suggesting the presence of a novel IS element. The distribution of tet genes from the Chilean freshwater ponds was different than those that have previously been described from other geographical locations, with 40% of the isolates carrying unidentified tetracycline resistance genes. | 2003 | 12604516 |
| 5456 | 19 | 0.9996 | Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli. The transferable optrA gene encodes an ABC-F protein which confers resistance to oxazolidinones and phenicols, and has so far been detected exclusively in Gram-positive bacteria, including enterococci, staphylococci and streptococci. Here, we identified for the first time the presence of optrA in naturally occurring Gram-negative bacteria. Seven optrA-positive Campylobacter coli were identified from 563 Campylobacter isolates of animal origin from Guangdong (n = 1, chicken) and Shandong (n = 6, duck) provinces of China in 2017-2018. The detected optrA genes were functionally active and mediated resistance or elevated minimal inhibitory concentrations of linezolid, florfenicol and chloramphenicol in the respective C. coli isolates. The optrA gene, together with other transferable resistance genes, such as fexA, catA9, tet(O), tet(L), erm(A)-like, spc, or aadE, was located in two different chromosome-borne multidrug resistance genomic islands (MDRGIs). In both MDRGIs, complete or truncated copies of the insertion sequence IS1216E were present in the vicinity of optrA. The IS1216E-bracketed genetic environment of optrA was almost identical to the optrA regions on enterococcal plasmids, suggesting that the optrA in Campylobacter probably originated from Enterococcus spp.. Moreover, the formation of an optrA-carrying translocatable unit by recombination of IS1216E indicated that this IS element may play an important role in the horizontal transfer of optrA in Campylobacter. Although optrA was only found in a small number of C. coli isolates, enhanced surveillance is needed to monitor the distribution and the potential emergence of optrA in Campylobacter. | 2020 | 32605743 |