Computer Program for Detection and Analyzing the Porin-Mediated Antibiotic Resistance of Bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
583901.0000Computer Program for Detection and Analyzing the Porin-Mediated Antibiotic Resistance of Bacteria. The aim of this work was to develop a new software tool for identifying gene mutations that determine the porin-mediated resistance to antibiotics in gram-negative bacteria and to demonstrate the functionality of this program by detecting porin-mediated resistance to carbapenems in clinical isolates of Pseudomonas aeruginosa. MATERIALS AND METHODS: The proposed algorithm is based on searching for a correspondence between the reference and the studied genes. When the sought nucleotide sequence is found in the analyzed genome, it is compared with the reference one and analyzed. The genomic analysis is then verified by comparing between the amino acid sequences encoded by the reference and studied genes. The genes of the susceptible P. aeruginosa ATCC 27853 strain were used as the reference nucleotide sequences encoding for porins (OprD, OpdD, and OpdP) involved in the transport of carbapenems into the bacterial cell. The complete genomes of clinical P. aeruginosa isolates from the PATRIC database 3.6.9 and our own collection were used to test the functionality of the proposed program. The analyzed isolates were phenotypically characterized according to the CLSI standard. The search for carbapenemase genes in the studied genomes of P. aeruginosa was carried out using the ResFinder 4.1. RESULTS: The developed program for detecting the genetic determinants of non-plasmid antibiotic resistance made it possible to identify mutations of various types and significance in the porin genes of P. aeruginosa clinical isolates. These mutations led to modifications of the peptide structure of porin proteins. Single amino acid substitutions prevailed in the OpdD and OpdP porins of carbapenem-susceptible and carbapenem-resistant isolates. In the carbapenem-resistant strains, the gene encoding for OprD porin was found heavily modified, including insertions and/or deletions, which led to premature termination of porin synthesis. In several isolates resistant to meropenem, no mutations were detected in the gene encoding for OprD, which might be associated with alternative mechanisms of resistance to carbapenems. CONCLUSION: The proposed software product can become an effective tool for deciphering the molecular genetic mechanisms of bacterial chromosomal resistance to antibiotics. Testing the program revealed differences between the occurrences of mutations significant for carbapenem resistance in the oprD, opdD, and opdP genes.202135265355
583610.9998Identification of Pseudomonas aeruginosa genes associated with antibiotic susceptibility. Pseudomonas aeruginosa causes acute and chronic infections in humans and these infections are difficult to treat due to the bacteria's high-level of intrinsic and acquired resistance to antibiotics. To address this problem, it is crucial to investigate the molecular mechanisms of antibiotic resistance in this organism. In this study, a P. aeruginosa transposon insertion library of 17000 clones was constructed and screened for altered susceptibility to seven antibiotics. Colonies grown on agar plates containing antibiotics at minimum inhibitory concentrations (MICs) and those unable to grow at 1/2 MIC were collected. The transposon-disrupted genes in 43 confirmed mutants that showed at least a three-fold increase or a two-fold decrease in susceptibility to at least one antibiotic were determined by semi-random PCR and subsequent sequencing analysis. In addition to nine genes known to be associated with antibiotic resistance, including mexI, mexB and mexR, 24 new antibiotic resistance-associated genes were identified, including a fimbrial biogenesis gene pilY1 whose disruption resulted in a 128-fold increase in the MIC of carbenicillin. Twelve of the 43 genes identified were of unknown function. These genes could serve as targets to control or reverse antibiotic resistance in this important human pathogen.201020953948
493220.9998Comprehensive analysis of beta-lactamase genes in clinical strains of Escherichia coli and Klebsiella pneumoniae: molecular characterization, and in Silico predictions. The emergence of beta-lactamase producing multidrug-resistant (MDR) gram-negative bacteria presents a significant challenge to effective treatment of infections. This study focuses on the isolation, amplification, and molecular characterization of β-lactamase genes from clinical strains of Escherichia coli and Klebsiella pneumoniae. Seven new partial gene sequences, including novel variants of blaOXA and blaNDM, were identified after screening 108 clinical samples and submitted to NCBI GenBank. In silico analysis revealed considerable diversity and distribution of these resistance genes among different strains of bacteria. Gene structure predictions using GENSCAN showed that blaOXA genes typically contain single exons with moderate GC content, whereas blaNDM genes feature longer exons with higher GC content. Multiple sequence alignment showed that NDM and OXA β-lactamases were highly similar, with only slight differences in a few amino acids. The study also analyzed the physico-chemical properties, functional domains, and phosphorylation patterns of the β-lactamase proteins. Secondary structure prediction indicated a dominance of beta sheets, contributing to protein stability, while tertiary modeling provided insights into their 3D structure. Overall, these findings provide critical insights into the genetic diversity and potential mechanisms of β-lactamase-mediated resistance, offering valuable information for the development of novel therapeutic strategies and surveillance programs.202540898000
583730.9998The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.201728198411
584040.9998Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. Excessive use of broad-spectrum antibiotics in hospitals has led to the emergence of highly resistant strains of Pseudomonas aeruginosa. To reduce the selection pressure for resistance, it is important to determine the antibiotic susceptibility pattern of bacteria so that hospital patients can be treated with more narrow-spectrum and target-specific antibiotics. This study describes the development of a technique for detecting point muations in the fluoroquinolone resistance-determining region of the gyrA and parC genes as well as the efflux regulatory genes mexR, mexZ and mexOZ that are associated with fluoroquinolone and aminoglycoside resistance. The assay is based on a short DNA sequencing method using multiplex-fast polymerase chain reaction (PCR) and Pyrosequencing for amplification and sequencing of the selected genes. Fifty-nine clinical isolates of P. aeruginosa were examined for mutations in the abovementioned genes. Mutations related to antibiotic resistance were detected in codons 83 and 87 of gyrA and codon 126 of the mexR regulatory gene. Results of this study suggest Pyrosequencing as a substitute for traditional methods as it provides a rapid and reliable technique for determining the antibiotic resistance pattern of a given bacterial strain in <1 h.200919656662
569350.9998Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.201323129055
626660.9998Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Acquisition of exogenous DNA by pathogenic bacteria represents the basis for much of the acquired antimicrobial resistance in pathogenic bacteria. A more extreme mechanism to avoid the effect of an antibiotic is to delete the drug target, although this would be predicted to be rare since drug targets are often essential genes. Here, we review and discuss the description of a novel mechanism of resistance to the cephalosporin drug ceftazidime caused by loss of a penicillin-binding protein (PBP) in a Gram-negative bacillus (Burkholderia pseudomallei). This organism causes melioidosis across south-east Asia and northern Australia, and is usually treated with two or more weeks of ceftazidime followed by oral antibiotics for three to six months. Comparison of clinical isolates from six patients with melioidosis found initial ceftazidime-susceptible isolates and subsequent ceftazidime-resistant variants. The latter failed to grow on commonly used culture media, rendering these isolates difficult to detect in the diagnostic laboratory. Genomic analysis using pulsed-field gel electrophoresis and array based genomic hybridisation revealed a large-scale genomic deletion comprising 49 genes in the ceftazidime-resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a PBP 3 present within the region of genomic loss. This provides one explanation for ceftazidime treatment failure, and may be a frequent but undetected event in patients with melioidosis.201223022568
583870.9998Alteration in the Morphological and Transcriptomic Profiles of Acinetobacter baumannii after Exposure to Colistin. Acinetobacter baumannii is often highly resistant to multiple antimicrobials, posing a risk of treatment failure, and colistin is a "last resort" for treatment of the bacterial infection. However, colistin resistance is easily developed when the bacteria are exposed to the drug, and a comprehensive analysis of colistin-mediated changes in colistin-susceptible and -resistant A. baumannii is needed. In this study, using an isogenic pair of colistin-susceptible and -resistant A. baumannii isolates, alterations in morphologic and transcriptomic characteristics associated with colistin resistance were revealed. Whole-genome sequencing showed that the resistant isolate harbored a PmrB(L208F) mutation conferring colistin resistance, and all other single-nucleotide alterations were located in intergenic regions. Using scanning electron microscopy, it was determined that the colistin-resistant mutant had a shorter cell length than the parental isolate, and filamented cells were found when both isolates were exposed to the inhibitory concentration of colistin. When the isolates were treated with inhibitory concentrations of colistin, more than 80% of the genes were upregulated, including genes associated with antioxidative stress response pathways. The results elucidate the morphological difference between the colistin-susceptible and -resistant isolates and different colistin-mediated responses in A. baumannii isolates depending on their susceptibility to this drug.202439203486
482480.9998Chemogenomic Screen for Imipenem Resistance in Gram-Negative Bacteria. Carbapenem-resistant Gram-negative bacteria are considered a major threat to global health. Imipenem (IMP) is used as a last line of treatment against these pathogens, but its efficacy is diminished by the emergence of resistance. We applied a whole-genome screen in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates that were submitted to chemical mutagenesis, selected for IMP resistance, and characterized by next-generation sequencing. A comparative analysis of IMP-resistant clones showed that most of the highly mutated genes shared by the three species encoded proteins involved in transcription or signal transduction. Of these, the rpoD gene was one of the most prevalent and an E. coli strain disrupted for rpoD displayed a 4-fold increase in resistance to IMP. E. coli and K. pneumoniae also specifically shared several mutated genes, most involved in membrane/cell envelope biogenesis, and the contribution in IMP susceptibility was experimentally proven for amidases, transferases, and transglycosidases. P. aeruginosa differed from the two Enterobacteriaceae isolates with two different resistance mechanisms, with one involving mutations in the oprD porin or, alternatively, in two-component systems. Our chemogenomic screen performed with the three species has highlighted shared and species-specific responses to IMP.IMPORTANCE Gram-negative carbapenem-resistant bacteria are a major threat to global health. The use of genome-wide screening approaches to probe for genes or mutations enabling resistance can lead to identification of molecular markers for diagnostics applications. We describe an approach called Mut-Seq that couples chemical mutagenesis and next-generation sequencing for studying resistance to imipenem in the Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa The use of this approach highlighted shared and species-specific responses, and the role in resistance of a number of genes involved in membrane biogenesis, transcription, and signal transduction was functionally validated. Interestingly, some of the genes identified were previously considered promising therapeutic targets. Our genome-wide screen has the potential to be extended outside drug resistance studies and expanded to other organisms.201931744905
492990.9998Comparative genomics analysis of Acinetobacter baumannii multi-drug resistant and drug sensitive strains in China. The incidence of multidrug-resistant Acinetobacter baumannii has posed a major challenge for clinical treatment. There is still a significant gap in understanding the mechanism causing multi-drug resistance (MDR). In this study, the genomes of 10 drug sensitive and 10 multi-drug resistant A.baumannii strains isolated from a hospital in China were sequenced and compared. The antibiotic resistance genes, virulence factors were determined and CRIPSR-Cas system along with prophages were detected. The results showed that MDR strains are significantly different from the drug sensitive strains in the CARD entries, patterns of sequences matching up to plasmids, VFDB entries and CRISPR-Cas system. MDR strains contain unique CARD items related to antibiotic resistance which are absent in sensitive strains. Furthermore, sequences from genomes of MDR strains can match up with plasmids from more diversified bacteria genera compared to drug sensitive strains. MDR strains also contain a lower level of CRISPR genes and larger amount of prophages, along with higher levels of spacer sequences. These findings provide new experimental evidences for the study of the antibiotic resistance mechanism of A. baumannii.202235307599
5058100.9997Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene. Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn(2+) and K(+)-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa), whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia). FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance.IMPORTANCE There is a critical need to identify alternate approaches to treat infections caused by extensively drug-resistant (XDR) Gram-negative bacteria. Fosfomycin is an old antibiotic which is routinely used for the treatment of urinary tract infections, although there is substantial interest in expanding its use to systemic infections caused by XDR Gram-negative bacteria. In this study, we show that fosA genes, which encode dimeric Mn(2+)- and K(+)-dependent glutathione S-transferase, are widely distributed in the genomes of Gram-negative bacteria-particularly those belonging to the family Enterobacteriaceae-and confer fosfomycin resistance. This finding suggests that chromosomally located fosA genes represent a vast reservoir of fosfomycin resistance determinants that may be transferred to E. coli Furthermore, they suggest that inhibition of FosA activity may provide a viable strategy to potentiate the activity of fosfomycin against XDR Gram-negative bacteria.201728851843
5977110.9997Methods to determine antibiotic resistance gene silencing. The occurrence of antibiotic-resistant bacteria is an increasingly serious problem world-wide. In addition, to phenotypically resistant bacteria, a threat may also be posed by isolates with silent, but intact, antibiotic resistance genes. Such isolates, which have recently been described, possess wild-type genes that are not expressed, but may convert to resistance by activating expression of the silent genes. They may therefore compromise the efficacy of antimicrobial treatment, particularly if their presence has not been diagnosed. This chapter describes the detection of silent resistance genes by PCR and DNA sequencing. A method to detect five potentially silent acquired resistance genes; aadA, bla (OXA-2), strAB, sul1, and tet(A) is described. First, the susceptibility of the isolates to the relevant antibiotics is determined by an appropriate susceptibility testing method, such as E-test. Then the presence of the genes is investigated by PCR followed by agarose gel electrophoresis of the amplification products. If a resistance gene is detected in a susceptible isolate, the entire open-reading frame and promoter sequence of the gene is amplified by PCR and their DNA sequences obtained. The DNA sequences are then compared to those of known resistant isolates, to detect mutations that may account for susceptibility. If no mutations are detected the expression of the gene is investigated by RT-PCR following RNA extraction. The methods described here can be applied to all acquired resistance genes for which sequence and normal expression data are available.201020401584
5766120.9997Ceftazidime resistance in Pseudomonas aeruginosa is multigenic and complex. Pseudomonas aeruginosa causes a wide range of severe infections. Ceftazidime, a cephalosporin, is a key antibiotic for treating infections but a significant proportion of isolates are ceftazidime-resistant. The aim of this research was to identify mutations that contribute to resistance, and to quantify the impacts of individual mutations and mutation combinations. Thirty-five mutants with reduced susceptibility to ceftazidime were evolved from two antibiotic-sensitive P. aeruginosa reference strains PAO1 and PA14. Mutations were identified by whole genome sequencing. The evolved mutants tolerated ceftazidime at concentrations between 4 and 1000 times that of the parental bacteria, with most mutants being ceftazidime resistant (minimum inhibitory concentration [MIC] ≥ 32 mg/L). Many mutants were also resistant to meropenem, a carbapenem antibiotic. Twenty-eight genes were mutated in multiple mutants, with dacB and mpl being the most frequently mutated. Mutations in six key genes were engineered into the genome of strain PAO1 individually and in combinations. A dacB mutation by itself increased the ceftazidime MIC by 16-fold although the mutant bacteria remained ceftazidime sensitive (MIC < 32 mg/L). Mutations in ampC, mexR, nalC or nalD increased the MIC by 2- to 4-fold. The MIC of a dacB mutant was increased when combined with a mutation in ampC, rendering the bacteria resistant, whereas other mutation combinations did not increase the MIC above those of single mutants. To determine the clinical relevance of mutations identified through experimental evolution, 173 ceftazidime-resistant and 166 sensitive clinical isolates were analysed for the presence of sequence variants that likely alter function of resistance-associated genes. dacB and ampC sequence variants occur most frequently in both resistant and sensitive clinical isolates. Our findings quantify the individual and combinatorial effects of mutations in different genes on ceftazidime susceptibility and demonstrate that the genetic basis of ceftazidime resistance is complex and multifactorial.202337192202
5987130.9997Mutations in gyrA and parC QRDRs are not relevant for quinolone resistance in epidemiological unrelated Stenotrophomonas maltophilia clinical isolates. Clinical strains of Stenotrophomonas maltophilia are often highly resistant to multiple antibiotics and this resistance is steadily rising. Quinolones are included in the group of antimicrobial agents to which this microorganism is developing resistance. Therefore, the aim of this study was to analyze the epidemiological relationship among 22 clinical isolates of S. maltophilia as well as the molecular mechanisms responsible for the acquisition of quinolone-resistance in these strains. The results of the pulsed-field gel electrophoresis (PFGE) showed an heterogenicity of 82% among the strains used in the study. On the other hand, no amino acid changes were found in the quinolone resistance-determining region (QRDR) of either gyrA and parC genes among quinolone-susceptible and -resistant S. maltophilia strains. Besides, the amino acid of the GyrA found in the position equivalent to Ser-83 of E. coli was Gln instead of a Ser or Thr, the amino acids usually encountered in this position among Gram-negative bacteria. The results suggest that there is not a relationship between the presence of this Gln and the resistance to quinolones in S. maltophilia. We can conclude that, contrary to what has been described in other microorganisms, in these S. maltophilia isolates, the development of resistance to quinolones was not related to mutations in the QRDR of gyrA and parC genes. Thus, to our knowledge, this is the first report describing this phenomenon.200212523620
4930140.9997Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Whole-genome sequencing (WGS) has transformed our understanding of antimicrobial resistance, yielding new insights into the genetics underlying resistance. To date, most studies using WGS to study antimicrobial resistance have focused on gram-negative bacteria in the family Enterobacteriaceae, such as Salmonella spp. and Escherichia coli, which have well-defined resistance mechanisms. In contrast, relatively few studies have been performed on gram-positive organisms. We sequenced 197 strains of Enterococcus from various animal and food sources, including 100 Enterococcus faecium and 97 E. faecalis. From analyzing acquired resistance genes and known resistance-associated mutations, we found that resistance genotypes correlated with resistance phenotypes in 96.5% of cases for the 11 drugs investigated. Some resistances, such as those to tigecycline and daptomycin, could not be investigated due to a lack of knowledge of mechanisms underlying these phenotypes. This study showed the utility of WGS for predicting antimicrobial resistance based on genotype alone.201829617860
5060150.9997Nonclonal Emergence of Colistin Resistance Associated with Mutations in the BasRS Two-Component System in Escherichia coli Bloodstream Isolates. Infections by multidrug-resistant Gram-negative bacteria are increasingly common, prompting the renewed interest in the use of colistin. Colistin specifically targets Gram-negative bacteria by interacting with the anionic lipid A moieties of lipopolysaccharides, leading to membrane destabilization and cell death. Here, we aimed to uncover the mechanisms of colistin resistance in nine colistin-resistant Escherichia coli strains and one Escherichia albertii strain. These were the only colistin-resistant strains of 1,140 bloodstream Escherichia isolates collected in a tertiary hospital over a 10-year period (2006 to 2015). Core-genome phylogenetic analysis showed that each patient was colonized by a unique strain, suggesting that colistin resistance was acquired independently in each strain. All colistin-resistant strains had lipid A that was modified with phosphoethanolamine. In addition, two E. coli strains had hepta-acylated lipid A species, containing an additional palmitate compared to the canonical hexa-acylated E. coli lipid A. One E. coli strain carried the mobile colistin resistance (mcr) gene mcr-1.1 on an IncX4-type plasmid. Through construction of chromosomal transgene integration mutants, we experimentally determined that mutations in basRS, encoding a two-component signal transduction system, contributed to colistin resistance in four strains. We confirmed these observations by reversing the mutations in basRS to the sequences found in reference strains, resulting in loss of colistin resistance. While the mcr genes have become a widely studied mechanism of colistin resistance in E. coli, sequence variation in basRS is another, potentially more prevalent but relatively underexplored, cause of colistin resistance in this important nosocomial pathogen.IMPORTANCE Multidrug resistance among Gram-negative bacteria has led to the use of colistin as a last-resort drug. The cationic colistin kills Gram-negative bacteria through electrostatic interaction with the anionic lipid A moiety of lipopolysaccharides. Due to increased use in clinical and agricultural settings, colistin resistance has recently started to emerge. In this study, we used a combination of whole-genome sequence analysis and experimental validation to characterize the mechanisms through which Escherichia coli strains from bloodstream infections can develop colistin resistance. We found no evidence of direct transfer of colistin-resistant isolates between patients. The lipid A of all isolates was modified by the addition of phosphoethanolamine. In four isolates, colistin resistance was experimentally verified to be caused by mutations in the basRS genes, encoding a two-component regulatory system. Our data show that chromosomal mutations are an important cause of colistin resistance among clinical E. coli isolates.202032161146
5508160.9997Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. Patient-derived isolates of the opportunistic pathogen Pseudomonas aeruginosa are frequently resistant to antibiotics due to the presence of sequence variants in resistance-associated genes. However, the frequency of antibiotic resistance and of resistance-associated sequence variants in environmental isolates of P. aeruginosa has not been well studied. Antimicrobial susceptibility testing (ciprofloxacin, ceftazidime, meropenem, tobramycin) of environmental (n=50) and cystic fibrosis (n=42) P. aeruginosa isolates was carried out. Following whole genome sequencing of all isolates, 25 resistance-associated genes were analysed for the presence of likely function-altering sequence variants. Environmental isolates were susceptible to all antibiotics with one exception, whereas patient-derived isolates had significant frequencies of resistance to each antibiotic and a greater number of likely resistance-associated genetic variants. These findings indicate that the natural environment does not act as a reservoir of antibiotic-resistant P. aeruginosa, supporting a model in which antibiotic susceptible environmental bacteria infect patients and develop resistance during infection.201931553303
4744170.9997Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of Pseudomonas aeruginosa. BACKGROUND/OBJECTIVES: Pseudomonas aeruginosa is a clinically significant opportunistic pathogen, renowned for its ability to acquire and develop diverse mechanisms of antibiotic resistance. This study examines the resistance, virulence, and regulatory mechanisms in extensively drug-resistant clinical strains of P. aeruginosa. METHODS: Antibiotic susceptibility was assessed using the Minimum Inhibitory Concentration (MIC) method, and whole-genome sequencing (WGS) was performed on the Illumina NovaSeq platform. RESULTS: The analysis demonstrated a higher prevalence of virulence genes compared to resistance and regulatory genes. Key virulence factors identified included secretion systems, motility, adhesion, and biofilm formation. Resistance mechanisms observed comprised efflux pumps and beta-lactamases, while regulatory systems involved two-component systems, transcriptional regulators, and sigma factors. Additionally, phenotypic profiles were found to correlate with resistance genes identified through genotypic analysis. CONCLUSIONS: This study underscores the significant resistance and virulence of the clinical P. aeruginosa strains analyzed, highlighting the urgent need for alternative strategies to address infections caused by extensively drug-resistant bacteria.202539846701
5699180.9997Presence of β-Lactamase Encoding Genes in Burkholderia cepacia Complex Isolated from Soil. Burkholderia cepacia complex has emerged as an important opportunistic bacteria group for immunocompromised patients, and it has a high level of intrinsic resistance for different antibiotic classes. Hydrolysis of β-lactam antibiotics by β-lactamases is the most common resistance mechanism in Gram-negative bacteria, and the presence of such enzymes complicates the selection of appropriate therapy. This study aimed at investigating the antimicrobial resistance profile and the presence of β-lactamase encoding genes in B. cepacia complex isolated from Brazilian soils. High-level ceftazidime resistance and several β-lactamase encoding genes were found, including the first report of bla(KPC) genes in bacteria isolated from soil.201828915359
5156190.9997Pseudomonas aeruginosa strains isolated from animal with high virulence genes content and highly sensitive to antimicrobials. OBJECTIVES: P. aeruginosa is one of the most metabolically versatile bacteria having the ability to survive in multiple environments through its accessory genome. An important hallmark of P. aeruginosa is the high level of antibiotic resistance, which often makes eradication difficult and sometimes impossible. Evolutionary forces have led to this bacterium to develop high antimicrobial resistance with a variety of elements contributing to both intrinsic and acquired resistance. The objectives were to genetically and phenotypically characterizer P. aeruginosa strains isolated from companion animals of different species. METHODS: We characterized a collection of 39 P. aeruginosa strains isolated from infected animals. The genetic characterization was in relation to chromosomal profile by PFGE; content of virulence gene; presence of genomic islands (GIs); genes of the cytotoxins exported by T3SS: exoU, exoS, exoT and exoY; and type IV pili allele. The phenotypic characterization was based on patterns of susceptibility to different antimicrobials. RESULTS: Each strain had a PFGE profile, a high virulence genes content, and a large accessory genome. However, most of the strains presented high sensitivity to almost all antimicrobials tested, showing no acquired resistance (no β-lactamases). The exception to this lack of resistance was seen with penicillin. CONCLUSIONS: P. aeruginosa could be a naturally sensitive bacterium to standard antimicrobials but could rapidly develop intrinsic and acquired resistance when the bacterium is exposed to pressure exerted by antibiotics, as observed in hospital settings.202438452900